Servomechanisms

Total Page:16

File Type:pdf, Size:1020Kb

Servomechanisms RESTRICTED A.P. 3302, PART 1 SECTION 19 CHAPTER 2 SERVOMECHANISMS ParaRraph Introduction 1 Speed Control of a D.C. Motor 6 Action of Human Operator 8 An Improved Method of Speed Control 9 Position Control Systems 14 Behaviour of a Simple Servomechanism 18 Response and Stability of Servomechanisms 20 Viscous Damping 23 Velocity Feedback Damping 26 Velocity Lag 32 Error-rate Damping 35 LJ,e of Stabilizing Networks 39 Transient Velocity Dam ping 42 Integral of Error Compensation 44 Summary of Stabilization Methods 48 Power Requirements of a Servomechanism 49 Components in a Servomechanism 52 Summary .. 55 A.L. 18 (Mar. 62) RESTRICTED RESTRICTED PART 1, SECTION 19, CHAPTER 2 SERVOMECHANISMS Introduction Only an elementary outline of the basic 1. The discovery that heat (from coal or principles involved and a general idea of oil) can be converted into mechanical energy the purpose and applications of control brought about the industrial revolution systems can be attempted in this chapter. and machines which could use this energy t~ Further information is given in Part 3 of produce useful results were quickly invented these notes. and improved. By controlling such machines, man was able to release large quantities 4. Chapter 1 has shown that d.c. remote of energy with very little expenditure of indication and a.c. synchro systems can energy on his own part. operate between shafts separated by a At first, machines were simple and a human considerable distance, but cannot supply being was quite capable of controlling in torque amplification: the torque delivered to detail the various operations that went to the load can never exceed the input torque. complete any process. But as time has For this reason, and because the error passed, machines and processes have become increases when large torques are transmitted, more complicated and results have had to remote indication and synchro systems are be produced more quickly and more accur­ employed to turn dials and pointers, to ately. Thus it has come about that in many move control valves or to actuate similar cases, man has proved to be an imperfect low-torque loads. controller of the machines he has created. Automatic control systems, on the other It is natural therefore that, wherever possible, hand, can supply the large torques required the human controller should be replaced to move heavy loads, and only a very small by some form of automatic controller. torque need be applied to the input shaft. Remote operation is not inherent in servo­ 2. Automatic control systems can include mechanisms but it can be obtained if synchro electron.ic, electro-mechanical, pneumatic, devices are made part of the system. hydraulic and mechanical devices. Such devices are used to perform diverse functions: 5. From any process there is an end-product f<_>r example, the automatic piloting of an which can be ca11ed the output. The pro­ aircraft, the control of a guided missile, duction of the output depends on the process, the movement of a radar aerial, keeping a and how the process is affected by the input. telescope trained on a star, and so on. A control system acts in such a way that the Nevertheless, regardless of the nature of the output can be controlled in the optimum quantities handled, the resulting arrange­ manner to give a desired result which bears ments have a strong family likeness to each a definite relationship to the input to the other and behave in very similar ways. A system. common theory is therefore applicable to all forms of automatic control. Speed Control of a D.C. Motor The title of this chapter is "Servomech­ 6. Fig. 1 shows an arrangement (known as anisms". A servomechanism, in fact, is the "Ward-Leonard" system) that is used merely a particular type of automatic control for controlling the speed of a d.c. motor system whose output is the position of a driving a load. shaft. It is however the most common The motor armature current is supplied type ?f control system in radio engineering, by a d.c. generator which, in turn, is driven and smce the theory which has been developed at constant speed. The d.c. motor is in its design is now used for all types of separately excited, the field current being control systems, it is convenient to confine held constant. The generator is also separ­ the discussion to servomechanisms. ately excited, but its field current can be varied by adjusting the controller potentio­ 3. A complete treatment of servomechanisms meter. Any variation in the generator is far beyond the scope of these notes. field current varies the generator output A.L. 18 (Mar. 62) RESTRICTED RESTRICTED A.P. 3302, PART 1, SECT. 19, CHAP. 2 CONSTANT SPEED DRIVE GENERATOR SUPPLIES ~ G II c:::> lr MOTOR I I ARMATURE I I CURRENT I I CONTROLLER POTENTIOMETER ~ I I',, CALIBRATED IN REVS/MIN. I I I' C~~ANTri__r-11! l ~ CO~~ANT VOLTAGE~ lllc VOLTAGE GENERATOR MOTOR FIELD FIELD VARIABLE. CONSTANT. Fig. I. SIMPLE SPEED CONTROL OF A D.C. MOTOR voltage and hence the armature current Action of Human Operator to the motor: thus the speed of the motor 8. It is interesting to discuss at this point is varied. If the generator field current is the actions that a human operator would increased, the generated voltage increases, take to maintain a constant speed (Fig. 2). as does the armature current and hence the The first action of a human operator is to motor speed. Therefore the controller poten­ collect the information or data on which he is tiometer could be calibrated with a scale in to act. He has in mind a picture of the out­ revolutions per minute and set for whatever put speed required and at the same time he motor speed is required. notes the actual output speed. His sole With this arrangement, the speed of the function is to compare the two impressions output shaft represents the 'outpl!t': the and so to adjust the system as to reduce the 'input' is the setting of the potentt<;meter. difference, or error, between them: he does The input can therefore be set to gtve the this of course by adjusting the controller desired output which the system should hold potentiometer. He is thus, in this con­ constant. nection, primarily an error-measuring device, and the amount of error determines how he 7. In practice, however, speed is not held causes the motor to use energy from the exactly constant even though ideally the generator to produce the required output speed of a separately-excited .motor .is speed. Note that the human operator pro­ determined by the voltage applied to Its vides a feedback link between output and armature. Variations in speed arise from input. a variety of reasons. In particular, variations of load conditions will cause varying motor speeds and the output is no longer that An Improved Method of Speed Control demanded by the input. 9. In practice, a more effective and efficient This system is not good enough if speed control of output speed can be obtained by control to within a fraction of one per cent replacing the human operator with an auto­ is required. matic control system as shown by the arrange- OPERATOR'S 1 AS Af'~ E~~L T OF CONTROLLED C~~['\R.Jv~G INPUT IMPRESSIONS I ACTUAL II OUTPUT · I _______ _yi~~_£.E.£p~A_EK_!:.!.N.f _____SP~ED j~ ACTUAL SPEED Fig. 2. HOW A HUMAN OPERATOR CONTROLS MOTOR SPEED RESTRICTED RESTRICTED SERVOMECHANISMS MOTOR CONSTANT SPEED ARMATURE DRIVE. CURRENT II II ll %~~STANT Ill VOLTAGE CONSTANT DC MOTORe VOLTAGE · 0 FIELD (±) TACHO·GENERATOR VOLTAGE e t 8 2 APPLIED VOLTAGE e 1 Fig. 3. AN IMPROVED METHOD OF SPEED CONTROL ment of Fig. 3. The response of the auto­ by the tacho-generator decreases and the matic system is better than that of a human generator field current increases; the gener­ operator and the automatic arrangement ated voltage thus increases as does the is not subject to fatigue. motor armature current, and the motor speeds up until it reaches the demanded 10. Tachometer-generator. In Fig. 3, the speed. It follows that if for any reason actual motor speed is measured by connecting the load speed tends to change from that a device known as a tachometer-generator or demanded, the correct restoring action will tacho-generator to the output shaft: this automatically be taken. produces a voltage proportional to the speed at which it is driven, i.e. the actual output 12. The operations of the circuits shown speed. The tacho-generator in the circuit of in Fig. 1 and Fig. 3 differ considerably in Fig. 3 is a separately-excited d.c. generator detail. with a constant field and it is so constructed In Fig. 1 the· output depends primarily that it produces a generated e.m.f. which is on the input demand, but the accuracy of exactly proportional to the rotational speed control is limited because there are no means of its armature. On load, the terminal of controlling other factors that affect the voltage is still proportional to speed, pro­ output (such as variation in output load). vided the load current is small enough for The accuracy of control therefore depends armature reaction to have no effect. D.C. on the linearity of the system. Such systems tacho-generators usually have quite a small are referred to as open-loop control systems. maximum-load current, because the armature An open loop control system is characterized is wound with many turns of fine wire, and by the lack of error comparison; that is, the commutator has a large number of there is no feedback of information from segments to ensure a relatively smooth d.c.
Recommended publications
  • Control of DC Servomotor
    Control of DC Servomotor Report submitted in partial fulfilment of the requirement to the degree of B.SC In Electrical and Electronic Engineering Under the supervision of Dr. Abdarahman Ali Karrar By Mohammed Sami Hassan Elhakim To Department of Electrical and Electronic Engineering University of Khartoum July 2008 Dedication I would like to take this opportunity to write these humble words that are unworthy of expressing my deepest gratitude for all those who made this possible. First of all I would like to thank god for my general existence and everything else around and within me. Second I would like to thank my beloved parents(Sami & Sawsan), my brothers (Tarig & Hassan), and my sister (Latifa), thank you so much for your support, guidance and care, you were always there to make me feel better and encourage me. I would like also to thanks all my friends inside and out Khartoum university, thank you for your patients tolerance and understanding, for your endless love that has stretched so far, for easing my pain and pulling me through. A special thanks to my partner Muzaab Hashiem without his help and advice i won’t be able to do what i did, thank you for being an ideal partner, friend and bother. Last but not the least i would like to thank my supervisor Dr. Karar and all those who helped me throughout this project, thank you for filling my mind with this rich knowledge. Mohammed Sami Hassan Elhakim. I Acknowledgement The first word goes to God the Almighty for bringing me to this world and guiding me as i reached this stage in my life and for making me live and see this work.
    [Show full text]
  • Glossary Defns of Terms 1998-10 TWG INCOSE .Doc
    INCOSE SE Terms Glossary Version 0 October 1998 INCOSE SE Terms Glossary Document No.: TBD Version/Revision: 0 Date: October, 1998 File: Glossary Defns of Terms 1998-10 TWG INCOSE .doc Prepared by: INCOSE Concepts and Terms WG International Council on Systems Engineering (INCOSE) 2150 N. 107th Street, Suite 205 Seattle, WA 98133-9009 NOTICE This data was prepared by the Terminology Working Group of the International Council on Systems Engineering (INCOSE) for review and comment only. It is has been released by that agency as INCOSE Technical Data. It is subject to change without notice and may not be referred to as an INCOSE Technical Product. Copyright (c) 1998 by INCOSE, subject to the following restrictions: Author Use. Authors have full rights to use their contributions in a totally unfettered way. Abstraction is permitted with credit to the source. INCOSE Use. Permission to reproduce and use this document and to prepare derivative works from this document for INCOSE use is granted, provided this copyright notice is included with all reproductions and derivative works. External Use. This document may not be shared or distributed to any non-INCOSE third party. Requests for permission to reproduce this document in whole or part, or to prepare derivative works of this document for external and/or commercial use are prohibited. Copying, scanning, retyping, or any other form of reproduction of the content of whole pages or source documents is prohibited and shall not be approved by INCOSE. Electronic Version Use. Any electronic version of this document is to be used for personal use only and is not to be placed on a non-INCOSE sponsored server for general use.
    [Show full text]
  • Course Description Bachelor of Technology (Electrical Engineering)
    COURSE DESCRIPTION BACHELOR OF TECHNOLOGY (ELECTRICAL ENGINEERING) COLLEGE OF TECHNOLOGY AND ENGINEERING MAHARANA PRATAP UNIVERSITY OF AGRICULTURE AND TECHNOLOGY UDAIPUR (RAJASTHAN) SECOND YEAR (SEMESTER-I) BS 211 (All Branches) MATHEMATICS – III Cr. Hrs. 3 (3 + 0) L T P Credit 3 0 0 Hours 3 0 0 COURSE OUTCOME - CO1: Understand the need of numerical method for solving mathematical equations of various engineering problems., CO2: Provide interpolation techniques which are useful in analyzing the data that is in the form of unknown functionCO3: Discuss numerical integration and differentiation and solving problems which cannot be solved by conventional methods.CO4: Discuss the need of Laplace transform to convert systems from time to frequency domains and to understand application and working of Laplace transformations. UNIT-I Interpolation: Finite differences, various difference operators and theirrelationships, factorial notation. Interpolation with equal intervals;Newton’s forward and backward interpolation formulae, Lagrange’sinterpolation formula for unequal intervals. UNIT-II Gauss forward and backward interpolation formulae, Stirling’s andBessel’s central difference interpolation formulae. Numerical Differentiation: Numerical differentiation based on Newton’sforward and backward, Gauss forward and backward interpolation formulae. UNIT-III Numerical Integration: Numerical integration by Trapezoidal, Simpson’s rule. Numerical Solutions of Ordinary Differential Equations: Picard’s method,Taylor’s series method, Euler’s method, modified
    [Show full text]
  • Power Processing, Part 1. Electric Machinery Analysis
    DOCONEIT MORE BD 179 391 SE 029 295,. a 'AUTHOR Hamilton, Howard B. :TITLE Power Processing, Part 1.Electic Machinery Analyiis. ) INSTITUTION Pittsburgh Onii., Pa. SPONS AGENCY National Science Foundation, Washingtcn, PUB DATE 70 GRANT NSF-GY-4138 NOTE 4913.; For related documents, see SE 029 296-298 n EDRS PRICE MF01/PC10 PusiPostage. DESCRIPTORS *College Science; Ciirriculum Develoiment; ElectricityrFlectrOmechanical lechnology: Electronics; *Fagineering.Education; Higher Education;,Instructional'Materials; *Science Courses; Science Curiiculum:.*Science Education; *Science Materials; SCientific Concepts ABSTRACT A This publication was developed as aportion of a two-semester sequence commeicing ateither the sixth cr'seventh term of,the undergraduate program inelectrical engineering at the University of Pittsburgh. The materials of thetwo courses, produced by a ional Science Foundation grant, are concernedwith power convrs systems comprising power electronicdevices, electrouthchanical energy converters, and associated,logic Configurations necessary to cause the system to behave in a prescribed fashion. The emphisis in this portionof the two course sequence (Part 1)is on electric machinery analysis. lechnigues app;icable'to electric machines under dynamicconditions are anallzed. This publication consists of sevenchapters which cW-al with: (1) basic principles: (2) elementary concept of torqueand geherated voltage; (3)tile generalized machine;(4i direct current (7) macrimes; (5) cross field machines;(6),synchronous machines; and polyphase
    [Show full text]
  • In a Mechanical System, a Differential
    RADAR CIRCUIT ANALYSIS 13-14 THE DIFFERENTIAL SElSYN In a mechanical system, a differential con- 52 nects three shafts together in such a way that the amount that one shaft turns is equal to the dif- zsv ference between the amounts that the other two turn. The differential selsyn is named according to the two functions it performs. If the shaft of the differential selsyn serves to indicate the differ- ence in shafts positions of two other selsyns, the other two selsyns are generators and the differ- ential selsyn is a motor. If the differential selsyn shaft position is to be subtracted from that of a 53 selsyn generator (or vice versa) and the differ- ence to be indicated by the rotor position of a i----OV---o-i motor, the differential selsyn is then a generator. ~---OV--~~_-4 ~ The stator of the differential generator or motor is very similar to the stator of the ordi- nary selsyn. It consists of three sets of coils 0 wound in slots and spaced 120 apart around the Differential Transformer Action at 0° Position inside of the field structure. The rotor, however, differs considerably from that of an ordinary The selsyn generator just above is connected selsyn. It is cylindrical in shape and has three sets to a differential selsyn in which the rotor leads of coils wound in slots and equally spaced around are open. Both shafts are in the 0° position. Since the circumference. Connections to the external the stator coils of the differential selsyn connect circuits are made through three brushes riding on to the stator coils of the generator, the voltages three slip rings on the rotor shaft.
    [Show full text]
  • Brushless DC Electric Motor
    Please read: A personal appeal from Wikipedia author Dr. Sengai Podhuvan We now accept ₹ (INR) Brushless DC electric motor From Wikipedia, the free encyclopedia Jump to: navigation, search A microprocessor-controlled BLDC motor powering a micro remote-controlled airplane. This external rotor motor weighs 5 grams, consumes approximately 11 watts (15 millihorsepower) and produces thrust of more than twice the weight of the plane. Contents [hide] 1 Brushless versus Brushed motor 2 Controller implementations 3 Variations in construction 4 AC and DC power supplies 5 KM rating 6 Kv rating 7 Applications o 7.1 Transport o 7.2 Heating and ventilation o 7.3 Industrial Engineering . 7.3.1 Motion Control Systems . 7.3.2 Positioning and Actuation Systems o 7.4 Stepper motor o 7.5 Model engineering 8 See also 9 References 10 External links Brushless DC motors (BLDC motors, BL motors) also known as electronically commutated motors (ECMs, EC motors) are electric motors powered by direct-current (DC) electricity and having electronic commutation systems, rather than mechanical commutators and brushes. The current-to-torque and frequency-to-speed relationships of BLDC motors are linear. BLDC motors may be described as stepper motors, with fixed permanent magnets and possibly more poles on the rotor than the stator, or reluctance motors. The latter may be without permanent magnets, just poles that are induced on the rotor then pulled into alignment by timed stator windings. However, the term stepper motor tends to be used for motors that are designed specifically to be operated in a mode where they are frequently stopped with the rotor in a defined angular position; this page describes more general BLDC motor principles, though there is overlap.
    [Show full text]
  • EE 3TP4: Signals and Systems Lab 5: Control of a Servomechanism Tim Davidson Ext
    EE 3TP4: Signals and Systems Lab 5: Control of a Servomechanism Tim Davidson Ext. 27352 [email protected] Objective To identify the plant model of a servomechanism, and explore the trade-off between rise time and overshoot incurred in proportional control of the servo(mechanism). Assessment Your mark for this lab will be assessed on your ability to complete each section. The marks for each section are indicated at the beginning of the section. Please demonstrate your results to the TAs and have your mark recorded. Please attend the lab section to which you have been assigned. 1 Description of Laboratory Equipment In this lab we will deal with an angular positioning system based around a DC motor. Such schemes are often used to position heavy or difficult to move objects using a ‘command tool’ which is easy to move. For example, moving the control surfaces of an aircraft using the lever in the cockpit. In our system, the plant is the motor (and its associated electronics). The input to the plant is a control signal c(t) and the output of the plant is a voltage which is proportional to the angle of the motor shaft, θ(t). Using information about the structure of the motor and Newtonian mechanics, the operation of the motor can be described by the following differential equation: d2θ(t) dθ(t) J + B = Kmc(t); (1) dt2 dt where J is the rotational inertia of the motor, B is the damping in the motor structure, and Km is the (internal) gain of the motor.
    [Show full text]
  • Servo Systems
    2012/3/26 Servo Systems Department of Mechanical Engineering Lecturer: Jia-Yush Yen 4/7/2010 A Control System Reference command Output Controller Actuator Plant Measurement Servo Systems 2 1 2012/3/26 Outline • Motors – Synchronous motor – Induction motor – DC motor –BLDC –PMAC – PWM principle – Driver design Servo Systems 3 Servo vs. Process System •A servomechanism is a feedback control system in which the controlled variable is a (mechanical) position, velocity, torque, frequency, etc. •A process control generally refers to control of other variables as liquid level, pressure, temperature, density, concentration, or chemical composition. Servo Systems 4 2 2012/3/26 Servo System Loop Set Point Network http://www.a-m- c.com/content/m101/generalservosystems. Servo Systems html 5 Motors http://en.wikipedia.org/wiki/Motor • Electric motor – a machine that converts electricity into a mechanical motion – AC motor, an electric motor that is driven by alternating current • Synchronous motor • Induction motor – DC motor, an electric motor that runs on direct current electricity • Brushed DC electric motor • Brushless DC motor – Linear motor – Stepper motor • Servo motor – an electric motor that operates a servo, Servocommonly Systems used in robotics 6 3 2012/3/26 Calculating Magnetic Field • Magnetic Field Intensity: where μ is the permeability • Magnetomotive force (mmf): Servo Systems 7 AC SYNCHRONOUS MOTOR Servo Systems 8 4 2012/3/26 AC Synchronous Motor • A synchronous electric motor is an AC motor distinguished by a rotor spinning with coils passing magnets at the same rate as the alternating current and resulting magnetic field which drives it. Another way of saying this is that it has zero slip under usual operating conditions http://www.mwit.ac.th/~Phy http://en.wikipedia.org/wiki/Sy sicslab/hbase/magnetic/mo nchronous_motor torac.html Servo Systems 9 Rotating Magnetic Field • Apply three-phase voltage to a three-phase stator winding creates a rotating field.
    [Show full text]
  • London Electricity Companies Had Already Supply Co
    printed LONDON AREA POWER SUPPLY A Survey of London’s Electric Lighting and Powerbe Stations By M.A.C. Horne to - not Copyright M.A.C. Horne © 2012 (V3.0) London’s Power Supplies LONDON AREA POWER SUPPLY Background to break up streets and to raise money for electric lighting schemes. Ignoring a small number of experimental schemes that did not Alternatively the Board of Trade could authorise private companies to provide supplies to which the public might subscribe, the first station implement schemes and benefit from wayleave rights. They could that made electricity publicly available was the plant at the Grosvenor either do this by means of 7-year licences, with the support of the Art Gallery in New Bond Street early in 1883. The initial plant was local authority, or by means of a provisional order which required no temporary, provided from a large wooden hut next door, though a local authority consent. In either case the local authority had the right supply was soon made available to local shopkeepers. Demand soon to purchase the company concerned after 21 years (or at 7-year precipitated the building of permanent plant that was complete by intervals thereafter) and to regulate maximum prices. There was no December 1884. The boiler house was on the south side of the power to supply beyond local authority areas or to interconnect intervening passage called Bloomfield Street and was connected with systems. It is importantprinted to note that the act did not prevent the generating plant in the Gallery’s basement by means of an creation of supply companies which could generate and distribute underground passage.
    [Show full text]
  • Introduction
    Introduction The Servo Trigger is a small board that helps you deploy hobby RC servo motors. When an external switch or logic signal changes state, the Servo Trigger tells an attached servo motor to move from position A to position B. The Servo Trigger in action. To use the Servo Trigger, you simply connect a hobby servo and a switch, then use the onboard potentiometers to adjust the start/stop positions and transition time. You can use a hobby servos in your projects without having to do any programming! In This Tutorial This hookup guide starts with some background information about hobby servo motors. From there, it jumps into getting the Servo Trigger working with a small servo, then examines some of the inner workings. Finally, for the adventurous, it explains how to customize the Servo Trigger by reprogramming it. Servo Motor Background In the most generic sense, a “servomechanism” (servo for short) is a device that uses feedback to achieve the desired result. Feedback control is used in many different disciplines, controlling parameters such as speed, position, and temperature. In the context we are discussing here, we are talking about hobby or radio-control servo motors. These are small motors primarily used for steering radio-controlled vehicles. Because the position is easily controllable, they are also useful for robotics and animatronics. However, they shouldn’t be confused with other types of servo motors, such as the large ones used in industrial machinery. An Assortment of Hobby Servos RC servos are reasonably standardized - they are all a similar shape, with mounting flanges at each end, available in graduated sizes.
    [Show full text]
  • Electrical Engineering Dictionary
    ratio of the power per unit solid angle scat- tered in a specific direction of the power unit area in a plane wave incident on the scatterer R from a specified direction. RADHAZ radiation hazards to personnel as defined in ANSI/C95.1-1991 IEEE Stan- RS commonly used symbol for source dard Safety Levels with Respect to Human impedance. Exposure to Radio Frequency Electromag- netic Fields, 3 kHz to 300 GHz. RT commonly used symbol for transfor- mation ratio. radial basis function network a fully R-ALOHA See reservation ALOHA. connected feedforward network with a sin- gle hidden layer of neurons each of which RL Typical symbol for load resistance. computes a nonlinear decreasing function of the distance between its received input and Rabi frequency the characteristic cou- a “center point.” This function is generally pling strength between a near-resonant elec- bell-shaped and has a different center point tromagnetic field and two states of a quan- for each neuron. The center points and the tum mechanical system. For example, the widths of the bell shapes are learned from Rabi frequency of an electric dipole allowed training data. The input weights usually have transition is equal to µE/hbar, where µ is the fixed values and may be prescribed on the electric dipole moment and E is the maxi- basis of prior knowledge. The outputs have mum electric field amplitude. In a strongly linear characteristics, and their weights are driven 2-level system, the Rabi frequency is computed during training. equal to the rate at which population oscil- lates between the ground and excited states.
    [Show full text]
  • Servo Control Design - Timothy Chang
    CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. VIII - Servo Control Design - Timothy Chang SERVO CONTROL DESIGN Timothy Chang New Jersey Institute of Technology, Newark, NJ, USA Keywords: servo control, servomechanism, feedback, feedforward control, regulation, disturbance rejection, compensation, input shaping, lag compensator, lead compensation, phase margin, steady-state error, integral control, industrial regulator, stabilizing compensator, PID control, state feedback, frequency response, parameter optimization. Contents 1. Introduction 2. Classical Servo Control Design 2.1. Integrator Based Control 2.1.1. Design Example: Industrial Regulator 2.2. Phase Lag Control 2.2.1. Design Example: Phase Lag Compensation 2.3. Phase Lead Control 2.3.1. Design Example: Phase Lead Compensation 3. Modern Servo Control Design 3.1. Feedforward Control: Input Shaping 3.1.1. Mathematical Analysis of the Input Shaping Scheme 3.1.2. Design Example: Input Shaping for Unit Step Command 3.2. Feedback Control 3.2.1. Controller Parameterization 3.2.2. Time Domain Parameter Optimization 3.2.3. Frequency Domain Parameter Optimization 4. Conclusions Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS Elements and design of servo control systems are discussed in this paper. The primary purpose of a servoSAMPLE system is to regulate the outputCHAPTERS of a dynamical system by means of feedback control. For pedagogical and historical reasons, the discussions of servo control are divided into two parts: classical and modern servo systems aiming at audience with an undergraduate and graduate level of engineering background respectively. Classical servo control deals with single-input, single-output systems in either frequency or time domain. It remains popular with many industrial applications due to its simplicity in design and implementation.
    [Show full text]