Zoologi – Om Dyr Og Dyreliv

Total Page:16

File Type:pdf, Size:1020Kb

Zoologi – Om Dyr Og Dyreliv Zoologi – om dyr og dyreliv 8Halvor Aarnes 2003. S.E. & O. Rev. 23-02-2005. Innholdsfortegnelse Zoologi og fylogeni ......................................................... 4 Rike Urdyr (Protozoa)/ Protister (Protista) ..................................... 6 Rekke Flimmerdyr/ciliater (Ciliophora) ...................................... 7 Rekke Dinoflagellater (Dinoflagellata) ...................................... 9 Rekke Sporozooer/sporedyr (Sporozoa, Apicomplexa) ........................ 9 Klasse Sporozoa ......................................................... 10 Underklasse Gregariner (Gregarina) ...................................... 10 Underklasse Coccidia ................................................... 10 Orden Hemosporider (Haemosporidia) .................................. 11 Underklasse Spiroplasmea ............................................... 12 Rekke Amøber (Rhizopoda) ................................................ 12 Rekke Cellulære slimsopp (Acrasiomycota) .................................. 13 Rekke Plasmodiale slimsopp (Myxomycota) .................................. 13 Rekke Zooflagellater (Zoomastigina, Mastigophora) ........................... 14 Orden Kinetoplastida .................................................. 14 Orden Trichomonadida/Axostylata ...................................... 15 Orden Diplomonadida ................................................. 15 Orden Retortamonadida ............................................... 15 Rekke Foraminiferer (Foraminifera) ......................................... 16 Rekke Soldyr (Heliozoa/ Actinosphaerium .................................... 16 Rekke Labyrinthomorpha .................................................. 16 Rekke Myxozoa .......................................................... 17 Rekke Microspora ........................................................ 17 Rekke Euglenoider (Euglenophyta) ......................................... 17 Rekke Diatoméer (Bacillariophyta) .......................................... 18 Rekke Eggsporesopp (Oomycota) .......................................... 18 Orden Cnidosporidia .................................................. 18 Orden Myxosporidia ................................................... 19 Orden Microsporidia .................................................. 19 Rekke Brunalger (Phaeophyta) ............................................. 19 Rekke Gullalger (Chrysophyta) ............................................. 19 Rekke Rødalger (Rhodophyta) ............................................. 20 Rekke Grønnalger (Chlorophyta) ........................................... 20 Rekke Choanoflagellata ................................................... 20 Rike Animalia ............................................................ 20 Embryoutvikling ........................................................ 21 Zygote, kløyving, blastula og gastrula...................................... 22 1 HOX-gener ............................................................ 23 Fylogenetisk tre ........................................................ 24 Dyregrupper inndelt etter kroppshulrom .................................... 26 Celler, vev og organer ................................................... 28 Histologi (vevslære) ..................................................... 28 Rekke Svamper (Porifera) ................................................. 34 Klasse Kalksvamper (Calcarea/ Calcispongiae) ............................. 36 Klasse Kisel- og hornsvamper (Demospongiae) ............................. 36 Klasse Korallsvamper (Sclerospongiae) ................................... 36 Rekke Huldyr/nesledyr (Cnidaria, Coelenterata) .............................. 37 Klasse Hydrozoer/småmaneter (Hydrozoa) ................................. 38 Orden Hydroider (Hydroidea) ........................................... 39 Orden Hydrocorallina .................................................. 40 Orden Trachylina ..................................................... 40 Orden Kolonimaneter/Blæremaneter (Siphonophora) ...................... 40 Klasse Stormaneter (Scyphozoa) ......................................... 40 Orden Begermaneter/stilkmaneter (Stauromedusae/Lucernariidae) .......... 41 Orden Skivemaneter (Semaeostomeae) ................................. 41 Orden Lungemaneter (Rhizostomeae) ................................... 41 Orden Ringmaneter (Coronatae) ........................................ 41 Klasse Kubemaneter (Cubozoa) .......................................... 42 Klasse Koralldyr (Anthozoa) .............................................. 42 Orden Lærkoraller/bløtkoraller (Alcyonaria) ............................... 43 Orden Orgelkoraller (Stolonifera) ....................................... 43 Orden Sjøtrær/hornkoraller/gorgonier (Gorgonacea) ....................... 43 Orden Sjøfjær (Pennatulacea/Pennatullacida) ............................ 43 Orden Blåkoraller (Coenothecalia) ...................................... 43 Orden Sjøanemoner/sjøroser (Actinaria) ................................. 43 Orden Steinkoraller (Madreporaria) ..................................... 44 Orden Kolonisjørose (Zoantharia) ....................................... 44 Orden Sylindersjøroser/Ormekoraller (Ceriantharia) ....................... 44 Orden Svartkoraller (Anthipatharia) ..................................... 44 Orden Corallimorpharia ................................................ 45 Rekke Ribbemaneter (Ctenophora) ......................................... 45 Underklasse Tentaculata ................................................ 45 Overrekke Aceolemater(Acoelemaria) ....................................... 46 Rekke Mesozoa .......................................................... 46 Klasse Rhombozoa/Dicyemida ........................................... 46 Klasse Orthonectida .................................................... 46 Rekke Placozoa ........................................................ 46 Protostome Bilateria/Lophotrochozoa ........................................ 47 Rekke Flatormer (Platyhelminthes) .......................................... 47 Klasse Flimmermark/flimmerormer (Turbellaria) ............................. 48 2 Klasse Ikter/trematoder (Trematoda) ...................................... 49 Underklasse Digene ikter (Digenea) ....................................... 49 Klasse Monogene ikter/haptormark (Monogenea) ........................... 51 Klasse Bendelorm (Cestodaria/Cestoda) ................................... 52 Rekke Slimormer/Nemertiner (Rhynchocoela/ Nemertina/Nemertea) ............ 54 Klasse Anopla .......................................................... 55 Klasse Enopla .......................................................... 55 Rekke Kjeveormer (Gnathostomulida) ....................................... 55 Ovverrekke Psuedocoelemater (Pseudocoelomata) ........................... 55 Rekke Krassere (Acanthocephala) .......................................... 56 Rekke Hårormer/taglormer (Nematomorpha) ................................. 57 Rekke Hjuldyr/rotatorier (Rotifera/Rotatoria) .................................. 57 Rekke Bukhåringer/Gastrotricher (Gastrotricha) ............................... 58 Rekke Kinorhyncher (Kinorhyncha/Echinodera) ............................... 59 Rekke Entoprokter (Kamptozoa/Entoprocta) .................................. 59 Rekke Priapulider (Priapuloidea/Priapula) .................................... 59 Rekke Loricifera .......................................................... 60 Overrekke Coelomate dyr (Coelomata/Eucoelemaria) ......................... 60 Rekke Skjeggormer/pogonoforer (Pogonophora) .............................. 60 Rekke Krokbærende pølseormer/echiurider (Echiuroidea/Echiura) .............. 61 Rekke Børsteløse pølseormer/sipunkulider (Sipunculoidea/Sipuncula) ........... 62 Klasse Linguatulider/tungeormer (Linguatilida; Pentastomida) ................ 62 Klasse Fløyelsesormer (Onychophora) .................................... 62 Klasse Tardigrader/bjørnedyr/tregkrypere (Tardigrada) (gr. tardus - sakte; gradus - steg/trinn). ............................................................. 63 Rekke Lophoforater (Lophophorata, Tentaculata) ............................. 63 Klasse Phoronider/hestskoormer (Phoronida) .............................. 63 Rekke Mosdyr (Bryozoa/Ectoprocta/Polyzoa) ................................. 64 Klasse Brachiopoder/armføttinger (Brachiopoda) ............................ 65 Rekke Bløtdyr/mollusker (Mollusca) ......................................... 65 Klasse Skallus/leddsnegler (Polyplacophora) ............................... 67 Klasse Caudofoveata ................................................... 68 Klasse Ormbløtdyr (Aplachophora/ Solenogastres) .......................... 68 Klasse Urbløtdyr (Monoplacophora) ....................................... 68 Klasse Snegler/gastropoder (Gastropoda) ................................. 68 Underklasse Bakgjellesnegler (Opisthobranchia) ............................ 73 Orden Lungesnegler (Pulmonata) ....................................... 74 Orden Ferskvannslungesnegl (Basommatophora) ......................... 74 Klasse Sjøtenner (Scaphopoda) .......................................... 76 Klasse Muslinger (Pelecypoda/Bivalvia) ................................... 76 Klasse Blekkspruter (Cephalopoda) ....................................... 80 Rekke Leddormer (Annelida) ............................................... 82 Klasse Mangebørstede leddormer/ flerbørsteormer/ havbørsteormer (Polychaeta)
Recommended publications
  • New Zealand Oceanographic Institute Memoir 100
    ISSN 0083-7903, 100 (Print) ISSN 2538-1016; 100 (Online) , , II COVER PHOTO. Dictyodendrilla cf. cavernosa (Lendenfeld, 1883) (type species of Dictyodendri/la Bergquist, 1980) (see page 24), from NZOI Stn I827, near Rikoriko Cave entrance, Poor Knights Islands Marine Reserve. Photo: Ken Grange, NZOI. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH The Marine Fauna of New Zealand: Index to the Fauna 2. Porifera by ELLIOT W. DAWSON N .Z. Oceanographic Institute, Wellington New Zealand Oceanographic Institute Memoir 100 1993 • This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Cataloguing in publication DAWSON, E.W. The marine fauna of New Zealand: Index to the Fauna 2. Porifera / by Elliot W. Dawson - Wellington: New Zealand Oceanographic Institute, 1993. (New Zealand Oceanographic Institute memoir, ISSN 0083-7903, 100) ISBN 0-478-08310-6 I. Title II. Series UDC Series Editor Dennis P. Gordon Typeset by Rose-Marie C. Thompson NIWA Oceanographic (NZOI) National Institute of Water and Atmospheric Research Received for publication: 17 July 1991 © NIWA Copyright 1993 2 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page ABSTRACT 5 INTRODUCTION 5 SCOPE AND ARRANGEMENT 7 SYSTEMATIC LIST 8 Class DEMOSPONGIAE 8 Subclass Homosclcromorpha ..............................................................................................
    [Show full text]
  • Preliminary Checklist of Extant Endemic Species and Subspecies of the Windward Dutch Caribbean (St
    Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos, P.A.J. Bakker, R.J.H.G. Henkens, J. A. de Freitas, A.O. Debrot Wageningen University & Research rapport C067/18 Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos1, P.A.J. Bakker2, R.J.H.G. Henkens3, J. A. de Freitas4, A.O. Debrot1 1. Wageningen Marine Research 2. Naturalis Biodiversity Center 3. Wageningen Environmental Research 4. Carmabi Publication date: 18 October 2018 This research project was carried out by Wageningen Marine Research at the request of and with funding from the Ministry of Agriculture, Nature and Food Quality for the purposes of Policy Support Research Theme ‘Caribbean Netherlands' (project no. BO-43-021.04-012). Wageningen Marine Research Den Helder, October 2018 CONFIDENTIAL no Wageningen Marine Research report C067/18 Bos OG, Bakker PAJ, Henkens RJHG, De Freitas JA, Debrot AO (2018). Preliminary checklist of extant endemic species of St. Martin, St. Eustatius, Saba and Saba Bank. Wageningen, Wageningen Marine Research (University & Research centre), Wageningen Marine Research report C067/18 Keywords: endemic species, Caribbean, Saba, Saint Eustatius, Saint Marten, Saba Bank Cover photo: endemic Anolis schwartzi in de Quill crater, St Eustatius (photo: A.O. Debrot) Date: 18 th of October 2018 Client: Ministry of LNV Attn.: H. Haanstra PO Box 20401 2500 EK The Hague The Netherlands BAS code BO-43-021.04-012 (KD-2018-055) This report can be downloaded for free from https://doi.org/10.18174/460388 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified.
    [Show full text]
  • Announcements Protists - Outline Reading: Chap
    Announcements Protists - Outline Reading: Chap. 29 • Relevant reading BEFORE lab this week: Ch. 31 I. Introduction • Bring lab atlas AND textbook to lab. A. Diversity of life styles IV. Evolutionary history • Extra credit opportunity: B. Functional classifications A. Kingdom Protista? – Salmon Summit: Wed. 11/3/10, 8-4:45 pm II. Ecological importance B. How are they related St. Luke’s Community Health Education Center to each other? A. Algae C. How did they arise? Bellingham, WA (checking on registration) B. Protozoans D. How are they related III. Life cycles to plants? A. The three basic types B. Examples Diatom I.A. Diversity of life styles Size 1. Size 10 μm 2. Morphology 3. Motility Kelp 4. Energy sources 6 orders of magnitude! 60 m Filamentous (Golden algae) Morphology Gradient in complexity Unicellular (Euglena) Colonial (Pandorina) Multicellular (kelp) 1 Crawling (pseudopodia) Cell walls – protection & support Planktonic Amoeba Diatoms Cilia Flagella Motility Fastened Amoeba Paramecium Euglena Kelp No cell wall Energy source - photoautotrophs Variation in photosynthetic pigments Energy source - heterotrophs Ingestive feeders Absorptive feeders: decomp., parasites I.B. Functional classifications Particle feeder (Stentor) Protozoans - “animal like” Parasite Algae - “plant-like”, i.e., photosynthetic (Trypanosoma) - Eukaryotic photosynthetic organisms that are not plants Decomposer Mix - simple to bizarre (slime mold Don’t necessarily relate to taxonomic Physarum) (ingestive) relationships and evolutionary history Predator (Amoeba) 2 Cellular slime mold – unicellular or multicellular? Mixotroph example - Euglena Cells (n) aggregate when food is scarce Amoebae (n) Spores germinate Amoebae (n) germinate (n) from zygote from spores SEXUAL ASEXUAL REPRODUCTION REPRODUCTION Fruiting body Stalk Giant cell Migrating individual (2n) (slug) (n) Two cells (n) in aggregation fuse, then consume other cells Fig.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Cyanobacterial contribution to the genomes of the plastid-lacking protists Shinichiro Maruyama*1, Motomichi Matsuzaki1,2,3, Kazuharu Misawa1,3,3 and Hisayoshi Nozaki1 Address: 1Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan, 2Current address: Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113- 0033, Japan and 3Current address: Research Program for Computational Science, Riken, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan Email: Shinichiro Maruyama* - [email protected]; Motomichi Matsuzaki - [email protected]; Kazuharu Misawa - [email protected]; Hisayoshi Nozaki - [email protected] * Corresponding author Published: 11 August 2009 Received: 13 March 2009 Accepted: 11 August 2009 BMC Evolutionary Biology 2009, 9:197 doi:10.1186/1471-2148-9-197 This article is available from: http://www.biomedcentral.com/1471-2148/9/197 © 2009 Maruyama et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Eukaryotic genes with cyanobacterial ancestry in plastid-lacking protists have been regarded as important evolutionary markers implicating the presence of plastids in the early evolution of eukaryotes. Although recent genomic surveys demonstrated the presence of cyanobacterial and algal ancestry genes in the genomes of plastid-lacking protists, comparative analyses on the origin and distribution of those genes are still limited.
    [Show full text]
  • Sponge Diversity and Community Composition in Irish Bathyal Coral Reefs
    Contributions to Zoology, 76 (2) 121-142 (2007) Sponge diversity and community composition in Irish bathyal coral reefs Rob W.M. van Soest1, Daniel F.R. Cleary1,2, Mario J. de Kluijver1, Marc S.S. Lavaleye3, Connie Maier3, Fleur C. van Duyl3 1Zoological Museum of the University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, the Netherlands, soest@ science.uva.nl; 2Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, P.O. Box 94766, 1090 GT, Amsterdam, the Netherlands, [email protected]; 3Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands, [email protected] Key words: coldwater, multivariate analysis, North Atlantic, ordination, PCA, Porifera, RDA Abstract west of Ireland were found to have a combined sponge species richness of 191 species, exceeding the richness of individual reef Sponge diversity and community composition in bathyal cold mound areas by c. 38-45%. Sponge presence in CWRs is water coral reefs (CWRs) were examined at 500-900 m depth clearly structured and controlled by biotic and abiotic factors. on the southeastern slopes of Rockall Bank and the northwestern In particular, live coral presence appears a signifi cant predictor slope of Porcupine Bank, to the west of Ireland in 2004 and 2005 of CWR sponge composition and diversity. with boxcores. A total of 104 boxcore samples, supplemented with 10 trawl/dredge attempts, were analyzed for the presence and abundance of sponges, using microscopical examination of Contents (sub)samples of collected coral branches, and semi-quantitative macroscopic examination. Approximate minimum size of iden- Introduction ...................................................................................
    [Show full text]
  • The Comparative Embryology of Sponges Alexander V
    The Comparative Embryology of Sponges Alexander V. Ereskovsky The Comparative Embryology of Sponges Alexander V. Ereskovsky Department of Embryology Biological Faculty Saint-Petersburg State University Saint-Petersburg Russia [email protected] Originally published in Russian by Saint-Petersburg University Press ISBN 978-90-481-8574-0 e-ISBN 978-90-481-8575-7 DOI 10.1007/978-90-481-8575-7 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010922450 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface It is generally assumed that sponges (phylum Porifera) are the most basal metazoans (Kobayashi et al. 1993; Li et al. 1998; Mehl et al. 1998; Kim et al. 1999; Philippe et al. 2009). In this connection sponges are of a great interest for EvoDevo biolo- gists. None of the problems of early evolution of multicellular animals and recon- struction of a natural system of their main phylogenetic clades can be discussed without considering the sponges. These animals possess the extremely low level of tissues organization, and demonstrate extremely low level of processes of gameto- genesis, embryogenesis, and metamorphosis. They show also various ways of advancement of these basic mechanisms that allow us to understand processes of establishment of the latter in the early Metazoan evolution.
    [Show full text]
  • Evolution of Parasitism in Kinetoplastid Flagellates
    Molecular & Biochemical Parasitology 195 (2014) 115–122 Contents lists available at ScienceDirect Molecular & Biochemical Parasitology Review Evolution of parasitism in kinetoplastid flagellates a,b,∗ a,b a,b a,c a,d Julius Lukesˇ , Tomásˇ Skalicky´ , Jiríˇ Ty´ cˇ , Jan Votypka´ , Vyacheslav Yurchenko a Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic b Faculty of Science, University of South Bohemia, Ceskéˇ Budejoviceˇ (Budweis), Czech Republic c Department of Parasitology, Faculty of Sciences, Charles University, Prague, Czech Republic d Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic a r t i c l e i n f o a b s t r a c t Article history: Kinetoplastid protists offer a unique opportunity for studying the evolution of parasitism. While all their Available online 2 June 2014 close relatives are either photo- or phagotrophic, a number of kinetoplastid species are facultative or obligatory parasites, supporting a hypothesis that parasitism has emerged within this group of flagellates. Keywords: In this review we discuss origin and evolution of parasitism in bodonids and trypanosomatids and specific Evolution adaptations allowing these protozoa to co-exist with their hosts. We also explore the limits of biodiversity Phylogeny of monoxenous (one host) trypanosomatids and some features distinguishing them from their dixenous Vectors (two hosts) relatives. Diversity Parasitism © 2014 Elsevier B.V. All rights reserved. Trypanosoma Contents 1. Emergence of parasitism: setting (up) the stage . 115 2. Diversity versus taxonomy: closing the gap . 116 3. Diversity is not limitless: defining its extent . 117 4. Acquisition of parasitic life style: the “big” transition .
    [Show full text]
  • Phylogenomic Analyses Support the Monophyly of Excavata and Resolve Relationships Among Eukaryotic ‘‘Supergroups’’
    Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic ‘‘supergroups’’ Vladimir Hampla,b,c, Laura Huga, Jessica W. Leigha, Joel B. Dacksd,e, B. Franz Langf, Alastair G. B. Simpsonb, and Andrew J. Rogera,1 aDepartment of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 1X5; bDepartment of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1; cDepartment of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; dDepartment of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; eDepartment of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7; and fDepartement de Biochimie, Universite´de Montre´al, Montre´al, QC, Canada H3T 1J4 Edited by Jeffrey D. Palmer, Indiana University, Bloomington, IN, and approved January 22, 2009 (received for review August 12, 2008) Nearly all of eukaryotic diversity has been classified into 6 strong support for an incorrect phylogeny (16, 19, 24). Some recent suprakingdom-level groups (supergroups) based on molecular and analyses employ objective data filtering approaches that isolate and morphological/cell-biological evidence; these are Opisthokonta, remove the sites or taxa that contribute most to these systematic Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata, and Exca- errors (19, 24). vata. However, molecular phylogeny has not provided clear evi- The prevailing model of eukaryotic phylogeny posits 6 major dence that either Chromalveolata or Excavata is monophyletic, nor supergroups (25–28): Opisthokonta, Amoebozoa, Archaeplastida, has it resolved the relationships among the supergroups. To Rhizaria, Chromalveolata, and Excavata. With some caveats, solid establish the affinities of Excavata, which contains parasites of molecular phylogenetic evidence supports the monophyly of each of global importance and organisms regarded previously as primitive Rhizaria, Archaeplastida, Opisthokonta, and Amoebozoa (16, 18, eukaryotes, we conducted a phylogenomic analysis of a dataset of 29–34).
    [Show full text]
  • Unusual Mitochondrial Genome Structures Throughout the Euglenozoa
    ARTICLE IN PRESS Protist, Vol. 158, 385—396, July 2007 http://www.elsevier.de/protis Published online date 11 May 2007 ORIGINAL PAPER Unusual Mitochondrial Genome Structures throughout the Euglenozoa Joannie Roya, Drahomı´ra Faktorova´ b, Julius Lukesˇ b, and Gertraud Burgera,c,1 aCentre Robert Cedergren, Bioinformatics & Genomics, De´ partement de biochimie, Universite´ de Montre´ al, Montre´ al, QC, Canada, H3 T 1J4 bBiology Centre, Institute of Parasitology, Czech Academy of Sciences and Faculty of Biology, University of South Bohemia, 370 05 Cˇ eske´ Budeˇ jovice (Budweis), Czech Republic cProgram in Evolutionary Biology, Canadian Institute for Advanced Research, Canada Submitted January 13, 2007; Accepted March 18, 2007 Monitoring Editor: Larry Simpson Mitochondrial DNA of Kinetoplastea is composed of different chromosomes, the maxicircle (bearing ‘regular’ genes) and numerous minicircles (specifying guide RNAs involved in RNA editing). In trypanosomes [Kinetoplastea], DNA circles are compacted into a single dense body, the kinetoplast. This report addresses the question whether multi-chromosome mitochondrial genomes and compacted chromosome organization are restricted to Kinetoplastea or rather occur throughout Euglenozoa, i.e., Kinetoplastea, Euglenida and Diplonemea. To this end, we investigated the diplonemid Rhynchopus euleeides and the euglenids Petalomonas cantuscygni, Peranema tricho- phorum and Entosiphon sulcatum, using light and electron microscopy and molecular techniques. Our findings together with previously published data show that multi-chromosome mitochondrial genomes prevail across Euglenozoa, while kinetoplast-like mtDNA packaging is confined to trypanosomes. & 2007 Elsevier GmbH. All rights reserved. Key words: euglenozoan protists; mitochondrial chromosomes; mitochondrial ultrastructure. Introduction Mitochondrial genomes are astoundingly diverse from genome size, ranges from two dozen in across the various eukaryotic lineages.
    [Show full text]
  • Marine and Freshwater Taxa: Some Numerical Trends Semyon Ya
    Natural History Sciences. Atti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano, 6 (2): 11-27, 2019 DOI: 10.4081/nhs.2019.417 Marine and freshwater taxa: some numerical trends Semyon Ya. Tsalolikhin1, Aldo Zullini2* Abstract - Most of the freshwater fauna originates from ancient or Parole chiave: Adattamento, biota d’acqua dolce, biota marino, recent marine ancestors. In this study, we considered only completely livelli tassonomici. aquatic non-parasitic animals, counting 25 phyla, 77 classes, 363 orders for a total that should include 236,070 species. We divided these taxa into three categories: exclusively marine, marine and freshwater, and exclusively freshwater. By doing so, we obtained three distribution INTRODUCTION curves which could reflect the marine species’ mode of invasion into Many marine animal groups have evolved by gradu- continental waters. The lack of planktonic stages in the benthic fauna ally adapting to less salty waters until they became true of inland waters, in addition to what we know about the effects of the impoundment of epicontinental seas following marine regressions, freshwater species. This was, for some, the first step to lead us to think that the main invasion mode into inland waters is more free themselves from the water and become terrestrial ani- linked to the sea level fluctuations of the past than to slow and “volun- mals. Of course, not all taxa have followed this path. In tary” ascents of rivers by marine elements. this paper we want to see if the taxonomic level of taxa that changed their starting habitat can help to understand Key words: Adaptation, freshwater biota, sea biota, taxonomic levels.
    [Show full text]
  • Diplomova Prace Pavla Smejkalova
    Univerzita Karlova v Praze Přírodov ědecká fakulta Katedra parazitologie Evoluce skupiny Retortamonadida (Eukaryota: Excavata: Fornicata) Bc. Pavla Smejkalová Diplomová práce Praha 2010 Vedoucí diplomové práce: RNDr. Ivan Čepi čka, Ph.D. Konzultant: Prof. RNDr. Jaroslav Kulda, CSc. Prohlašuji, že jsem tuto práci vypracovala samostatn ě a uvedla citace všech použitých pramen ů. V Praze, 3. 5. 2010 Pavla Smejkalová 2 Na tomto místě bych cht ěla vyjád řit velké pod ěkování svému školiteli RNDr. Ivanu Čepi čkovi, Ph.D. za vedení b ěhem práce v laborato ři a za mnoho podn ětných p řipomínek při sepisování diplomové práce. D ěkuju Ivane, bez tvé pomoci bych tuto práci nikdy nedopsala. Také bych cht ěla pod ěkovat prof. RNDr. Jaroslavu Kuldovi, CSc. za poskytnuté výsledky ultrastrukturní studie a odborné rady. Děkuji všem lidem z našeho týmu za pomoc a za p říjemn ě strávený čas nejen v laborato ři, ale i mimo ni. V neposlední řad ě bych cht ěla poděkovat svým rodi čů m za podporu b ěhem studia. 3 1. ABSTRAKT .........................................................................................................................6 2. ABSTRAKT .........................................................................................................................7 3. CÍLE......................................................................................................................................8 4. LITERÁRNÍ P ŘEHLED ......................................................................................................9 4.1. Vývoj taxonomie
    [Show full text]