Environmental Impacts of Offshore Wind Farms in the Belgian Part of the North Sea

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Impacts of Offshore Wind Farms in the Belgian Part of the North Sea 2018 MEMOIRS on the Marine Environment ENVIRONMENTAL IMPACTS SERIES OF OFFSHORE WIND FARMS IN THE BELGIAN PART OF THE NORTH SEA Edited by ASSESSING AND MANAGING Steven Degraer Robin Brabant EFFECT SPHERES OF INFLUENCE Bob Rumes Laurence Vigin SCIENTIFIC REPORTS SCIENTIFIC REPORTS MEMOIRS on the Marine Environment 2018 ENVIRONMENTAL IMPACTS OF OFFSHORE WIND FARMS IN THE BELGIAN PART OF THE NORTH SEA ASSESSING AND MANAGING EFFECT SPHERES OF INFLUENCE Edited by Steven Degraer Robin Brabant Bob Rumes Laurence Vigin Published by: Royal Belgian Institute of Natural Sciences (RBINS) Operational Directorate Natural Environment (OD Nature) Aquatic and Terrestrial Ecology (ATECO) Marine Ecology and Management (MARECO) Vautierstraat 29, 1000 Brussels, Belgium www.naturalsciences.be odnature.naturalsciences.be Revision and layout: Charlotte Gérard (RBINS) Cover illustration: Installation of wind turbine foundations in the Nobelwind wind farm © Bob Rumes (RBINS) Printed by: Peeters (Belgium) Legal deposit: D/2018/0339/5 ISBN: 978-9-0732-4242-5 Reproduction of parts of the report is possible, except for commercial purposes, provided the source is clearly acknowledged. This report should be cited as: Degraer, S., Brabant, R., Rumes, B. & Vigin, L. (eds). 2018. Environmental Impacts of Offshore Wind Farms in the Belgian Part of the North Sea: Assessing and Managing Effect Spheres of Influence. Brussels: Royal Belgian Institute of Natural Sciences, OD Natural Environment, Marine Ecology and Management, 136 p. Edited by: Steven Degraer ([email protected]) Robin Brabant ([email protected]) Bob Rumes ([email protected]) Laurence Vigin ([email protected]) This publication has been peer-reviewed Acknowledgements This research is financed by C-Power nv, Parkwind nv, Rentel nv and Norther nv, in fulfilment of the environmental monitoring programme of their environmental permits. The authors want to thank C-Power, Parkwind, Rentel and Norther for their willing cooperation. This monitoring benefited from the use of the research vessel Belgica (ship time RV Belgica was provided by BELSPO and RBINS – OD Nature), the research vessel Simon Stevin (operated by the Flanders Marine Institute) and the observation aircraft of RBINS for collecting the necessary data at sea. Table of contents Preface……………………………………………………………………………………………………..5 Executive summary……………………………………………………………………………………….7 Chapter 1. Offshore renewable energy development in the Belgian Part of the North Sea………. 13 1. Offshore renewable energy in Belgium……………………………………………………….13 2. Beyond 2020: the marine spatial plan 2020-2026…………………………………………….16 3. Grid reinforcement and the Modular Offshore Grid (MOG)…………………………………16 Chapter 2. On the effectiveness of a single big bubble curtain as mitigation measure for offshore wind farm piling sound in Belgian waters……………………………………………………………..19 1. Introduction……………………………………………………………………………………19 2. Material and methods………………………………………………………………………….20 2.1. Research strategy…………………………………………………………………………….20 2.2. Construction activities……………………………………………………………………….20 2.3. Underwater sound measurement equipment………………………………………………...20 2.4. Underwater sound measurements and post-treatment……………………………………….21 3. Results…………………………………………………………………………………………22 4. Discussion……………………………………………………………………………………..24 5. Conclusion……………………………………………………………………………………..25 Chapter 3. Soft sediment epibenthos and fish monitoring at the Belgian offshore wind farm area: situation 6 and 7 years after construction……………………………………………………………...27 1. Introduction……………………………………………………………………………………27 2. Material and methods………………………………………………………………………….28 2.1. Sampling……………………………………………………………………………..28 2.2. Data used and statistical analyses………………………………………………………30 3. Results…………………………………………………………………………………………30 3.1. Epibenthos……………………………………………………………………………30 3.2. Demersal and bentho-pelagic fish……………………………………………………...32 4. Discussion and conclusions……………………………………………………………………34 Chapter 4. Defining reference condition (T0) for the soft sediment epibenthos and demersal-benthopelagic fish in the Norther and Rentel concession zones………………………………………………………39 1. Introduction……………………………………………………………………………………39 2. Material and methods………………………………………………………………………….40 2.1. Sampling……………………………………………………………………………..40 2.2. Data used and statistical analyses………………………………………………………40 3. Results…………………………………………………………………………………………43 3.1. Community analysis of the wider offshore wind farm area…………………………………43 3.2. T0 situation in Norther and Rentel…………………………………………………………...47 4. Discussion and conclusions…………………………………………………………………...52 Chapter 5. Effects of wind turbine foundations on surrounding macrobenthic communities…… 57 1. Introduction……………………………………………………………………………………57 2. Material and methods………………………………………………………………………….59 2.1. Study area ……………………………………………………………………………59 2.2. Sample design, collection and treatment………………………………………………..59 2.3. Data Analysis…………………………………………………………………………62 3. Results………………………………………………………………………………………….63 3.1. Effects of turbine presence…………………………………………………………….63 3.2. Baseline analysis at Norther…………………………………………………………...66 4. Discussion……………………………………………………………………………………...69 4.1. Effects turbine presence on soft sediment macrobenthic communities…………………...69 4.2. Baseline analysis………………………………………………………………………72 5. Conclusion and future perspectives……………………………………………………………73 Chapter 6. A closer look at the fish fauna of artificial hard substrata of offshore renewables in Belgian waters……………………………………………………………………………………………79 1. Introduction……………………………………………………………………………………79 2. Material and methods………………………………………………………………………….80 2.1. Study site……………………………………………………………………………………80 2.2. Species list and categorisation……………………………………………………………….80 3. Results………………………………………………………………………………………….81 3.1. Species richness……………………………………………………………………………..81 4. Discussion……………………………………………………………………………………...81 4.1. Remarkable species…………………………………………………………………………..81 4.2. Fish diversity at hard substrata of offshore renewables in Belgium and beyond ………….84 5. Conclusions……………………………………………………………………………………86 Chapter 7. Lesser black-backed gull distribution in and around the Thornton Bank offshore wind farm using gps logger data……………………………………………………………………...91 1. Introduction………………………………………………………………………………………91 2. Material and methods………………………………………………………………………….92 2.1. Overall data selection………………………………………………………………………...92 2.2. Data exploration……………………………………………………………………………...94 2.3. Modelling exercises………………………………………………………………………….95 2.4. Statistics……………………………………………………………………………………...97 3. Results…………………………………………………………………………………………97 3.1. Data exploration……………………………………………………………………………...97 3.2. Modelling exercises………………………………………………………………………...103 4. Discussion……………………………………………………………………………………108 Chapter 8. Modelling the impact of pile driving on porpoise populations in the Belgian Part of the North Sea………………………………………………………………………………………………..117 1. Introduction…………………………………………………………………………………..117 2. Material and methods…………………………………………………………………………118 2.1. Study area…………………………………………………………………………………..118 2.2. Legal framework……………………………………………………………………………119 2.3. interim Population Consequences of Disturbance model (iPCOD model)………………..121 3. Results………………………………………………………………………………………..124 4. Discussion……………………………………………………………………………………125 4.1. Effect of a seasonal pile driving restriction………………………………………………..125 4.2. Effect of noise mitigation…………………………………………………………………..125 4.3. Effect of simultaneous construction………………………………………………………..125 4.4. Effect of time schedule and adverse weather………………………………………………126 4.5. Some words of caution……………………………………………………………………...126 Chapter 9. First ever detections of bats made by an acoustic recorder installed on the nacelle of offshore wind turbines in the Norh Sea………………………………………………...………….....129 1. Introduction…………………………………………………………………………………..129 2. Material and methods…………………………………………………………………………130 3. Results………………………………………………………………………………………..130 4. Discussion……………………………………………………………………………………132 PREFACE The European Directive 2001/77/EC, on the permit imposes a monitoring programme to promotion of electricity produced from re- assess the effects of the project onto the ma- newable energy sources in the internal elec- rine environment. tricity market, imposes a target figure for the Within the monitoring programme, the contribution of the production of electricity Royal Belgian Institute of Natural Sciences from renewable energy sources upon each and its partners assess the extent of the an- Member State. For Belgium, this target fig- ticipated impacts onto the marine ecosystem ure is 13% of the total energy consumption, and aim at revealing the processes behind which must be achieved by 2020. Offshore these impacts. The first objective is basically wind farms in the Belgian part of the North tackled through the baseline monitoring, fo- Sea are expected to make an important con- cusing on the a posteriori, resultant impact tribution (ca. 43%, assuming 2000 MW in- quantification, while the second monitoring stalled capacity by 2020) to achieve that objective is covered by the targeted or pro- goal. cess monitoring, focusing on the cause-ef- Within the BPNS, a zone of 238 km² fect relationships of a priori selected im- is reserved for the production of electrici- pacts. As such, the baseline monitoring deals ty from water, currents or wind. Four wind with observing rather than understanding farms are already operational. With five impacts and hence leads to area-specific
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • Impact of Windfarm OWEZ on the Local Macrobenthos Communiy
    Impact of windfarm OWEZ on the local macrobenthos community report OWEZ_R_261_T1_20090305 R. Daan, M. Mulder, M.J.N. Bergman Koninklijk Nederlands Instituut voor Zeeonderzoek (NIOZ) This project is carried out on behalf of NoordzeeWind, through a sub contract with Wageningen-Imares Contents Summary and conclusions 3 Introduction 5 Methods 6 Results boxcore 11 Results Triple-D dredge 13 Discussion 16 References 19 Tables 21 Figures 33 Appendix 1 44 Appendix 2 69 Appendix 3 72 Photo’s by Hendricus Kooi 2 Summary and conclusions In this report the results are presented of a study on possible short‐term effects of the construction of Offshore Windfarm Egmond aan Zee (OWEZ) on the composition of the local benthic fauna living in or on top of the sediment. The study is based on a benthic survey carried out in spring 2007, a few months after completion of the wind farm. During this survey the benthic fauna was sampled within the wind farm itself and in 6 reference areas lying north and south of it. Sampling took place mainly with a boxcorer, but there was also a limited programme with a Triple‐D dredge. The occurrence of possible effects was analyzed by comparing characteristics of the macrobenthos within the wind farm with those in the reference areas. A quantitative comparison of these characteristics with those observed during a baseline survey carried out 4 years before was hampered by a difference in sampling design and methodological differences. The conclusions of this study can be summarized as follows: 1. Based on the Bray‐Curtis index for percentage similarity there appeared to be great to very great similarity in the fauna composition of OWEZ and the majority of the reference areas.
    [Show full text]
  • Download Full Article in PDF Format
    DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno David Président du Muséum national d’Histoire naturelle RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF : Laure Desutter-Grandcolas ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Anne Mabille ([email protected]) MISE EN PAGE / PAGE LAYOUT : Anne Mabille COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : James Carpenter (AMNH, New York, États-Unis) Maria Marta Cigliano (Museo de La Plata, La Plata, Argentine) Henrik Enghoff (NHMD, Copenhague, Danemark) Rafael Marquez (CSIC, Madrid, Espagne) Peter Ng (University of Singapore) Jean-Yves Rasplus (INRA, Montferrier-sur-Lez, France) Jean-François Silvain (IRD, Gif-sur-Yvette, France) Wanda M. Weiner (Polish Academy of Sciences, Cracovie, Pologne) John Wenzel (The Ohio State University, Columbus, États-Unis) COUVERTURE / COVER : Akrophryxus milvus n. gen., n. sp., holotype female, MNHN-IU-2014-20314, attached to Ethusa machaera Castro, 2005, macropod images. Zoosystema est indexé dans / Zoosystema is indexed in: – Science Citation Index Expanded (SciSearch®) – ISI Alerting Services® – Current Contents® / Agriculture, Biology, and Environmental Sciences® – Scopus® Zoosystema est distribué en version électronique par / Zoosystema is distributed electronically by: – BioOne® (http://www.bioone.org) Les articles ainsi que les nouveautés nomenclaturales publiés dans Zoosystema sont référencés par / Articles and nomenclatural novelties published in Zoosystema are referenced by: – ZooBank® (http://zoobank.org) Zoosystema est une revue en flux continu publiée par les Publications scientifiques du Muséum, Paris / Zoosystema is a fast track journal published by the Museum Science Press, Paris Les Publications scientifiques du Muséum publient aussi / The Museum Science Press also publish: Adansonia, Geodiversitas, Anthropozoologica, European Journal of Taxonomy, Naturae, Cryptogamie sous-sections Algologie, Bryologie, Mycologie. Diffusion – Publications scientifiques Muséum national d’Histoire naturelle CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France) Tél.
    [Show full text]
  • Role of Reef-Building, Ecosystem Engineering Polychaetes in Shallow Water Ecosystems
    diversity Review Role of Reef-Building, Ecosystem Engineering Polychaetes in Shallow Water Ecosystems Martín Bruschetti 1,2 1 Instituto de Investigaciones Marinas y Costeras (IIMyC)-CONICET, Mar del Plata 7600, Argentina; [email protected] 2 Laboratorio de Ecología, Universidad Nacional de Mar del Plata, FCEyN, Laboratorio de Ecología 7600, Argentina Received: 15 June 2019; Accepted: 15 September 2019; Published: 17 September 2019 Abstract: Although the effect of ecosystem engineers in structuring communities is common in several systems, it is seldom as evident as in shallow marine soft-bottoms. These systems lack abiotic three-dimensional structures but host biogenic structures that play critical roles in controlling abiotic conditions and resources. Here I review how reef-building polychaetes (RBP) engineer their environment and affect habitat quality, thus regulating community structure, ecosystem functioning, and the provision of ecosystem services in shallow waters. The analysis focuses on different engineering mechanisms, such as hard substrate production, effects on hydrodynamics, and sediment transport, and impacts mediated by filter feeding and biodeposition. Finally, I deal with landscape-level topographic alteration by RBP. In conclusion, RBP have positive impacts on diversity and abundance of many species mediated by the structure of the reef. Additionally, by feeding on phytoplankton and decreasing water turbidity, RBP can control primary production, increase light penetration, and might alleviate the effects of eutrophication
    [Show full text]
  • Effects of a Commercial Mussel Mytilus Edulis Lay on a Sublittoral, Soft Sediment Benthic Community
    MARINE ECOLOGY PROGRESS SERIES Vol. 282: 185–191, 2004 Published November 16 Mar Ecol Prog Ser Effects of a commercial mussel Mytilus edulis lay on a sublittoral, soft sediment benthic community Julie Smith*, Susan E. Shackley School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK ABSTRACT: A commercial mussel Mytilus edulis lay was established in 1998 in western inner Swansea Bay (Wales, UK) in a shallow, sublittoral, high tidal energy environment, on a substrate which previously supported a diverse inshore, sand/muddy sand benthic community. Within a year of commencement of this fishery, a significant change in the species composition of the benthic com- munity occurred, with a decrease in the number of species and in the total number of individuals. The abundance of carnivorous and deposit feeding benthic species increased, whilst the mussels out- competed other benthic filter feeding organisms, preventing the settlement of these organisms by ingestion of the larvae, and removed other benthic organisms by physical smothering. KEY WORDS: Mussel lay · Benthos · Community effects · Coastal waters Resale or republication not permitted without written consent of the publisher INTRODUCTION Swansea Bay is a high-energy embayment, located on the northern coastline of the Bristol Channel, with Mussels Mytilus edulis L. are of growing commercial maximum depths of 20 m relative to chart datum (CD) importance, with increased numbers of applications for and an extensive, low gradient intertidal zone (Fig. 1). permission to site commercial mussel lays around the The tidal current takes the form of a rectilinear, revers- UK coast in shallow, sheltered, inshore environments.
    [Show full text]
  • The Mysid-Feeding Guild of Demersal Fishes in the Brackish Zone of the Westerschelde Estuary
    Chapter 7 The Mysid feeding guild offishes in the Westerschelde 123 CHAPTER 7 THE MYSID-FEEDING GUILD OF DEMERSAL FISHES IN THE BRACKISH ZONE OF THE WESTERSCHELDE ESTUARY 63962 K. Hostens - J. Mees University of Gent, Depa rtment of Biology, Marine Biology Section, Ledeganckstraat 35, B-9000 Gent, Belgium Key words: stomach content, consumption, Mysidacea, flatfish, gobies, gadoids, clupeoids Published in Journal of Fish Biology 1999, 55: 704-719 Abstract. The demersal fish fauna of the mesohaline zone of the Westerschelde estuary (south -west Netherlands) was sampled intensively in the period 1990-1992. Almost 500 beam trawl samples were taken in both subtidal (330 samples) and intertidal (144 samples) habitats. These yielded 44 fish species, mostly as juveniles. The area was found to function as a nursery for several demersal fish species. and harboured large populations ofhyper - benthic mysids. Three gobies, three flatfish, one clupeoid and one gadoid dominated the fish fauna, while three mysid species were important components of the holohyperbenthos. From c. 1500 stomach contents of 25 fish species, 44 prey species were identified, the most abundant of which were also common in the hyperbenthal. The demersal fish community consisted of a group that foraged subtidally on fast-moving epi- and hyperbenthic prey (for example gadoids, gobies and clupeoids) and a group that foraged on slow-moving or sessile endobenthic organisms, mainly in intertidal areas (for example most flatfish species). Mysidacea occurred in >50 % stom - achs analysed and were taken as prey by 19 of the 25 fish species. Mysids were most important in the diets of Pomatoschistus minutus, P.
    [Show full text]
  • The Regulatory Framework for Wind Energy in EU Member States
    33333333333333333333333 The regulatory framework for wind energy in EU Member States Part 1 of the Study on the social and economic value of wind energy – WindValueEU (ENER/C2/2012-462-1/SI2.671144) Javier SERRANO GONZÁLEZ Roberto LACAL ARÁNTEGUI 2015 Report EUR 27130 EN Cover picture: wind farm at the harbour. © Jos Beurskens. European Commission Joint Research Centre Institute for Energy and Transport Contact information Javier Serrano González Address: Joint Research Centre, Institute for Energy and Transport. Westerduinweg 3, NL-1755 LE Petten, The Netherlands E-mail: [email protected] Tel.: +31 224 56 51 87 JRC Science Hub https://ec.europa.eu/jrc Legal Notice This publication is a Science and Policy Report by the Joint Research Centre, the European Commission’s in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. All images except where otherwise indicated © European Union 2015 JRC93792 EUR 27130 EN ISBN 978-92-79-46032-6 (PDF) ISSN 1831-9424 (online) doi: 10.2790/282003 Luxembourg: Publications Office of the European Union, 2015 © European Union, 2015 Reproduction is authorised provided the source is acknowledged. Please cite this report as follows: The regulatory framework for wind energy in EU Member States. Part 1 of the Study on the social and economic value of wind energy – WindValueEU.
    [Show full text]
  • Defining Reference Condition (T0) for the Soft Sediment Epibenthos and Demersal-Benthopelagic Fish in the Norther and Rentel Concession Zones
    CHAPTER 4 DEFINING REFERENCE CONDITION (T0) FOR THE SOFT SEDIMENT EPIBENTHOS AND DEMERSAL-BENTHOPELAGIC FISH IN THE NORTHER AND RENTEL CONCESSION ZONES DE BACKER Annelies & HOSTENS Kris Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Aquatic Environment and Quality, Ankerstraat 1, 8400 Oostende, Belgium Corresponding author: [email protected] Abstract Norther seems justified as the extrapolation In the near future, two new offshore wind of previous monitoring results from the oth- farms (OWFs) will be constructed in Belgian er OWFs cannot be guaranteed. Monitoring waters, Norther and Rentel. In this chapter, of Rentel, on the other hand, seems redun- we explored whether the epibenthos and dant within the current WinMon monitoring demersal-benthopelagic fish assemblage in program, as there is a high similarity with these future OWFs differed from the (refer- the C-power epibenthos and fish assemblag- ence) assemblages that are currently moni- es. Although, integration of Norther in the tored within the WinMon program i.e., for monitoring framework is recommended, it is the OWFs C-Power and Belwind. Secondly, important to consider that natural variability within this zone is very high, especially for the T0 reference conditions for both new concession zones are described. All sam- epibenthos, which may obscure both short ples were taken in autumn 2016, as such and long-term potential effects related to the excluding both interannual variability and presence of the Norther OWF, and the fisher- seasonality. ies exclusion in this concession zone. A clear north-south gradient was ob- served within the wider OWF area for both 1.
    [Show full text]
  • Research Article Hydrodynamic Conditions Effects on Soft-Bottom Subtidal Nearshore Benthic Community Structure and Distribution
    Hindawi Journal of Marine Sciences Volume 2020, Article ID 4674580, 16 pages https://doi.org/10.1155/2020/4674580 Research Article Hydrodynamic Conditions Effects on Soft-Bottom Subtidal Nearshore Benthic Community Structure and Distribution Clémence Foulquier ,1,2 Julien Baills,1 Alison Arraud,1 Frank D’Amico,2 Hugues Blanchet,3 Didier Rihouey,1 and Noëlle Bru2 1Casagec Ingenierie, 18 rue Maryse Bastié, 64600 Anglet, France 2CNRS/UNIV Pau & Pays Adour/E2S UPPA, Laboratoire de Mathématiques et de Leurs Applications de Pau, UMR 5142 64600, Anglet, France 3Université de Bordeaux, UMR 5805 EPOC, Station Marine d’Arcachon, 2 Rue du Professeur Jolyet, 33120 Arcachon, France Correspondence should be addressed to Clémence Foulquier; [email protected] Received 22 May 2019; Revised 30 August 2019; Accepted 15 October 2019; Published 30 January 2020 Academic Editor: Garth L. Fletcher Copyright © 2020 Clémence Foulquier et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. is study assesses the impacts of wave action and freshwater outflow on so-bottom benthic macrofauna spatial distribution and temporal stability along the highly exposed French Basque coast. Sediment characteristics and macrofauna abundance have been seasonally investigated during two years for nine stations located at the same (6 m) depth and spread over three subtidal sites showing distinct exposure levels. Wave climate has been determined through an operational numerical model. A total of 121 taxa were recorded, gathered in three main faunal assemblages, as revealed by classification and ordination methods.
    [Show full text]
  • Assessment Report on Technical, Legal, Institutional and Policy Conditions
    Deliverable 2.1 ASSESSMENT REPORT ON TECHNICAL, LEGAL, INSTITUTIONAL AND POLICY CONDITIONS This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 953040. The sole responsibility for the content of this document lies with the COME RES project and does not necessarily reflect the opinion of the European Union. Public SUMMARY WP: 2 Name of the WP: Starting conditions, potentials, barriers and drivers for the uptake of RES based community energy Dissemination Public Due delivery date: 28 February 2021 level: Type: Report Actual delivery date: 26 February 2021 Lead beneficiary: CICERO – Center for International Climate Research Contributing beneficiaries: FUB, VITO, BBH, RESCoop.eu, ECOAZIONI, ENEA, LEIF, TU/e, KAPE, INEGI, ECORYS Lead authors: Lead authors: Karina Standal and Stine Aakre Contributing authors: Irene Alonso (ECORYS); Isabel Azevedo (INEGI); Massimo Bastiani (Ecoazioni); Nicoletta del Bufalo (ECORYS); Martina Caliano (ENEA); Sarah Delvaux (VITO); Rosaria Di Nucci (FUB); Dörte Fouquet (BBH); Vincenzo Gatta (FUB); Xenia Gimenez (ACER); Gaidis Klāvs (IPE); Michael Krug (FUB); Ivars Kudreņickis (IPE); Erik Laes (TU/e); Kristin Linnerud (CICERO); Elena De Luca (ENEA), Pouyan Maleki (ECORYS); Erika Meynaerts (VITO); Piotr Nowakowski (KAPE); Maria Grazia Oteri (ENEA); Stavroula Pappa (REScoop.eu); Roland Schumann (ACER); Dirk Vansintjan (REScoop.eu); Virna Venerucci (Ecoazioni); Ryszard Wnuk (KAPE); Aija Zučika (LEIF); Solveig Aamodt (CICERO) Document history Submitted Version Date Reviewed/approved by Date for review by V0 Karina 18.02.2021 Kristin Linnerud, CICERO 19.02.2021 Standal, CICERO V1 Stine Aakre, 19.02.2021 Pouyan Maleki, ECORYS 22.02.2021 CICERO Rosaria Di Nucci FUB-FFU 24.02.2021 V2 Karina 26.02.2021 Rosaria Di Nucci FUB-FFU 26.02.2021 Standal, CICERO i COME RES 953040 - D2.1: ASSESSMENT REPORT ON TECHNICAL, LEGAL, INSTITUTIONAL AND POLICY CONDITIONS Public ABOUT COME RES COME RES - Community Energy for the uptake of renewables in the electricity sector.
    [Show full text]
  • Review of the Nassarius Pauperus
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2017 Band/Volume: 0275 Autor(en)/Author(s): Galindo Lee Ann, Kool Hugo H., Dekker Henk Artikel/Article: Review of the Nassarius pauperus (Gould, 1850) complex (Nassariidae): Part 3, reinstatement of the genus Reticunassa, with the description of six new species 1-43 European Journal of Taxonomy 275: 1–43 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2017.275 www.europeanjournaloftaxonomy.eu 2017 · Galindo L.A. et al. This work is licensed under a Creative Commons Attribution 3.0 License. DNA Library of Life, research article urn:lsid:zoobank.org:pub:FC663FAD-BCCB-4423-8952-87E93B14DEEA Review of the Nassarius pauperus (Gould, 1850) complex (Nassariidae): Part 3, reinstatement of the genus Reticunassa, with the description of six new species Lee Ann GALINDO 1*, Hugo H. KOOL 2 & Henk DEKKER 3 1 Muséum national d’Histoire naturelle, Département Systématique et Evolution, ISyEB Institut (UMR 7205 CNRS/UPMC/MNHN/EPHE), 43, Rue Cuvier, 75231 Paris, France. 2,3 Associate Mollusca Collection, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:B84DC387-F1A5-4FE4-80F2-5C93E41CEC15 2 urn:lsid:zoobank.org:author:5E718E5A-85C8-404C-84DC-6E53FD1D61D6 3 urn:lsid:zoobank.org:author:DA6A1E69-F70A-42CC-A702-FE0EC80D77FA Abstract. In this review (third part), several species within the Nassarius pauperus complex from the eastern Indian Ocean and western Pacifi c are treated, including a revised concept of Nassa paupera Gould, 1850, type species of the genus Reticunassa Iredale, 1936.
    [Show full text]
  • Copyright© 2018 Mediterranean Marine Science
    Mediterranean Marine Science Vol. 19, 2018 A novel grid-net design to eliminate bycatch in beam trawl fishing for the veined rapa whelk in the south-eastern Black Sea ERYAŞAR AHMET Recep Tayyip Erdogan University http://dx.doi.org/10.12681/mms.15351 Copyright © 2018 Mediterranean Marine Science To cite this article: ERYAŞAR, A. (2018). A novel grid-net design to eliminate bycatch in beam trawl fishing for the veined rapa whelk in the south-eastern Black Sea. Mediterranean Marine Science, 19(3), 494-503. doi:http://dx.doi.org/10.12681/mms.15351 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 12/10/2019 07:52:29 | Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available online at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.15351 A novel grid-net design to eliminate bycatch in beam trawl fishing for the veined rapa whelk in the south-eastern Black Sea AHMET RAİF ERYAŞAR Recep Tayyip Erdogan University, Vocational School of Technical Sciences, Underwater Technology Program, Rize, Turkey Corresponding author: [email protected] Handling Editor: Argyro Zenetos Received: 7 December 2017; Accepted: 19 March 2018; Published on line: 26 September 2018 Abstract Beam trawl fisheries in the Black Sea target the veined rapa whelk (Rapana venosa) while other species of fish and crabs are re- turned to the sea dead or alive. Smaller bivalves and crabs are also packed with the catch without elimination. In this study, novel grid-net designs (GNDs) with two different bar spacings were tested to reduce the bycatch.
    [Show full text]