Journal of Avian Biology 48: 640–649, 2017 doi: 10.1111/jav.00998 © 2016 The Authors. Journal of Avian Biology © 2016 Nordic Society Oikos Subject Editor: Darren Irwin. Editor-in-Chief: Thomas Alerstam. Accepted 2 October 2016 Divergence and gene flow in the globally distributed blue-winged ducks Joel T. Nelson, Robert E. Wilson, Kevin G. McCracken, Graeme S. Cumming, Leo Joseph, Patrick-Jean Guay and Jeffrey L. Peters J. T. Nelson and J. L. Peters, Dept of Biological Sciences, Wright State Univ., Dayton, OH, USA. – R. E. Wilson (
[email protected]), U. S. Geological Survey, Alaska Science Center, Anchorage, AK, USA. – K. G. McCracken and REW, Inst. of Arctic Biology, Dept of Biology and Wildlife, and Univ. of Alaska Museum, Univ. of Alaska Fairbanks, Fairbanks, AK, USA. KGM also at: Dept of Biology and Dept of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, Univ. of Miami, Coral Gables, FL, USA. – G. S. Cumming, Percy FitzPatrick Inst., DST/NRF Centre of Excellence, Univ. of Cape Town, Rondebosch, South Africa, and ARC Centre of Excellence in Coral Reef Studies, James Cook Univ., Townsville, QLD, Australia. – L. Joseph, Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, ACT, Australia. – P.-J. Guay, Inst. for Sustainability and Innovation, College of Engineering and Science, Victoria Univ., Melbourne, VIC, Australia. The ability to disperse over long distances can result in a high propensity for colonizing new geographic regions, including uninhabited continents, and lead to lineage diversification via allopatric speciation. However, high vagility can also result in gene flow between otherwise allopatric populations, and in some cases, parapatric or divergence-with-gene-flow models might be more applicable to widely distributed lineages.