Parasitism Capacity of Telenomus Remus and Trichogramma Pretiosum on Eggs of Moth Pests of Peanut

Total Page:16

File Type:pdf, Size:1020Kb

Parasitism Capacity of Telenomus Remus and Trichogramma Pretiosum on Eggs of Moth Pests of Peanut Bulletin of Insectology 73 (1): 71-78, 2020 ISSN 1721-8861 eISSN 2283-0332 Parasitism capacity of Telenomus remus and Trichogramma pretiosum on eggs of moth pests of peanut José Ricardo Lima PINTO, Odair Aparecido FERNANDES School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil Abstract Telenomus remus Nixon (Hymenoptera Scelionidae) and Trichogramma pretiosum Riley (Hymenoptera Trichogrammatidae) are widely used for the control of lepidopteran pests in several countries, but applied programs using these parasitoids in peanuts are still rare. Therefore, the comparative parasitism capacity of T. remus and T. pretiosum in Stegasta bosqueella (Chambers) (Lepi- doptera Gelechiidae), Spodoptera cosmioides (Walker) and Spodoptera frugiperda (J.E. Smith) (Lepidoptera Noctuidae) eggs were studied under controlled conditions (12L:12D photoperiod, 25 ± 1 °C, and 70 ± 10% RH). Eggs of S. bosqueella, S. cosmi- oides and S. frugiperda were offered daily throughout the adult lifespan of the parasitoids. Both parasitoids did not parasitize eggs of S. bosqueella. Eggs of Spodoptera spp. were significantly more parasitized by T. remus than by T. pretiosum. These two parasi- toids presented the highest parasitism rate in the first 24 hours in Spodoptera eggs. However, to obtain 80% of parasitism in Spodoptera spp. took up to seven days for T. remus and up to three days for T. pretiosum. Telenomus remus demonstrated a long- er lifespan, greater number of emerged parasitoids, and a female-biased sexual ratio, which might result in a greater potential con- trol of Spodoptera spp. in the field. For S. bosqueella, other biological control agents should be considered. Key words: biological control, egg parasitoids, biological parameters. Introduction According to Faria et al. (2000) for biological pest con- trol to be successful, basic studies to evaluate biological Technological innovations in the Brazilian peanut (Ara- parameters are crucial, as they are the basis for choosing chys hypogaea L.) production chain, such as the use of the ideal control agent and assuring efficacy in a biologi- runner varieties, have provided an increase in planted cal control program. Parasitoids of the genera Telenomus area, yield and exports in recent years (MDIC, 2018). (Hymenoptera Scelionidae) and Trichogramma (Hyme- This leguminous plant is the main species used in crop noptera Trichogrammatidae) are widely used to control rotation with sugarcane in the Brazilian Southeastern lepidopteran pests, mainly because these parasitoids of region, which is responsible for about 90% of the na- eggs eliminate the pest before the damage is caused to the tional peanut production (CONAB, 2018). crop (Cônsoli et al., 2010). Thus, considering the im- The rednecked peanutworm moth, Stegasta bosqueella portance of lepidopteran pests and lack of studies on the (Chambers) (Lepidoptera Gelechiidae), and the use of egg parasitoids as biological control agents in pea- armyworms Spodoptera cosmioides (Walker) and nuts, this work aimed to evaluate the comparative parasit- Spodoptera frugiperda (J.E. Smith) (Lepidoptera Noctu- ism capacity of Telenomus remus Nixon and Trichogram- idae), are reported as the main lepidopteran insects in ma pretiosum Riley on eggs of S. bosqueella, S. cosmi- peanut crop and may cause high yield losses (Campos et oides, and S. frugiperda under laboratory conditions. al., 2010; Boiça Junior et al., 2011; 2013). These insects can cause intense defoliation with negative effect on plant development. In addition, S. bosqueella can feed Materials and methods directly on the tips of peanut vines reducing their growth and, hence, peanut production in runner varie- Host and parasitoid rearing ties. These insects are usually controlled by chemical T. remus adults were from a strain introduced from insecticides, and growers do not apply other tools to Venezuela and kept in mass rearing using eggs of control these defoliators. S. frugiperda as host, according to methodology of Parasitoids have been used worldwide in applied bio- Bueno et al. (2010b). The initial colony of T. remus was logical control programs and many successful cases established from 650.000 individuals collected in S. fru- concern the control of insect pests (van Lenteren et al., giperda egg masses in maize crop from Barquisimeto, 2018). In Brazil, successful biological control by egg Lara, Venezuela and introduced into Brazil in 2012 (Na- parasitoids in various crops, such as sugarcane, soy- ranjo-Guevara et al., 2020). The adults of T. pretiosum beans, maize, and tomato have already been reported came from Bug Biological Agents, Piracicaba, SP, Bra- (Parra, 2014), constituting an economically viable con- zil (currently Koppert Brazil - Biological Products), trol method and less harmful to the environment (Simo- where they are kept on the factitious host, Ephestia ku- nato et al., 2014). However, research on biological con- ehniella Zeller (Lepidoptera Pyralidae). A total of trol of pests in peanuts is still scarce and biocontrol is 20.000 parasitized eggs of E. kuehniella were provided not yet applied in the field. by the company and adults of T. pretiosum were used in the essays after emergence. Both parasitoids were kept to the parasitoids. Only five tubes (replicates) could be in glass tubes (10 × 2 cm in diameter) and conditioned used for each parasitoid and lepidopteran species, be- in climate chambers 12L:12D photoperiod, 25 ± 1 °C, cause the number of eggs available on daily basis from and 70 ± 10% RH. S. bosqueella was a limiting factor. This species is not Adults of S. bosqueella were collected in a pesticide- reared in artificial diet and oviposition was not enough free peanut field, brought to the laboratory and kept in for a larger number of replications. The tubes were acrylic cages (30 × 30 × 30 cm) inside climate chambers closed with clear plastic film (PVC). The cardboards 12H:12D photoperiod, 25 ± 1 °C, and 70 ± 10% RH, were replaced daily until the females died. The card- according to Boiça Junior et al. (2011). The adults were boards were transferred to similar glass tubes and main- fed with a 10% honey aqueous solution supplied in cot- tained at the controlled conditions as mentioned below ton swabs placed in the cages. Each cage had also one until the emergence of the parasitoids. After the emer- plastic cup (700 ml) containing one fifteen-day-after- gence, all parasitoids were counted and sexed using emergence peanut seedling (A. hypogaea variety ‘Gran- morphological characteristics (antennae and hind tibi- oleico’) as an oviposition substrate, which was replaced ae), as suggested by Cave (2000) for T. remus and by daily throughout the lifespan of adult moths. The plant Pinto et al. (1997) for T. pretiosum. parts containing eggs were clipped and transferred to The experiment was carried out under controlled con- plastic Petri dishes (1.5 × 9 cm in diameter). These plant ditions using climate chambers 12L:12D photoperiod, fragments were placed on double-sheet moist filter pa- 25 ± 1 °C, and 70 ± 10% RH. Longevity of experi- per to avoid egg viability reduction and favour initial mental female parasitoids, number of eggs parasitized larval development. For the studies, F2 generation eggs daily, total number of eggs parasitized per female, cu- were used. mulative percentage of parasitism (total number of para- Adults of S. cosmioides and S. frugiperda were ob- sitized eggs/total number of eggs exposed to a female tained from laboratory colonies maintained at the during its lifespan), survivorship rates of the experi- UNESP campus of Jaboticabal, SP, Brazil. Larvae were mental females, number of emerged parasitoids and sex fed an artificial diet based on beans and wheat germ ratio (number of females divided by total number of in- (Greene et al., 1976). The adults were maintained in dividuals) were determined. polyvinyl chloride (PVC) cages (21.5 × 10 cm in diame- ter), adopting a methodology proposed for rearing Ultrastructure of the lepidopteran eggs S. frugiperda (Bueno et al., 2010b). Rearing conditions, Eggs were transferred to 0.5-ml plastic microcentri- including a potted 15-day-old peanut plant, were similar fuge tubes (Eppendorf, Hauppauge, NY, USA) contain- to S. bosqueella. Eggs laid on leaves were used for the ing sodium phosphate buffer solution (0.1M, pH 7.2) tests. where they were kept for 30 minutes. The eggs were then fixed in 2.5% glutaraldehyde solution in phosphate Parasitism capacity buffer (0.1M, pH 7.2) at 4 °C for 72 hours. After this Freshly-laid individual eggs or egg masses (<24 period, the samples were washed using phosphate buffer hours) of the lepidopteran pests were removed along solution and the material was subjected to a second fixa- with the substrate (leaves or petioles) according to Faria tion using 1% osmium tetroxide solution overnight at et al. (2000). Prior to use, the eggs were counted using a 4 °C. The samples were repeatedly washed with sodium stereomicroscope (Zeiss Stemi SV6, Jena, Germany) phosphate buffer and the dehydration of the material in and the substrates fixed to a rectangular white cardboard an increasing series of ethanol concentrations (30, 50, (0.8 × 5 cm) using non-toxic white glue (Tenaz Henkel 70, 80, 90 and 100%) for 15 minutes each. The dehy- Ltd., São Paulo, SP, Brazil). Each cardboard contained drated material was critically dried (EMS-850) and then eggs of only one species: 20 eggs of S. bosqueella, 100 the stubs were prepared for gold metallization of the eggs of S. cosmioides and 100 eggs of S. frugiperda. sample in DESK II Vacuum. Eggs were than scanned Lower numbers of S. bosqueella eggs were offered be- using Scanning Electronic Microscopy (model Zeiss cause of limited availability. As Spodoptera species lay Evo MA10, Jena, Germany). egg masses with several layers, all eggs of the upper layers were removed with a thin camel-hair brush to Data analysis keep only one layer. This assured access to the host by Longevity, number of parasitized eggs, number of both parasitoid species because T.
Recommended publications
  • Evaluating the Potential of Using Spodoptera Litura Eggs for Mass-Rearing Telenomus Remus, a Promising Egg Parasitoid of Spodoptera Frugiperda
    insects Article Evaluating the Potential of Using Spodoptera litura Eggs for Mass-Rearing Telenomus remus, a Promising Egg Parasitoid of Spodoptera frugiperda Wanbin Chen , Yuyan Li , Mengqing Wang, Jianjun Mao and Lisheng Zhang * State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] (W.C.); [email protected] (Y.L.); [email protected] (M.W.); [email protected] (J.M.) * Correspondence: [email protected]; Tel.: +86-10-6281-5909 Simple Summary: Telenomus remus (Nixon) is an effective egg parasitoid for controlling Spodoptera frugiperda (J. E. Smith), which is a major destructive agricultural pest. Currently, this parasitoid is reared on Corcyra cephalonica (Stainton) eggs in several countries. However, previous studies carried out in China have reported that it cannot parasitize in C. cephalonica eggs. Meanwhile, those works have indicated that Spodoptera litura (Fabricius) can potentially be used as an alternative host. In order to evaluate this potential, our study compared the development and parasitism ability of T. remus on the eggs of S. frugiperda and S. litura at different temperatures in a laboratory. We found that S. litura eggs are more advantageous as an alternative host for the mass-rearing of parasitoid when compared with S. frugiperda eggs. Our results provide a more specific basis and reference for the large-scale Citation: Chen, W.; Li, Y.; Wang, M.; production and low temperature storage of T. remus. Mao, J.; Zhang, L. Evaluating the Potential of Using Spodoptera litura Abstract: Although Telenomus remus, a promising parasitoid of Spodoptera frugiperda, had been Eggs for Mass-Rearing Telenomus successfully reared on the eggs of Corcyra cephalonica in some countries, reports from China have remus, a Promising Egg Parasitoid of argued that it is infeasible.
    [Show full text]
  • Factors Regulating the Population Dynamics and Damage Potential of Pollen Beetle (Meligethes Aeneus F.) on Crops of Oilseed Rape
    Factors regulating the population dynamics and damage potential of pollen beetle (Meligethes aeneus F.) on crops of oilseed rape Dissertation zur Erlangung des Doktorgrades der Fakultät für Agrarwissenschaften der Georg-August-Universität Göttingen vorgelegt von Marie-Luise Tölle geboren in Gifhorn Göttingen, Mai 2014 D 7 1. Referentin/Referent: Prof. Dr. Stefan Vidal 2. Korreferentin/Korreferent: Prof. Dr. Andreas von Tiedemann Tag der mündlichen Prüfung: 12.05.2011 Contents Table of contents page Chapter I General introduction ........................................................................................................... 1 The pest: Meligethes aeneus ............................................................................................. 2 Factors influencing the population dynamics of pollen beetle ............................................ 3 Possible effects of insecticides on population growth and damage of pollen beetle ........... 4 Parasitoids and parasitisation of pollen beetle ................................................................... 5 Trap cropping in oilseed rape ............................................................................................ 6 References ........................................................................................................................ 7 Chapter II Cultivar and phenology of winter oilseed rape affect the abundance and reproduction of Meligethes aeneus (Fabricius) ......................................................................................11
    [Show full text]
  • Keystone Ancient Forest Preserve Resource Management Plan 2011
    Keystone Ancient Forest Preserve Resource Management Plan 2011 Osage County & Tulsa County, Oklahoma Lowell Caneday, Ph.D. With Kaowen (Grace) Chang, Ph.D., Debra Jordan, Re.D., Michael J. Bradley, and Diane S. Hassell This page intentionally left blank. 2 Acknowledgements The authors acknowledge the assistance of numerous individuals in the preparation of this Resource Management Plan. On behalf of the Oklahoma Tourism and Recreation Department’s Division of State Parks, staff members were extremely helpful in providing access to information and in sharing of their time. In particular, this assistance was provided by Deby Snodgrass, Kris Marek, and Doug Hawthorne – all from the Oklahoma City office of the Oklahoma Tourism and Recreation Department. However, it was particularly the assistance provided by Grant Gerondale, Director of Parks and Recreation for the City of Sand Springs, Oklahoma, that initiated the work associated with this RMP. Grant provided a number of documents, hosted an on-site tour of the Ancient Forest, and shared his passion for this property. It is the purpose of the Resource Management Plan to be a living document to assist with decisions related to the resources within the park and the management of those resources. The authors’ desire is to assist decision-makers in providing high quality outdoor recreation experiences and resources for current visitors, while protecting the experiences and the resources for future generations. Lowell Caneday, Ph.D., Professor Leisure Studies Oklahoma State University Stillwater,
    [Show full text]
  • Fertility Table of an Exotic Parasitoid, Telenomus Remus Nixon (Hymenoptera: Scelionidae) on Spodoptera Litura (Fabricius)
    J. Bioi. Control. 13: 25-31. 1999 Fertility table of an exotic parasitoid, Telenomus remus Nixon (Hymenoptera: Scelionidae) on Spodoptera litura (Fabricius) CHANDISH R. BALLAL and S. RAMANI Project Directorate of Biological Control P. B. No. 2491, H. A. Farm Post, Bellary Road Hebbal, Bangalore 560024, Karnataka, India ABSTRA CT: Fecundity studies on Telenomus remus, an exotic parasitoid of Spodoptera litura (Fabricius) indicated that in individual rearing, net reproductive rate was higher (120.53) and the population increased with an infinitesimal rate of 0.399 and a finite rate of 1.491. In group rearing, the corresponding figures were lower, being 65.03, 0.348 and 1.416, respectively_ There was a preponderance of females in the individual rearing method, while a balanced sex ratio was obtained in group rearing. KEY WORDS: Fertility table, rearing, Spodoptera litura, Telenomus remus Spodoptera litura (Fabricius) cabbage (Krishnamoorthy and Mani, (Lepidoptera: Noctuidae) is an important 1985). The release of T. remus in the field polyphagous pest infesting 120 host plants has enhanced the biological control of and is a serious pest on cole crops, tobacco, Spodoptera species in Barbados (Alam, groundnut, taro and castor (Singh and 1974), India (Patel et ai., 1979) and Jalali, 1997). TelellOmus remus Nixon Venezuela (Hernandez et ai., 1989). (Hymenoptera: Scelionidae) was recorded The construction of fertility tables to as an important parasitoid of S. litura in calculate certain vital statistics is an colocasia plantations in Western Samoa important component in the basic (Braune, 1982). This exotic parasitoid was understanding of the population dynamics introduced into India as one of the of a species (Southwood, 1978).
    [Show full text]
  • Pesticidal Plants
    Pesticidal Plants • Philip C. • Philip Stevenson, R. Steven Belmain and Murray B. Isman Pesticidal Plants From Smallholder Use to Commercialisation Edited by Philip C. Stevenson, Steven R. Belmain and Murray B. Isman Printed Edition of the Special Issue Published in Plants www.mdpi.com/journal/plants Pesticidal Plants Pesticidal Plants From Smallholder Use to Commercialisation Special Issue Editors Philip C. Stevenson Steven R. Belmain Murray B. Isman MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Philip C. Stevenson Steven R. Belmain Murray B. Isman University of Greenwich University of Greenwich University of British Columbia UK UK Canada Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Plants (ISSN 2223-7747) from 2019 to 2020 (available at: https://www.mdpi.com/journal/plants/special issues/Pesticidal). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-788-8 (Pbk) ISBN 978-3-03928-789-5 (PDF) Cover image courtesy of Philip C. Stevenson. c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • 100 Characters
    40 Review and Update of Non-mollusk Invertebrate Species in Greatest Need of Conservation: Final Report Leon C. Hinz Jr. and James N. Zahniser Illinois Natural History Survey Prairie Research Institute University of Illinois 30 April 2015 INHS Technical Report 2015 (31) Prepared for: Illinois Department of Natural Resources State Wildlife Grant Program (Project Number T-88-R-001) Unrestricted: for immediate online release. Prairie Research Institute, University of Illinois at Urbana Champaign Brian D. Anderson, Interim Executive Director Illinois Natural History Survey Geoffrey A. Levin, Acting Director 1816 South Oak Street Champaign, IL 61820 217-333-6830 Final Report Project Title: Review and Update of Non-mollusk Invertebrate Species in Greatest Need of Conservation. Project Number: T-88-R-001 Contractor information: University of Illinois at Urbana/Champaign Institute of Natural Resource Sustainability Illinois Natural History Survey 1816 South Oak Street Champaign, IL 61820 Project Period: 1 October 2013—31 September 2014 Principle Investigator: Leon C. Hinz Jr., Ph.D. Stream Ecologist Illinois Natural History Survey One Natural Resources Way, Springfield, IL 62702-1271 217-785-8297 [email protected] Prepared by: Leon C. Hinz Jr. & James N. Zahniser Goals/ Objectives: (1) Review all SGNC listing criteria for currently listed non-mollusk invertebrate species using criteria in Illinois Wildlife Action Plan, (2) Assess current status of species populations, (3) Review criteria for additional species for potential listing as SGNC, (4) Assess stressors to species previously reviewed, (5) Complete draft updates and revisions of IWAP Appendix I and Appendix II for non-mollusk invertebrates. T-88 Final Report Project Title: Review and Update of Non-mollusk Invertebrate Species in Greatest Need of Conservation.
    [Show full text]
  • Advances in Taxonomy and Systematics of Platygastroidea (Hymenoptera)
    Advances in Taxonomy and Systematics of Platygastroidea (Hymenoptera) Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Charuwat Taekul, M.S. Graduate Program in Evolution, Ecology, and Organismal Biology ***** The Ohio State University 2012 Dissertation Committee: Dr. Norman F. Johnson, Advisor Dr. Johannes S. H. Klompen Dr. John V. Freudenstein Dr. Marymegan Daly Copyright by Charuwat Taekul 2012 ABSTRACT Wasps, Ants, Bees, and Sawflies one of the most familiar and important insects, are scientifically categorized in the order Hymenoptera. Parasitoid Hymenoptera display some of the most advanced biology of the order. Platygastroidea, one of the significant groups of parasitoid wasps, attacks host eggs more than 7 insect orders. Despite its success and importance, an understanding of this group is still unclear. I present here the world systematic revisions of two genera in Platygastroidea: Platyscelio Kieffer and Oxyteleia Kieffer, as well as introduce the first comprehensive molecular study of the most important subfamily in platygastroids as biological control benefit, Telenominae. For the systematic study of two Old World genera, I address the taxonomic history of the genus, identification key to species, as well as review the existing concepts and propose descriptive new species. Four new species of Platyscelio are discovered from South Africa, Western Australia, Botswana and Zimbabwe. Four species are considered to be junior synonyms of P. pulchricornis. Fron nine valid species of Oxyteleia, the new species are discovered throughout Indo-Malayan and Australasian regions in total of twenty-seven species. The genus Merriwa Dodd, 1920 is considered to be a new synonym.
    [Show full text]
  • Conservation Biological Control Using Selective Insecticides – a Valuable Tool for IPM T ⁎ Jorge B
    Biological Control 126 (2018) 53–64 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Conservation biological control using selective insecticides – A valuable tool for IPM T ⁎ Jorge B. Torresa, , Adeney de F. Buenob a Departamento de Agronomia/Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, PE 52171-900, Brazil b Embrapa Soja, Caixa Postal 231, Londrina, PR 86001-970, Brazil ARTICLE INFO ABSTRACT Keywords: Conservation biological control (CBC) has widely benefited from ecological practices that enhance both the crop Nontarget and its surrounding environment. However, use of insecticides, whether biological or synthetic compounds, is Pesticide often detrimental to natural enemies. By definition toxic to insects, insecticides may cause direct mortality of Physiological selectivity natural enemies, reduce food resources (prey/host), or disrupt behavioral and biological processes. Therefore, Ecological selectivity choosing a selective insecticide or selectively applying are important decisions for conserving natural enemies if Soybean insecticide is required. In situations where both insecticide and natural enemy do not share the same target pest, Cotton an additive outcome is expected and CBC can minimize pest outbreaks and resurgence. Given that new, selective insecticides are usually more expensive than older ones, using the former typically adds cost per treated area. Therefore, choosing a selective insecticide becomes a matter of benefits and costs, considering the cost compared to other available treatments and potential pest problems. Beyond the differential toxicity of selective in- secticides to natural enemy and target pest species, some human decisions may produce insecticide selectivity, including application of minimal effective rates, and spatiotemporal separation of nonselective insecticides and natural enemies.
    [Show full text]
  • Redalyc.Interspecific Interaction Between Telenomus Remus
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Carneiro, Tatiana R.; Fernandes, Odair A. Interspecific interaction between Telenomus remus (Hymenoptera: Platygastridae) and Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) on Spodoptera frugiperda (Lepidoptera: Noctuidae) eggs Anais da Academia Brasileira de Ciências, vol. 84, núm. 4, diciembre, 2012, pp. 1127-1135 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32724544012 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2012) 84(4): 1127-1135 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Interspecific interaction between Telenomus remus (Hymenoptera: Platygastridae) and Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) on Spodoptera frugiperda (Lepidoptera: Noctuidae) eggs TATIANA R. CARNEIRO1 and ODAIR A. FERNANDES2 1Centro Universitário de Sete Lagoas - UNIFEMM, Av. Marechal Castelo Branco, 2765, 35701-242 Sete Lagoas, MG, Brasil 2Universidade Estadual Paulista/ UNESP/ FCAV, Departamento de Fitossanidade, Rod. Prof. Paulo D. Castellane, Km 5, 14884-900 Jaboticabal, SP, Brasil Manuscript received on August 4, 2011; accepted for publication April 11, 2012 ABSTRACT This work aimes to evaluate the interspecific interaction betweenTrichogramma pretiosum and Telenomus remus, two biological control agents of fall armyworm (Spodoptera frugiperda) eggs. Eggs of Spodoptera frugiperda previously parasitized by Telenomus remus were offered to Trichogramma pretiosum, and those parasitized by Trichogramma pretiosum were offered to Telenomus remus.
    [Show full text]
  • Rajmohana Checklist of Scelionidae of India 1570 FINAL
    CHECKLIST ZOOS' PRINT JOURNAL 21(12): 2506-2613 distributional records is presented in this paper. A CHECKLIST OF THE SCELIONIDAE The present checklist deals with 198 species under 43 genera in (HYMENOPTERA: PLATYGASTROIDEA) OF three subfamilies of the Scelionidae (34 genera in the Scelioninae, 3 and 6 genera in the Teleasinae and the Telenominae INDIA respectively). Only one genus, Mudigere Johnson is found to be endemic to India. More intensive and extensive surveys of K. Rajmohana the land are sure to yield further vital bioecological data on our indigenous egg-parasitoids that can provide new insights in Zoological Survey of India, Western Ghats Field Research Station, utilizing these living resources more meaningfully in the Calicut, Kerala 673002, India biocontrol scenario of our agricultural sector. Email: [email protected] REFERENCES The Hymenoptera is one of the most species rich orders, with Ashmead, W.H. (1887). Studies on the North American Proctotrupidae, with about 10% of all known species of the terrestrial biota, of which descriptions of new species from Florida. Entomologica Americana 3: 73-76, 80% are parasitic placed under 10 superfamilies (Masner, 1993). 97-100, 117-119. Ashmead, W.H. (1893). A monograph on the North American Proctotrypidae. The Platygastroidea which includes two families viz., the Bulletin of the U.S. National Museum 45: 472pp. Scelionidae and the Platygastridae, is the third largest of the Ashmead, W.H. (1904). A list of hymenoptera of the Philippine Islands, with parasitic superfamilies, with about 4460 described species descriptions of new species. Journal of the New York Entomological Society 12: worldwide. They are found virtually in all habitats except the 1-22.
    [Show full text]
  • Proceedings of the United States National Museum
    PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM issued |i;|\X^H by the SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM Vol.86 Washington: 1939 No. 3064 RESTRICTION OF THE GENUS GELECHIA (LEPIDOP- TERA: GELECHIIDAE), WITH DESCRIPTIONS OF NEW GENERA By August Busck The genus Gelechm Hiibiier/ type G. rhomhella (Schiffermiiller), has become, in the course of years since its erection, a "wastebasket" ^ for hundreds of heterogeneous species of gelechiids that could not readily be assigned to other genera on wing or palpal characters. The result is an aggregation of more than 400 such species under the generic name Gelechia. Quite aside from the inconvenience of such an unwieldy number of species in one genus, it is apparent that this lumping does not represent a natural grouping, but that many of the included species are less related to their associates in the check lists under that genus than they are to the species placed in other genera. Gnorimoschema Busck {Phthorimaea Meyrick), for example, which has been correctly separated for many years on obvious pterogostic and oral characters, is clearly more closely related to Gelechia proper than most of the genera here eliminated from the concept. For this reason it is included in the synoptic tables in this paper, and figures of the genitalia are given for comparison (pi. 68, fig. 2; pi. 65, fig. 36). Several sound attempts have been made by workers in continental Europe, notably Heinemann,^ to make a more natural classification by the erection of separate genera for species with certain slight modi- fications of wing structure and palpal characters in common, but the 1 Verzeichniss bekannter Schmetterlinge, p.
    [Show full text]
  • Major Pests of African Indigenous Vegetables in Tanzania and the Effects Of
    i Major pests of African indigenous vegetables in Tanzania and the effects of plant nutrition on spider mite management Von der Naturwissenschaftlichen Fakultat der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktorin der Gartenbauwissenschaften (Dr. rer. hort) genehmigte Dissertation von Jackline Kendi Mworia, M.Sc. 2021 Referent: PD. Dr. sc. nat. Rainer Meyhöfer Koreferent: Prof. Dr. rer. nat. Dr. rer. hort. habil. Hans-Micheal Poehling Tag der promotion: 05.02.2020 ii Abstract Pest status of insect pests is dynamic. In East Africa, there is scanty information on pests and natural enemy species of common African Indigenous Vegetables (AIVs). To determine the identity and distribution of pests and natural enemies in amaranth, African nightshade and Ethiopian kale as well as pest damage levels, a survey was carried out in eight regions of Tanzania. Lepidopteran species were the main pests of amaranth causing 12.8% damage in the dry season and 10.8% in the wet season. The most damaging lepidopteran species were S. recurvalis, U. ferrugalis, and S. litorralis. Hemipterans, A. fabae, A. crassivora, and M. persicae caused 9.5% and 8.5% in the dry and wet seasons respectively. Tetranychus evansi and Tetranychus urticae (Acari) were the main pests of African nightshades causing 11%, twice the damage caused by hemipteran mainly aphids (5%) and three times that of coleopteran mainly beetles (3%). In Ethiopian kale, aphids Brevicoryne brassicae and Myzus persicae (Hemipterans) were the most damaging pests causing 30% and 16% leaf damage during the dry and wet season respectively. Hymenopteran species were the most abundant natural enemy species with aphid parasitoid Aphidius colemani in all three crops and Diaeretiella rapae in Ethiopian kale.
    [Show full text]