Virus Found in a Boreal Lake Links Ssdna and Dsdna Viruses

Total Page:16

File Type:pdf, Size:1020Kb

Virus Found in a Boreal Lake Links Ssdna and Dsdna Viruses Virus found in a boreal lake links ssDNA and dsDNA viruses Elina Laantoa,b,1, Sari Mäntynena,b,1, Luigi De Colibusc,1, Jenni Marjakangasa,b, Ashley Gillumc, David I. Stuartc,d, Janne J. Ravanttia,b,e, Juha T. Huiskonenc,e,2, and Lotta-Riina Sundberga,b,2 aCentre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland; bNanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland; cDivision of Structural Biology, Welcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom; dDiamond Light Source, Didcot OX11 0DE, United Kingdom; and eDepartment of Biosciences, University of Helsinki, 00014 Helsinki, Finland Edited by James L. Van Etten, University of Nebraska–Lincoln, Lincoln, NE, and approved June 5, 2017 (received for review March 8, 2017) Viruses have impacted the biosphere in numerous ways since the it has been suggested, that the major capsid protein (MCP) fold dawn of life. However, the evolution, genetic, structural, and taxo- and overall virion structure could be used to classify viruses and nomic diversity of viruses remain poorly understood, in part because track down their deeper evolutionary relationships (17). sparse sampling of the virosphere has concentrated mostly on We describe here an icosahedral virus with an ssDNA genome “ ” exploring the abundance and diversity of dsDNA viruses. Further- and an internal lipid membrane designated FLiP (Flavobacterium- more, viral genomes are highly diverse, and using only the current infecting, lipid-containing phage). The 9,174-nt-long genome of sequence-based methods for classifying viruses and studying FLiP has limited sequence similarities with previously identified their phylogeny is complicated. Here we describe a virus, FLiP viruses. Based on cryo-electron microscopy (cryo-EM) at 4-Å resolution, the virion structure of FLiP displays the pseudo tri- (Flavobacterium-infecting, lipid-containing phage), with a circular angulation number (T) = 21 dextro organization previously shown ssDNA genome and an internal lipid membrane enclosed in the only for the marine dsDNA phage PM2. The MCP consists of icosahedral capsid. The 9,174-nt-long genome showed limited se- two β-barrels with jellyroll topology and closely resembles quence similarity to other known viruses. The genetic data imply dsDNA viruses of the PRD1–adenovirus lineage. Thus, these that this virus might use replication mechanisms similar to those structural data indicate evolutionary relatedness between some found in other ssDNA replicons. However, the structure of the viral ssDNA and dsDNA viruses and suggest that it would be bene- major capsid protein, elucidated at near-atomic resolution using ficial to complement traditional sequence-based systems with cryo-electron microscopy, is strikingly similar to that observed in structure-based approaches. dsDNA viruses of the PRD1–adenovirus lineage, characterized by a major capsid protein bearing two β-barrels. The strong similarity Results between FLiP and another member of the structural lineage, bac- FLiP Is a Phage That Infects Flavobacterium. The virus designated teriophage PM2, extends to the capsid organization (pseudo T = 21 FLiP was isolated together with the host bacterium from a boreal dextro) despite the difference in the genetic material packaged and freshwater habitat in Central Finland in September, 2010. The the lack of significant sequence similarity. Significance cryo-electron microscopy | Flavobacterium | lipids | genome | structure We describe the phage FLiP, an ssDNA virus with an icosahedral lthough conservative calculations estimate that the number capsid and an internal lipid membrane. The FLiP genome shows 31 Aof viruses in the biome exceed 10 virions (1), this enor- limited similarity to known sequences, although an ssDNA repli- mous group of biological entities is largely unexplored because cation mechanism was implied by genome analysis. However, only a fraction of viruses have been studied in detail. In recent because the capsid protein fold indicates relatedness with the years, the enormous diversity of the viral world (2) has been re- dsDNA viruses of the PRD1–adenovirus lineage, FLiP exhibits a vealed by high-throughput sequencing of viral genomes. Although unique combination of structural and replication modules. It is the traditionally used virus detection methods (epifluorescence suggested that the capsid protein structure could be used to microscopy, pulse-field gel electrophoresis, and early metagenomic complement the sequence data when classifying viruses and in studies) have been selective for dsDNA viruses (3–5), recent met- detecting their deep evolutionary relationships, especially in the agenomic studies have revealed that the number of ssDNA viruses absence of sequence similarities. Furthermore, these findings in nature has been grossly underestimated. In fact, ssDNA viruses demonstrate the value of characterizing unknown viruses from are widespread and may predominate in certain habitats, including diverse environmental sources to understand the diversity of the the oceans and arctic freshwaters (6–10). However, only a few microbial world. ssDNA viruses have been cultivated in laboratory conditions, and therefore detailed structural and biochemical analyses of distinct Author contributions: J.J.R., J.T.H., and L.-R.S. designed research; E.L., S.M., L.D.C., J.M., ssDNA viruses are mostly lacking. Detailed characterization of and A.G. performed research; D.I.S. and L.-R.S. contributed new reagents/analytic tools; E.L., S.M., L.D.C., J.M., A.G., J.J.R., and J.T.H. analyzed data; E.L., S.M., L.D.C., and J.T.H. novel virus isolates is essential to expand our understanding of wrote the paper; and D.I.S., J.J.R., and L.-R.S. supervised the project. evolutionary relationships among viruses and their role in mi- The authors declare no conflict of interest. crobial communities (11). This article is a PNAS Direct Submission. Using solely sequence-based methods for virus classification and phylogeny is complicated because of the enormous genetic Data deposition: The genome sequence of FLiP has been submitted to GenBank (accession no. MF361639). The cryo-electron microscopy 3D reconstruction map of FLiP has been diversity among viruses (11, 12). However, essential viral struc- deposited with the Electron Microscopy Data Bank (EMDB) (accession code EMD-3771). tures and functions are often strongly conserved (13, 14). There The modeled structure of the virus MCP shell has been deposited with the Protein Data seem to be only a limited number of folds a functional protein Bank (PDB) (accession code 5OAC). may adopt, and stringent structural constraints further decrease 1E.L., S.M., and L.D.C. contributed equally to this work. the number of folds suitable for forming a capsid protein. These 2To whom correspondence may be addressed. Email: [email protected] or lotta-riina. constraints make the serendipitous invention of new architec- [email protected]. tures very unlikely, so that only a very limited number of lineages This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. of virion architecture have been observed (15, 16). Therefore, 1073/pnas.1703834114/-/DCSupplemental. 8378–8383 | PNAS | August 1, 2017 | vol. 114 | no. 31 www.pnas.org/cgi/doi/10.1073/pnas.1703834114 Downloaded by guest on September 28, 2021 host bacterium was identified as a member of genus Flavobacterium (Bacteroidetes) by 16S rRNA gene sequencing. Flavobacterium species are important members of freshwater bacterial communities in the boreal regions (18, 19). The greatest similarity to the obtained 1,422-bp-long 16S rRNA gene sequence was to several Flavobacterium sp. strains (99%). Accordingly, the host bacte- rium strain of FLiP was designated as Flavobacterium sp. B330. FLiP virions were collected for purification from plate lysate. Phage particles were concentrated from the filtered lysate with PEG-NaCl precipitation and then were purified by rate zonal and equilibrium centrifugation to near homogeneity. The rate zonal centrifugation was optimized using different gradient ma- terials (iodixanol, glycerol, and sucrose). The phage yield was significantly higher in the sucrose gradient; therefore this gra- dient material was used routinely for purification in both rate zonal and equilibrium centrifugation. This method yielded highly purified particles with specific infectivity of 1.28 × 1012 pfu/mg of protein. The typical recovery and specific infectivity for each purification step are presented in Table S1. The FLiP Genome Is a Circular ssDNA Molecule with 16 Putative ORFs. FLiP genomic nucleic acid was extracted from purified virions. Nuclease treatments (Fig. S1) revealed that the genome is an ssDNA molecule. Genome sequencing resulted in a 9,174-nt- long molecule, with an overall guanine–cytosine (GC) content Fig. 2. 3D cryo-EM reconstruction of the FLiP virion. (A) Surface rendering of 34% (Fig. 1A). A total of 16 putative ORFs were identified of the FLiP virion. The MCPs are colored yellow, green, blue, and red. Other from the genome using the programs Glimmer (20) and Gene- structural components are colored gray. The icosahedral twofold (ellipse), Mark (21). All the ORFs were oriented in the same direction. threefold (triangle), and fivefold (pentagons) axes of symmetry are in- Most of the ORFs showed limited similarity to other sequences dicated. The triangulation number T = 21 of the icosahedral
Recommended publications
  • Chemical Structures of Some Examples of Earlier Characterized Antibiotic and Anticancer Specialized
    Supplementary figure S1: Chemical structures of some examples of earlier characterized antibiotic and anticancer specialized metabolites: (A) salinilactam, (B) lactocillin, (C) streptochlorin, (D) abyssomicin C and (E) salinosporamide K. Figure S2. Heat map representing hierarchical classification of the SMGCs detected in all the metagenomes in the dataset. Table S1: The sampling locations of each of the sites in the dataset. Sample Sample Bio-project Site depth accession accession Samples Latitude Longitude Site description (m) number in SRA number in SRA AT0050m01B1-4C1 SRS598124 PRJNA193416 Atlantis II water column 50, 200, Water column AT0200m01C1-4D1 SRS598125 21°36'19.0" 38°12'09.0 700 and above the brine N "E (ATII 50, ATII 200, 1500 pool water layers AT0700m01C1-3D1 SRS598128 ATII 700, ATII 1500) AT1500m01B1-3C1 SRS598129 ATBRUCL SRS1029632 PRJNA193416 Atlantis II brine 21°36'19.0" 38°12'09.0 1996– Brine pool water ATBRLCL1-3 SRS1029579 (ATII UCL, ATII INF, N "E 2025 layers ATII LCL) ATBRINP SRS481323 PRJNA219363 ATIID-1a SRS1120041 PRJNA299097 ATIID-1b SRS1120130 ATIID-2 SRS1120133 2168 + Sea sediments Atlantis II - sediments 21°36'19.0" 38°12'09.0 ~3.5 core underlying ATII ATIID-3 SRS1120134 (ATII SDM) N "E length brine pool ATIID-4 SRS1120135 ATIID-5 SRS1120142 ATIID-6 SRS1120143 Discovery Deep brine DDBRINP SRS481325 PRJNA219363 21°17'11.0" 38°17'14.0 2026– Brine pool water N "E 2042 layers (DD INF, DD BR) DDBRINE DD-1 SRS1120158 PRJNA299097 DD-2 SRS1120203 DD-3 SRS1120205 Discovery Deep 2180 + Sea sediments sediments 21°17'11.0"
    [Show full text]
  • Revealing the Full Biosphere Structure and Versatile Metabolic Functions In
    Chen et al. Genome Biology (2021) 22:207 https://doi.org/10.1186/s13059-021-02408-w RESEARCH Open Access Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep Ping Chen1†, Hui Zhou1,2†, Yanyan Huang3,4†, Zhe Xie5†, Mengjie Zhang1,2†, Yuli Wei5, Jia Li1,2, Yuewei Ma3, Min Luo5, Wenmian Ding3, Junwei Cao5, Tao Jiang1,2, Peng Nan3*, Jiasong Fang5* and Xuan Li1,2* * Correspondence: nanpeng@fudan. edu.cn; [email protected]; lixuan@ Abstract sippe.ac.cn †Ping Chen, Hui Zhou, Yanyan Background: The full biosphere structure and functional exploration of the microbial Huang, Zhe Xie and Mengjie Zhang communities of the Challenger Deep of the Mariana Trench, the deepest known contributed equally to this work. hadal zone on Earth, lag far behind that of other marine realms. 3Ministry of Education Key Laboratory for Biodiversity Science Results: We adopt a deep metagenomics approach to investigate the microbiome and Ecological Engineering, School in the sediment of Challenger Deep, Mariana Trench. We construct 178 of Life Sciences, Fudan University, Shanghai, China metagenome-assembled genomes (MAGs) representing 26 phyla, 16 of which are 5Shanghai Engineering Research reported from hadal sediment for the first time. Based on the MAGs, we find the Center of Hadal Science and microbial community functions are marked by enrichment and prevalence of Technology, College of Marine Sciences, Shanghai Ocean mixotrophy and facultative anaerobic metabolism. The microeukaryotic community is University, Shanghai, China found to be dominated by six fungal groups that are characterized for the first time 1CAS-Key Laboratory of Synthetic in hadal sediment to possess the assimilatory and dissimilatory nitrate/sulfate Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute reduction, and hydrogen sulfide oxidation pathways.
    [Show full text]
  • Habitat and Taxon As Driving Forces of Carbohydrate
    Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae-associated bacterium Zobellia galactanivorans Dsij T Tristan Barbeyron, François Thomas, Valérie Barbe, Hanno Teeling, Chantal Schenowitz, Carole Dossat, Alexander Goesmann, Catherine Leblanc, Frank Oliver Glöckner, Mirjam Czjzek, et al. To cite this version: Tristan Barbeyron, François Thomas, Valérie Barbe, Hanno Teeling, Chantal Schenowitz, et al.. Habi- tat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae-associated bacterium Zobellia galactanivorans Dsij T. Environmental Microbiol- ogy, Society for Applied Microbiology and Wiley-Blackwell, 2016, Ecology and Physiology of Marine Microbes, 18 (12), pp.4610-4627. 10.1111/1462-2920.13584. hal-02137896 HAL Id: hal-02137896 https://hal.archives-ouvertes.fr/hal-02137896 Submitted on 23 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Environmental Microbiology ‐ Research Article 2 3 Habitat and taxon
    [Show full text]
  • Bacillus Pumilus Group Comparative Genomics: Toward Pangenome Features, Diversity, and Marine Environmental Adaptation
    fmicb-12-571212 May 7, 2021 Time: 11:31 # 1 ORIGINAL RESEARCH published: 07 May 2021 doi: 10.3389/fmicb.2021.571212 Bacillus pumilus Group Comparative Genomics: Toward Pangenome Features, Diversity, and Marine Environmental Adaptation Xiaoteng Fu1,2,3, Linfeng Gong1,2,3, Yang Liu5, Qiliang Lai1,2,3, Guangyu Li1,2,3 and Zongze Shao1,2,3,4* 1 Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China, 2 State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China, 3 Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China, 4 Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China, 5 State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China Edited by: John R. Battista, Background: Members of the Bacillus pumilus group (abbreviated as the Bp group) are Louisiana State University, United States quite diverse and ubiquitous in marine environments, but little is known about correlation Reviewed by: with their terrestrial counterparts. In this study, 16 marine strains that we had isolated Martín Espariz, before were sequenced and comparative genome analyses were performed with a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), total of 52 Bp group strains. The analyses included 20 marine isolates (which included Instituto de Biología Molecular y the 16 new strains) and 32 terrestrial isolates, and their evolutionary relationships, Celular de Rosario (IBR), Argentina differentiation, and environmental adaptation.
    [Show full text]
  • Diverse Key Nitrogen Cycling Genes Nifh, Nirs and Nosz Associated with Mangrove Rhizosphere Soils of Pichavaram As Revealed by C
    Diverse key nitrogen cycling genes nifH, nirS and nosZ associated with mangrove rhizosphere soils of Pichavaram as revealed by culture dependent and independent analysis. Baskaran Viswanathan ICAR - Central Institute of Brackishwater Aquaculture Prabavathy vaiyapuri ramalingam ( [email protected] ) M.S. Swaminathan Research Foundation https://orcid.org/0000-0002-8260-040X Research Article Keywords: PCR-DGGE, Nitrogen xation, Denitrication, Gammaproteobacteria, BOX-PCR Posted Date: April 7th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-262569/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract PCR-DGGE and culturable diversity analysis of nitrogenase gene nifH and denitrifying genes nirS and nosZ aliated with heterotrophic and unculturable bacterial communities associated with rhizosphere of A. marina, R. mucronata, S. maritima and S. brachiata revealed the dominance of gammaproteobacterial community across the rhizospheres. Sequence analysis of the PCR-DGGE proles of nifH genes clustered to unculturables, while majority of the nirS and nosZ genes clustered with unculturables with few culturable groups viz., Pseudomonas sp. and Halomonas sp. Culturable analysis reected the dominance of Gammaproteobacteria as both nitrogen xers and denitriers while other groups like Firmicutes and Alphaproteobacteria were very less represented among nitrogen xers, and denitriers respectively. A total of 16 different genera were identied as nitrogen xers and denitriers.
    [Show full text]
  • Halophilic Bacteroidetes As an Example on How Their Genomes Interact with the Environment
    DOCTORAL THESIS 2020 PHYLOGENOMICS OF BACTEROIDETES; HALOPHILIC BACTEROIDETES AS AN EXAMPLE ON HOW THEIR GENOMES INTERACT WITH THE ENVIRONMENT Raúl Muñoz Jiménez DOCTORAL THESIS 2020 Doctoral Programme of Environmental and Biomedical Microbiology PHYLOGENOMICS OF BACTEROIDETES; HALOPHILIC BACTEROIDETES AS AN EXAMPLE ON HOW THEIR GENOMES INTERACT WITH THE ENVIRONMENT Raúl Muñoz Jiménez Thesis Supervisor: Ramon Rosselló Móra Thesis Supervisor: Rudolf Amann Thesis tutor: Elena I. García-Valdés Pukkits Doctor by the Universitat de les Illes Balears Publications resulted from this thesis Munoz, R., Rosselló-Móra, R., & Amann, R. (2016). Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Systematic and Applied Microbiology, 39(5), 281–296 Munoz, R., Rosselló-Móra, R., & Amann, R. (2016). Corrigendum to “Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov.” [Syst. Appl. Microbiol. 39 (5) (2016) 281–296]. Systematic and Applied Microbiology, 39, 491–492. Munoz, R., Amann, R., & Rosselló-Móra, R. (2019). Ancestry and adaptive radiation of Bacteroidetes as assessed by comparative genomics. Systematic and Applied Microbiology, 43(2), 126065. Dr. Ramon Rosselló Móra, of the Institut Mediterrani d’Estudis Avançats, Esporles and Dr. Rudolf Amann, of the Max-Planck-Institute für Marine Mikrobiologie, Bremen WE DECLARE: That the thesis titled Phylogenomics of Bacteroidetes; halophilic Bacteroidetes as an example on how their genomes interact with the environment, presented by Raúl Muñoz Jiménez to obtain a doctoral degree, has been completed under our supervision and meets the requirements to opt for an International Doctorate. For all intents and purposes, we hereby sign this document.
    [Show full text]
  • Producing Bacteria
    J. Microbiol. Biotechnol. (2017), 27(8), 1441–1448 https://doi.org/10.4014/jmb.1703.03012 Research Article Review jmb A Rapid and Efficient Screening Method for Antibacterial Compound- Producing Bacteria S Sachithra Amarin Hettiarachchi1,2, Su-Jin Lee1, Youngdeuk Lee1, Young-Kyung Kwon1, Mahanama De Zoysa3, Song Moon1, Eunyoung Jo1, Taeho Kim1, Do-Hyung Kang1,2, Soo-Jin Heo1,2, and Chulhong Oh1,2* 1Korea Institute of Ocean Science & Technology, Jeju Special Self-Governing Province 63349, Republic of Korea 2Department of Marine Biology, Korea University of Science and Technology, Jeju Special Self-Governing Province 63349, Republic of Korea 3College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea Received: March 8, 2017 Revised: May 25, 2017 Antibacterial compounds are widely used in the treatment of human and animal diseases. The Accepted: June 13, 2017 overuse of antibiotics has led to a rapid rise in the prevalence of drug-resistant bacteria, First published online making the development of new antibacterial compounds essential. This study focused on June 16, 2017 developing a fast and easy method for identifying marine bacteria that produce antibiotic *Corresponding author compounds. Eight randomly selected marine target bacterial species (Agrococcus terreus, Phone: +82-64-798-6102; Bacillus algicola, Mesoflavibacter zeaxanthinifaciens, Pseudoalteromonas flavipulchra, P. peptidolytica, Fax: +82-64-798-6039; E-mail: [email protected] P. piscicida, P. rubra, and Zunongwangia atlantica) were tested for production of antibacterial compounds against four strains of test bacteria (B. cereus, B. subtilis, Halomonas smyrnensis, and Vibrio alginolyticus). Colony picking was used as the primary screening method. Clear zones were observed around colonies of P.
    [Show full text]
  • The Evolution of a Gene Cluster Containing a Plant-Like Protein In
    EVOLUTION OF A PLANT-LIKE GENE ANCIENTLY ACQUIRED AS PART OF A GENOMIC ISLAND IN XANTHOMONAS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MᾹNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MOLECULAR BIOSCIENCES AND BIOENGINEERING May 2012 BY KEVIN SCHNEIDER DISSERTATION COMMITTEE GERNOT PRESTING, CHAIRPERSON ANNE ALVAREZ YANGRAE CHO GUYLAINE POISSON SEAN CALLAHAN Dedicated to my Parents! i Acknowledgments I want to give my biggest thanks to Dr Gernot Presting for providing me with so many opportunities during my career at UH Manoa. The teaching assistantship I received on an unexpected short notice that began my PhD to working and publishing on exciting and interesting topics from corn centromeres to bacterial genomes. I am forever grateful for the time, patience, and energy he has spent mentoring me. This work would not have been possible without Dr Anne Alvarez. She has provided not only her knowledge of plant pathology, but also her collection of bacterial strains that the majority of my research required. Also, I thank Asoka Da Silva whom has provided his expertise and skills to culture and purify the hundreds of strains used in this study. The analysis in this work would not have begun without the initial phylogenomic analysis of Arabidopsis completed by Aren Ewing. His work laid the foundation to stick with studying bacterial genomic evolution in light of all of the wonderful work to study the genomic evolution of the centromeres of Zea mays in our lab. I also thank all of my lab mates Anupma Sharma, Thomas Wolfgruber, Jamie Allison, Jeffrey Lai, Megan Nakashima, Ronghui Xu, Zidian Xie, Grace Kwan, Margaret Ruzicka, Krystle Salazar and Erin Mitsunaga from the past and the present for their advice, help, discussions and their friendship and casual chit-chat.
    [Show full text]
  • The Complete Genome of Zunongwangia Profunda SM-A87 Reveals Its Adaptation to the Deep-Sea Environment and Ecological Role in Se
    Qin et al. BMC Genomics 2010, 11:247 http://www.biomedcentral.com/1471-2164/11/247 RESEARCH ARTICLE Open Access TheResearch complete article genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation Qi-Long Qin†1, Xi-Ying Zhang†1, Xu-Min Wang2, Gui-Ming Liu2, Xiu-Lan Chen1, Bin-Bin Xie1, Hong-Yue Dang3, Bai- Cheng Zhou1, Jun Yu2 and Yu-Zhong Zhang*1 Abstract Background: Zunongwangia profunda SM-A87, which was isolated from deep-sea sediment, is an aerobic, gram- negative bacterium that represents a new genus of Flavobacteriaceae. This is the first sequenced genome of a deep-sea bacterium from the phylum Bacteroidetes. Results: The Z. profunda SM-A87 genome has a single 5 128 187-bp circular chromosome with no extrachromosomal elements and harbors 4 653 predicted protein-coding genes. SM-A87 produces a large amount of capsular polysaccharides and possesses two polysaccharide biosynthesis gene clusters. It has a total of 130 peptidases, 61 of which have signal peptides. In addition to extracellular peptidases, SM-A87 also has various extracellular enzymes for carbohydrate, lipid and DNA degradation. These extracellular enzymes suggest that the bacterium is able to hydrolyze organic materials in the sediment, especially carbohydrates and proteinaceous organic nitrogen. There are two clustered regularly interspaced short palindromic repeats in the genome, but their spacers do not match any sequences in the public sequence databases. SM-A87 is a moderate halophile. Our protein isoelectric point analysis indicates that extracellular proteins have lower predicted isoelectric points than intracellular proteins.
    [Show full text]
  • And Gas Condensate-Degrading Marine Bacteria
    The ISME Journal (2017) 11, 2793–2808 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Chemical dispersants enhance the activity of oil- and gas condensate-degrading marine bacteria Julien Tremblay1, Etienne Yergeau2, Nathalie Fortin1, Susan Cobanli3, Miria Elias1, Thomas L King3, Kenneth Lee4 and Charles W Greer1 1National Research Council Canada, Montreal, Quebec, Canada; 2INRS—Institut Armand-Frappier, Laval, Quebec, Canada; 3COOGER, Fisheries and Oceans Canada, Dartmouth, NS, Canada and 4CSIRO, Australian Resources Research Centre, Kensington, WA, Australia Application of chemical dispersants to oil spills in the marine environment is a common practice to disperse oil into the water column and stimulate oil biodegradation by increasing its bioavailability to indigenous bacteria capable of naturally metabolizing hydrocarbons. In the context of a spill event, the biodegradation of crude oil and gas condensate off eastern Canada is an essential component of a response strategy. In laboratory experiments, we simulated conditions similar to an oil spill with and without the addition of chemical dispersant under both winter and summer conditions and evaluated the natural attenuation potential for hydrocarbons in near-surface sea water from the vicinity of crude oil and natural gas production facilities off eastern Canada. Chemical analyses were performed to determine hydrocarbon degradation rates, and metagenome binning combined with metatranscrip- tomics was used to reconstruct abundant bacterial genomes and estimate their oil degradation gene abundance and activity. Our results show important and rapid structural shifts in microbial populations in all three different oil production sites examined following exposure to oil, oil with dispersant and dispersant alone.
    [Show full text]
  • Arthrobacter Pokkalii Sp Nov, a Novel Plant Associated Actinobacterium with Plant Beneficial Properties, Isolated from Saline Tolerant Pokkali Rice, Kerala, India
    RESEARCH ARTICLE Arthrobacter pokkalii sp nov, a Novel Plant Associated Actinobacterium with Plant Beneficial Properties, Isolated from Saline Tolerant Pokkali Rice, Kerala, India Ramya Krishnan1¤, Rahul Ravikumar Menon1, Naoto Tanaka2, Hans-Jürgen Busse3, Srinivasan Krishnamurthi4, Natarajan Rameshkumar1¤* 1 Biotechnology Department, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, 695 019, Kerala, India, 2 NODAI Culture Collection Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156–8502, Japan, 3 Institute of Microbiology, Veterinary University Vienna, A-1210, Vienna, Austria, 4 Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, 160036, India ¤ Current address: Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 001, India * [email protected] OPEN ACCESS Citation: Krishnan R, Menon RR, Tanaka N, Busse Abstract H-J, Krishnamurthi S, Rameshkumar N (2016) Arthrobacter pokkalii sp nov, a Novel Plant A novel yellow colony-forming bacterium, strain P3B162T was isolated from the pokkali rice Associated Actinobacterium with Plant Beneficial rhizosphere from Kerala, India, as part of a project study aimed at isolating plant growth Properties, Isolated from Saline Tolerant Pokkali Rice, Kerala, India. PLoS ONE 11(3): e0150322. beneficial rhizobacteria from saline tolerant pokkali rice and functionally evaluate their abili- doi:10.1371/journal.pone.0150322 ties to promote plant growth
    [Show full text]
  • Features and Functions of Bacteria Associated with Phytoplankton Blooms
    REVIEWS Master recyclers: features and functions of bacteria associated with phytoplankton blooms Alison Buchan1, Gary R. LeCleir1, Christopher A. Gulvik2 and José M. González3 Abstract | Marine phytoplankton blooms are annual spring events that sustain active and diverse bloom-associated bacterial populations. Blooms vary considerably in terms of eukaryotic species composition and environmental conditions, but a limited number of heterotrophic bacterial lineages — primarily members of the Flavobacteriia, Alphaproteo- bacteria and Gammaproteobacteria — dominate these communities. In this Review, we discuss the central role that these bacteria have in transforming phytoplankton-derived organic matter and thus in biogeochemical nutrient cycling. On the basis of selected field and laboratory-based studies of flavobacteria and roseobacters, distinct metabolic strategies are emerging for these archetypal phytoplankton-associated taxa, which provide insights into the underlying mechanisms that dictate their behaviours during blooms. Autotrophs Phytoplankton, such as diatoms and coccolithophores, in a patchy distribution of bacterial activity throughout 6 Organisms that convert are free-floating photosynthetic organisms that are the oceans . Copiotrophic bacteria, which swiftly capital- inorganic carbon, such as CO2, found in aquatic environments. These organisms capture ize on increased carbon and nutrient concentrations at into organic compounds. energy from sunlight and transform inorganic matter both the microscale and macroscale, complement their Biological pump into organic matter (which is known as biomass). In the oligotrophic counterparts, which prefer dilute nutrient The export of phytosynthetically ocean, this organic matter is the foundation of a com- concentrations. Together, the heterotrophic bacteria, derived carbon via the sinking plex marine food web, which relies heavily on microbial which use these two distinct trophic strategies balance of particles from the illuminated transformation: approximately one-half of the carbon marine productivity.
    [Show full text]