Halophilic Bacteroidetes As an Example on How Their Genomes Interact with the Environment

Total Page:16

File Type:pdf, Size:1020Kb

Halophilic Bacteroidetes As an Example on How Their Genomes Interact with the Environment DOCTORAL THESIS 2020 PHYLOGENOMICS OF BACTEROIDETES; HALOPHILIC BACTEROIDETES AS AN EXAMPLE ON HOW THEIR GENOMES INTERACT WITH THE ENVIRONMENT Raúl Muñoz Jiménez DOCTORAL THESIS 2020 Doctoral Programme of Environmental and Biomedical Microbiology PHYLOGENOMICS OF BACTEROIDETES; HALOPHILIC BACTEROIDETES AS AN EXAMPLE ON HOW THEIR GENOMES INTERACT WITH THE ENVIRONMENT Raúl Muñoz Jiménez Thesis Supervisor: Ramon Rosselló Móra Thesis Supervisor: Rudolf Amann Thesis tutor: Elena I. García-Valdés Pukkits Doctor by the Universitat de les Illes Balears Publications resulted from this thesis Munoz, R., Rosselló-Móra, R., & Amann, R. (2016). Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Systematic and Applied Microbiology, 39(5), 281–296 Munoz, R., Rosselló-Móra, R., & Amann, R. (2016). Corrigendum to “Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov.” [Syst. Appl. Microbiol. 39 (5) (2016) 281–296]. Systematic and Applied Microbiology, 39, 491–492. Munoz, R., Amann, R., & Rosselló-Móra, R. (2019). Ancestry and adaptive radiation of Bacteroidetes as assessed by comparative genomics. Systematic and Applied Microbiology, 43(2), 126065. Dr. Ramon Rosselló Móra, of the Institut Mediterrani d’Estudis Avançats, Esporles and Dr. Rudolf Amann, of the Max-Planck-Institute für Marine Mikrobiologie, Bremen WE DECLARE: That the thesis titled Phylogenomics of Bacteroidetes; halophilic Bacteroidetes as an example on how their genomes interact with the environment, presented by Raúl Muñoz Jiménez to obtain a doctoral degree, has been completed under our supervision and meets the requirements to opt for an International Doctorate. For all intents and purposes, we hereby sign this document. Signatures Esporles, May the 15th 2020 Bremen, May the 15th 2020 A mis padres, que para dar lo mejor a sus hijos se dedicaron a cocer pan y fregar suelos. Sin saberlo cultivaban y mataban microorganismos. Ni se imaginaban que una generación más tarde esos bichos darían para tanto. Gracias por acompañarme hasta aquí. 5 Acknowledgments This research was funded by the Max Planck Society, the Spanish Ministry of Economy and Competitivity projects CGL2012-39627-C03-03, CLG2015-66686-C3-1-P and PGC2018-096956- B-C41 that also supported the work with European Regional Development Fund (FEDER) funds, the preparatory phase of the Microbial Resource Research Infrastructure (MIRRI) funded by the EU (grant number 312251), and the financial support of Deep Blue Sea Enterprise S.L. The PhD candidate would like to thank the MPI for Marine Microbiology in Bremen for their support and welcoming during this research. The IMEDEA for the facilitating their premises and resources. The UIB for providing with the appropriate environment for my education. Also the SEM (Spanish Society of Microbiology) for awarding the presentation of the bacteroidetal phylogeny of Bacteroidetes as the best oral presentation in their 2016 congress. And specially the REDEX (The Spanish Network on Extremophiles), since it has brilliantly promoted the excellence in microbial research while created strong bonds between young talents in the years of my membership. Many thanks, of course, to my directors. The experience of fulfilling a thesis would not be completed without some bumps and bruises, but I was lucky to count with two individuals that happen to be excellent people in and out academia. Thank you ever so much for depositing your trust in me and carry on no matter what. It was a tight end but we made it. Thank you Dr. Rudolf Amann for your perspectives and appraisals. And thanks to Dr. Ramon Rosselló-Móra for everything, the good and the bad, the whole roller-coaster. I have learned a lot from you and not only about science. Above all, I have learned about caring for what you do and caring for the people you depend on. Many thanks to Dr. Hanno Teeling. We have personally met in too few occasions due to contrary events, but your presence in the last period of this research has been invaluable. Your detailed input and empathy has caused a deep impact on me. I only wish I can become a little like you someday. In this group, despite he has not co-authored any of the presented research, I would like to include Dr. Pablo Yarza, who introduced me to the management of databases and curation of the All-Species Living Tree Project. It all started there and then at the Marine Microbiology Group (MMG). The terminal command line, the ARB graphic user interface, the cumbersome data collection. Thank you Pablo. Also from the MMG I would like to thank Dr. Arantxa López, the person who spotted me out of a class of over 30 pupils to tell Ramon I could lend a good hand at the lab. You are responsible for this thesis in first term. Thanks to senior PhD candidates in the MMG like Dr. Jocelyn Brito and Dr. Ana Suarez for your leading. Special thanks to Dr. Ana Suarez, you kept reaching out for me, during your post-doctoral contract you invited me at Newcastle University to present my first research, and furthermost, you kept reaching out as a close friend. Also thanks to Dr. Ana Cifuentes, another reference during my MMG days, you rocked it hard, you made me think, opened my mind and taught me we could agree or not but still understand each other. Thanks to the ‘next generation MMG’. It has been fun and educating to share the lab routines with you: Dr. Bartomeu Viver, Xisca Font, Joan Gago and Sara Díaz. Let me thank personally to Carlota Alejandre, my ‘verruguita’, my ally, confident, and MPI-grant fellow. We will laugh over a glass of wine telling ours stories. Also personal thanks to Dr. Merit Mora (de-la-Mo-ra), my princess, and Dr. Carlos Diaz my second ‘extremeño’. When two talents like you collided the bond had to be covalent. Gracias Princess por tantos y tantos momentos de risa descontrolada, lágrima empoderada y humor punzante. Gracias Carlos por sumar tanto. And finally, a very emotional acknowledgment to ‘The Rock’ and ‘The Mom’ in the MMG, Mercedes Urdiain. Sobra decir lo buena profesional que eres y gran soporte técnico que nos ofreces, pero hay que destacar tu calidad humana y tu 6 enorme corazón. Me apena que Pepón no lea estas líneas. Es de recibo agradecerle a él también lo que nos ha cuidado y enseñado. Brindo por él mientras escribo estas líneas aunque no sea con un Lagavulin de 18 años. Y brindo por ti y por lo que está por venir. During my working years in the MMG I was also honored to meet people who stayed for a limited time and contributed to both my microbial knowledge and professional growth; Neus, Roberto, Diego, Luis, Bai. And above all Dr. Pablo Gallardo and Dr. Nayaret Chamorro, my two favorite Chilean people and soul mates in good and evil. Les amo weones. Many thanks to the Microbiology teaching board at the UIB that shed light to my understanding and satiated my thirst for knowledge; Dr. Jorge Lalucat and Dr. Elena García-Galmés, tutors of this thesis, Dr. Balbina Nogales, Dr. Rafael Bosch, Dr. Antoni Bennasar, Dr. Margarita Gomila and Dr. Arantxa Peña. Also thanks to Dr. Eduardo Pastor from the CAB (Centro de Astrobiología) at INTA, Madrid. It was my pleasure to work with you in the previous years to this thesis research and coinciding in some academic events. Somehow, I could relate to you and learn that a person like me had a voice in the crowded academic world. Thank you so much for being so genuine and sharing. Last in the microbiology-related list of acknowledgments, I would like to thank everyone at the Microbiology department at the West Hertforshire NHS Trust, United Kingdom. I was 20 when I left Spain pursuing an independent lifestyle and English proficiency, quiting my biology degree at which I felt I was not competent enough. Lucky me, I happened to get a job as an administrative clerk at the Microbiology lab at Watford General Hospital. You observed me, you noticed I was curious about those little bugs, and offered me the chance of my life: a promoting grant with full education to become a biomedical lab technician. My life turned left and I returned to Spain with unfinished academic training. But I came back a 24 year-old Spaniard with a fine practical training in classic microbiological techniques and skills, sure of his vocational job. You made me fall in love with microbiology. Special thanks to my mentors Dr. Deborah Surridge and Dr. Phillip Spears. And of course to my dearest Gillian Adlington-Graham, who was and still is there to remind me not to wear my heart on my sleeve. Last, from Hemel Hempstead General Hospital, I would like to include Dr. Deborah Nolan and Dr. Jeanette Allen to my list of acknowledgements for boosting up my self-esteem as a scientist. And from St. Albans City Hospital Dr. Asunya Padayachee, for her life-coaching and complicity. Acknowledgments in English are closured with massive thanks to Jennifer McNish, my ‘English Mom’ and serious nominee to International Hosting Mom to be awarded by the United Nations someday. I remember arriving to Oakland College in St. Albans and being assigned guest to a widow lady with two cats. I felt shivers down my spine. I was ever so wrong to judge a book by its cover. You hosted, cared for, taught and even fed me when I needed it, welcoming to your family for ever. And it was funny enough that was you who warned me about the position at Watford General Hospital’s Microbiology Lab, encouraged me to apply and even got the application form, threw it on top of the dinner table and told me: ‘do it, you never know’.
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Eelgrass Sediment Microbiome As a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan
    Microbes Environ. Vol. 34, No. 1, 13-22, 2019 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME18103 Eelgrass Sediment Microbiome as a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan TATSUNORI NAKAGAWA1*, YUKI TSUCHIYA1, SHINGO UEDA1, MANABU FUKUI2, and REIJI TAKAHASHI1 1College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252–0880, Japan; and 2Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060–0819, Japan (Received July 16, 2018—Accepted October 22, 2018—Published online December 1, 2018) Nitrous oxide (N2O) is a powerful greenhouse gas; however, limited information is currently available on the microbiomes involved in its sink and source in seagrass meadow sediments. Using laboratory incubations, a quantitative PCR (qPCR) analysis of N2O reductase (nosZ) and ammonia monooxygenase subunit A (amoA) genes, and a metagenome analysis based on the nosZ gene, we investigated the abundance of N2O-reducing microorganisms and ammonia-oxidizing prokaryotes as well as the community compositions of N2O-reducing microorganisms in in situ and cultivated sediments in the non-eelgrass and eelgrass zones of Lake Akkeshi, Japan. Laboratory incubations showed that N2O was reduced by eelgrass sediments and emitted by non-eelgrass sediments. qPCR analyses revealed that the abundance of nosZ gene clade II in both sediments before and after the incubation as higher in the eelgrass zone than in the non-eelgrass zone. In contrast, the abundance of ammonia-oxidizing archaeal amoA genes increased after incubations in the non-eelgrass zone only. Metagenome analyses of nosZ genes revealed that the lineages Dechloromonas-Magnetospirillum-Thiocapsa and Bacteroidetes (Flavobacteriia) within nosZ gene clade II were the main populations in the N2O-reducing microbiome in the in situ sediments of eelgrass zones.
    [Show full text]
  • High Quality Permanent Draft Genome Sequence of Chryseobacterium Bovis DSM 19482T, Isolated from Raw Cow Milk
    Lawrence Berkeley National Laboratory Recent Work Title High quality permanent draft genome sequence of Chryseobacterium bovis DSM 19482T, isolated from raw cow milk. Permalink https://escholarship.org/uc/item/4b48v7v8 Journal Standards in genomic sciences, 12(1) ISSN 1944-3277 Authors Laviad-Shitrit, Sivan Göker, Markus Huntemann, Marcel et al. Publication Date 2017 DOI 10.1186/s40793-017-0242-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Laviad-Shitrit et al. Standards in Genomic Sciences (2017) 12:31 DOI 10.1186/s40793-017-0242-6 SHORT GENOME REPORT Open Access High quality permanent draft genome sequence of Chryseobacterium bovis DSM 19482T, isolated from raw cow milk Sivan Laviad-Shitrit1, Markus Göker2, Marcel Huntemann3, Alicia Clum3, Manoj Pillay3, Krishnaveni Palaniappan3, Neha Varghese3, Natalia Mikhailova3, Dimitrios Stamatis3, T. B. K. Reddy3, Chris Daum3, Nicole Shapiro3, Victor Markowitz3, Natalia Ivanova3, Tanja Woyke3, Hans-Peter Klenk4, Nikos C. Kyrpides3 and Malka Halpern1,5* Abstract Chryseobacterium bovis DSM 19482T (Hantsis-Zacharov et al., Int J Syst Evol Microbiol 58:1024-1028, 2008) is a Gram-negative, rod shaped, non-motile, facultative anaerobe, chemoorganotroph bacterium. C. bovis is a member of the Flavobacteriaceae, a family within the phylum Bacteroidetes. It was isolated when psychrotolerant bacterial communities in raw milk and their proteolytic and lipolytic traits were studied. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA G + C content is 38.19%. The chromosome length is 3,346,045 bp. It encodes 3236 proteins and 105 RNA genes. The C. bovis genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Development of the Equine Hindgut Microbiome in Semi-Feral and Domestic Conventionally-Managed Foals Meredith K
    Tavenner et al. Animal Microbiome (2020) 2:43 Animal Microbiome https://doi.org/10.1186/s42523-020-00060-6 RESEARCH ARTICLE Open Access Development of the equine hindgut microbiome in semi-feral and domestic conventionally-managed foals Meredith K. Tavenner1, Sue M. McDonnell2 and Amy S. Biddle1* Abstract Background: Early development of the gut microbiome is an essential part of neonate health in animals. It is unclear whether the acquisition of gut microbes is different between domesticated animals and their wild counterparts. In this study, fecal samples from ten domestic conventionally managed (DCM) Standardbred and ten semi-feral managed (SFM) Shetland-type pony foals and dams were compared using 16S rRNA sequencing to identify differences in the development of the foal hindgut microbiome related to time and management. Results: Gut microbiome diversity of dams was lower than foals overall and within groups, and foals from both groups at Week 1 had less diverse gut microbiomes than subsequent weeks. The core microbiomes of SFM dams and foals had more taxa overall, and greater numbers of taxa within species groups when compared to DCM dams and foals. The gut microbiomes of SFM foals demonstrated enhanced diversity of key groups: Verrucomicrobia (RFP12), Ruminococcaceae, Fusobacterium spp., and Bacteroides spp., based on age and management. Lactic acid bacteria Lactobacillus spp. and other Lactobacillaceae genera were enriched only in DCM foals, specifically during their second and third week of life. Predicted microbiome functions estimated computationally suggested that SFM foals had higher mean sequence counts for taxa contributing to the digestion of lipids, simple and complex carbohydrates, and protein.
    [Show full text]
  • DNA Variation and Symbiotic Associations in Phenotypically Diverse Sea Urchin Strongylocentrotus Intermedius
    DNA variation and symbiotic associations in phenotypically diverse sea urchin Strongylocentrotus intermedius Evgeniy S. Balakirev*†‡, Vladimir A. Pavlyuchkov§, and Francisco J. Ayala*‡ *Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525; †Institute of Marine Biology, Vladivostok 690041, Russia; and §Pacific Research Fisheries Centre (TINRO-Centre), Vladivostok, 690600 Russia Contributed by Francisco J. Ayala, August 20, 2008 (sent for review May 9, 2008) Strongylocentrotus intermedius (A. Agassiz, 1863) is an economically spines of the U form are relatively short; the length, as a rule, does important sea urchin inhabiting the northwest Pacific region of Asia. not exceed one third of the radius of the testa. The spines of the G The northern Primorye (Sea of Japan) populations of S. intermedius form are longer, reaching and frequently exceeding two thirds of the consist of two sympatric morphological forms, ‘‘usual’’ (U) and ‘‘gray’’ testa radius. The testa is significantly thicker in the U form than in (G). The two forms are significantly different in morphology and the G form. The morphological differences between the U and G preferred bathymetric distribution, the G form prevailing in deeper- forms of S. intermedius are stable and easily recognizable (Fig. 1), water settlements. We have analyzed the genetic composition of the and they are systematically reported for the northern Primorye S. intermedius forms using the nucleotide sequences of the mitochon- coast region (V.A.P., unpublished data). drial gene encoding the cytochrome c oxidase subunit I and the Little is known about the population genetics of S. intermedius; nuclear gene encoding bindin to evaluate the possibility of cryptic the available data are limited to allozyme polymorphisms (4–6).
    [Show full text]
  • Phenotypic and Microbial Influences on Dairy Heifer Fertility and Calf Gut Microbial Development
    Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Animal Science, Dairy Rebecca R. Cockrum Kristy M. Daniels Alan Ealy Katharine F. Knowlton September 17, 2020 Blacksburg, VA Keywords: microbiome, fertility, inoculation Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens ABSTRACT (Academic) Pregnancy loss and calf death can cost dairy producers more than $230 million annually. While methods involving nutrition, climate, and health management to mitigate pregnancy loss and calf death have been developed, one potential influence that has not been well examined is the reproductive microbiome. I hypothesized that the microbiome of the reproductive tract would influence heifer fertility and calf gut microbial development. The objectives of this dissertation were: 1) to examine differences in phenotypes related to reproductive physiology in virgin Holstein heifers based on outcome of first insemination, 2) to characterize the uterine microbiome of virgin Holstein heifers before insemination and examine associations between uterine microbial composition and fertility related phenotypes, insemination outcome, and season of breeding, and 3) to characterize the various maternal and calf fecal microbiomes and predicted metagenomes during peri-partum and post-partum periods and examine the influence of the maternal microbiome on calf gut development during the pre-weaning phase. In the first experiment, virgin Holstein heifers (n = 52) were enrolled over 12 periods, on period per month. On -3 d before insemination, heifers were weighed and the uterus was flushed.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Diversity Structure of Culturable Bacteria Isolated from the Fildes Peninsula (King George Island, Antarctica): a Phylogenetic Analysis Perspective
    RESEARCH ARTICLE Diversity structure of culturable bacteria isolated from the Fildes Peninsula (King George Island, Antarctica): A phylogenetic analysis perspective Gerardo GonzaÂlez-Rocha1, Gabriel Muñoz-Cartes1, Cristian B. Canales-Aguirre2,3, Celia A. Lima1, Mariana DomõÂnguez-YeÂvenes1, Helia Bello-Toledo1, CristiaÂn E. HernaÂndez2* a1111111111 1 Laboratorio de InvestigacioÂn en Agentes Antibacterianos. Departamento de MicrobiologõÂa, Facultad de Ciencias BioloÂgicas, Universidad de ConcepcioÂn, ConcepcioÂn, Chile, 2 Laboratorio de EcologõÂa Evolutiva y a1111111111 FiloinformaÂtica. Departamento de ZoologõÂa, Facultad de Ciencias Naturales y OceanograÂficas, Universidad a1111111111 de ConcepcioÂn, ConcepcioÂn, Chile, 3 Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue 6 km, a1111111111 Puerto Montt, Chile a1111111111 * [email protected] Abstract OPEN ACCESS Citation: GonzaÂlez-Rocha G, Muñoz-Cartes G, It has been proposed that Antarctic environments select microorganisms with unique bio- Canales-Aguirre CB, Lima CA, DomõÂnguez-YeÂvenes chemical adaptations, based on the tenet `Everything is everywhere, but, the environment M, Bello-Toledo H, et al. (2017) Diversity structure selects' by Baas-Becking. However, this is a hypothesis that has not been extensively evalu- of culturable bacteria isolated from the Fildes ated. This study evaluated the fundamental prediction contained in this hypothesisÐin the Peninsula (King George Island, Antarctica): A phylogenetic analysis perspective. PLoS ONE 12 sense that species are structured in the landscape according to their local habitats-, using (6): e0179390. https://doi.org/10.1371/journal. as study model the phylogenetic diversity of the culturable bacteria of Fildes Peninsula pone.0179390 (King George Island, Antarctica). Eighty bacterial strains isolated from 10 different locations Editor: Patrick Jon Biggs, Massey University, NEW in the area, were recovered.
    [Show full text]
  • Diversity of Free-Living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2016 Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/etd Part of the Bacteriology Commons, and the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Dahal, Bibha, "Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota" (2016). Theses and Dissertations. 688. http://openprairie.sdstate.edu/etd/688 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. DIVERSITY OF FREE-LIVING NITROGEN FIXING BACTERIA IN THE BADLANDS OF SOUTH DAKOTA BY BIBHA DAHAL A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Biological Sciences Specialization in Microbiology South Dakota State University 2016 iii ACKNOWLEDGEMENTS “Always aim for the moon, even if you miss, you’ll land among the stars”.- W. Clement Stone I would like to express my profuse gratitude and heartfelt appreciation to my advisor Dr. Volker Brӧzel for providing me a rewarding place to foster my career as a scientist. I am thankful for his implicit encouragement, guidance, and support throughout my research. This research would not be successful without his guidance and inspiration.
    [Show full text]
  • Annotations of the Otus with the Lowest P-Values for SR Samples at 0 and 4H Fermentation Time Points
    Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2016 Table S1. Taxonomic annotations: Annotations of the OTUs with the lowest p-values for SR samples at 0 and 4h fermentation time points. TAXA ID PHYLUM CLASS ORDER FAMILY GENUS SPECIES 4452633 Firmicutes Clostridia Clostridiales Clostridiaceae unclassified unclassified 191399 Firmicutes Clostridia Clostridiales Ruminococcaceae unclassified unclassified 4256470 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 97otu97833 179291 Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium prausnitzii 192046 Firmicutes Clostridia Clostridiales unclassified unclassified unclassified 4315974 Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 97otu66887 4343627 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides fragilis 760967 Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 97otu12794 4475758 Firmicutes Clostridia Clostridiales Veillonellaceae Veillonella unclassified 566976 Bacteroidetes Gammapro Bacteroidales Bacteroidaceae Bacteroides unclassified teobacteria 328617 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides uniformis 16054 Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus 97otu97520 SR: sun-dried raisins. Table S2. Taxonomic annotations: Annotations of the OTUs with the lowest p-values for SR samples at 0 and 8h fermentation time points. TAXA ID PHYLUM CLASS ORDER FAMILY GENUS SPECIES 194443 Firmicutes Clostridia Clostridiales
    [Show full text]