Biological Characterization of Moraxella Bovis Lipopolysaccharide Kristine Ann Johansen Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Biological Characterization of Moraxella Bovis Lipopolysaccharide Kristine Ann Johansen Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-1988 Biological characterization of Moraxella bovis lipopolysaccharide Kristine Ann Johansen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Johansen, Kristine Ann, "Biological characterization of Moraxella bovis lipopolysaccharide" (1988). Retrospective Theses and Dissertations. 18329. https://lib.dr.iastate.edu/rtd/18329 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Biological charact e rization of Moraxella bovis lipopolysaccharide by Kris t ine Ann Johansen c.. 3 A Thesis Submitted t o the Graduate Faculty in Part ial Fulfillment of the Requirements f or the Degree of MASTER OF SCIENCE Interdepartmental Program: Immunobiology Major: Immunobiology Signatures have been redacted for privacy I owa St a t e Univers ity Ames, I owa 1988 ii TABLE OF CONTENTS Page INTRODUCTION 1 LITERATURE REVIEW 3 Perspect ive 3 LPS Structure and Re activity 3 LPS-Cellular Interactions 6 LPS and Biol ogi cal Reactions 14 LPS and Cy t okine Induction 22 Current Advances 26 MATERIALS AND METHODS 29 Organisms 29 Animals 29 Hot Phenol-wa ter Extra ction of LPS 30 Comp ositional Analysi s of LPS 3 1 SDS-PAGE Analysis 33 Silver Staining of LPS 33 We s tern Blo t Analysi s 34 Pyr ogenicity As say 34 Local Shwartzman React ion 35 Stimulation of Murine Pe ritoneal Exuda t e Cells 36 Peritonal Exudate Cell Toxi city 37 Interleukin 1 Assay 38 Tumor Necr osis Fact or Assay 38 Sp l enic Bl as t ogenesi s Assay 40 iii Page Lethality in Galactosamine-sensit ized mice 41 RESULTS 42 Moraxella LPS Compositional Analysis 42 SDS-PAGE Analysis 42 Western Blot Analysis 43 Pyrogenicity 47 Local Shwartzman Reaction 52 Splenic Blastogenesis 55 Tumor Necrosis Factor Assay 64 Interleukin 1 Assay 70 Lethality in Galac tosamine-sensitized Mice 70 Peritoneal Exudate Cell Toxicity 75 DISCUSSION 77 Compositional Analysis and SDS-PAGE Profiles 77 Western Blot Analysis 79 Pyrogenicity 80 Local Shwartzman Reaction 81 Splenic Blastogenesis 82 Tumor Necrosis Factor Assay 83 Interleukin 1 Assay 84 Lethal Toxicit y in Galactosamine-sensit ized Mice 85 Peritoneal Exudate Cell Toxicity 86 SUMMARY AND FUTURE DIRECTIONS 87 iv Page REFERENCES 90 ACKNOWLEDGEMENTS 102 1 INTRODUCTION Moraxella bovis, a small, gram-negative, nonfermenting cocco- bacillus , is recognized as the primary etiologic agent of infectious bovine keratoconjunctivitis (IBK), or pinkeye . IBK may result in temporary or permanent blindness of affected eyes, as well as reduced feed conversion, and so is a disease of humanitarian consideration and economic importance (Marshall et al . , 1985; Horsnell and Teale, 1987). Although o ther factors, such as ultraviolet irradiation (Kopecky et al., 1980) and infection with Mycoplasma bovoculi (Rosenbusch, 1983) and infectious bovine rhinotracheitis virus (Pugh et al., 1970), have been shown to contribute to l esion production, ~ · bovis has two recognized virulence factors . These are the beta hemolysin and pili, both of which are outer membrane constituents and are required for virulence (Sandhu et al. , 1977; Pedersen et al . , 1972) . Most attempts to develop a vaccine for IBK have met limited success in the field (Pugh et al., 1982) . Many of these trials have involved whole cell bacterins (from hemolytic and nonhemolytic strains) or pili preparations; however, although there is some protection against homologous challenge, heterologous protection is variable at best (Pugh et al., 1976). Additionally, treatment for IBK may be time consuming and expensive, especially when considering reports that all animals in an infected herd are most likely exposed to ~ · bovis within several days (Ostle and Rosenbusch, 1985) . The outer membrane has been the principal site for investigation of M. bovis virulence factors because of the importance of the gram-negative 2 outer membrane interface with t he host environment (Ostle and Rosenbusch , 1986) . The outer membrane is t he site f or many virulence and res i s tance factors for gr am- negative or ganisms ; it is a l so accessible for recognition by the host immune system and thus , outer membrane antigens may be valuable f or diagnosis. One ma jor component of the outer membrane of gr am- negative bacteri a is the lipopolysaccharide (LPS) , which is r esponsible for a l a r ge number of pathophysiologic effects. Li popol y- saccharide may a lso be protective to the organism, s ince it is import ant in serum resistance. Due t o its s truc t ure and outer membrane location, LPS i s highl y i mmunogenic . To date, t hough , research on t he LPS of Mo r axella bovis and its pot entia l r ole as a virulence or resis t ance factor in IBK has been limit ed. Few data on the LPS of Moraxella spp . are available (Adams e t a l., 1970; Veslemoy e t al. , 1980; Ho ris berger and De ntan, 1980) , although t he pi lin gene has already be c l oned (Ma rrs e t a l., 1985) . The purpose of this wo r k was t o l ay t he foundation for ascerta ining t he r ole of M. bovis LPS in the pathogenesis of I BK by char ac t erization of i t s LPS, which included analysis of i t s chemical composit ion, polyac r yl amide gel pr ofile , and a numbe r of biological assays . 3 LITERATURE REVIEW Perspective Bacterial products may often have a profound effect on their hosts. One such class of bacterial products are endotoxins, which are part of the cell wall of gram- negative bacteria. This designation serves t o distinguish endotoxins from excreted toxic bacterial products which are termed "exotoxins". Endotoxins are composed of lipopol ysaccharide (LPS) and associated protein. Endotoxin (and LPS) may cause a tremendous variet y of reactions in the whole animal and on many different cell t ypes, which include the induction of cytokines and causing massive changes in the blood coagulation system. LPS has also been shown t o have a role in the pathogenicity of some gram-negative microorganisms. LPS Structure and Reac tivit y Before delving into the biological effects of LPS and endotoxin, it is perhaps worthwhile to discuss the structure of the molecule and relate it to the biological activity of the molecule . To begin such a review, it is important t o distinguish clearl y the difference between endotoxin and LPS . Lipopolysaccharide is comprised of three distinct regions, t he " 0- antigen", the core polysaccharide and lipid A. Endotoxin is LPS plus associated protein; this protein contributes to differences in biological act ivity seen between LPS and endotoxin (Morrison and Ulevitch, 1978; Br adley, 1979) . The amount of protein extracted along with the LPS depends upon the method employed for extraction (Morrison and Ulevitch, 4 1978) . So-called Boivin LPS is extracted using trichlor oacetic acid a nd produces LPS contaminated with proteins (endotoxin) (Staub, 1965), while so-called Westphal LPS i s extracted with phenol and yields r elatively pure preparations of LPS (Westphal and Jann, 1965) ; LPS may also be extracted successfully using aqueous butanol (Morrison and Leive , 1975) . In addit ion, endot oxin-associ a t ed protein (EAP) has been f ound t o exhibit interleukin 1 ( Il-1 ) properties , such as the direct stimulat ion of serum amyloid A production by res ting human T cells; its activity is no t blocked by polymyxin B (Johns et al . , 1988), an antibiotic polypeptide which binds the lipid A moiety of LPS and abr ogates its activity. Ot her s tudies have demonstrated that EAP has a gr anulopoietic colony- s timula ting activity on human peripheral blood lymphocytes and bone marrow precursor cells (Bjornson et al. , 1988). The lipid A regi on of LPS is generally considered t o be the mos t conserved part of the molecule and usually consist s of a diglucosamine backbone with amide and ester-linked l ong cha in fatty acids, as well as pyrophosphate groups (Wilkinson, 1977) . The amide linked fatty acids appear to be uniformly beta-hydroxy substituted. There appeared to be no particular significance, in terms of r eactivit y , for chain length of ester-linked fatty acids and bo th odd and even numbered chains are found; however, it has been recently found that fatty acid substituents of synthetic lipid A are important in imparting immunoreactivity (Kumazawa e t al., 1988) . In these s tudies, different length acyl gr oups (Cl2-Cl6) and different s t ereoisomers for lipid A subunit analogs (4- 0- phosphono- D- glucosamine derivatives) were used t o s tudy the mitogenicity, 5 pyrogenicit y , let hal toxicity, local Shwartzman reaction, as well as cytokine induction (e . g . , TNF-inducing activity); it was found that fatty acid substituents wit h the (RR) configuration had greater endotoxic activit ies than the corresponding (SS) stereoisomers and that acyl chain l ength also affected reactivity. Some investigations have suggest ed that protein may be covalently bound to the lipid A region (Wilkinson, 1977). Lipid A is also the most internal moiet y of LPS and is probably int ercalated in the lipid bilayer of the out er leaflet of t he cell (Osborn, 1979) . Lipid A is linked through a unique sugar to the core region. This unusual sugar is 2- keto 3- deoxy- octulosonate (KDO).
Recommended publications
  • Biofilm Formation by Moraxella Catarrhalis
    BIOFILM FORMATION BY MORAXELLA CATARRHALIS APPROVED BY SUPERVISORY COMMITTEE Eric J. Hansen, Ph.D. ___________________________ Kevin S. McIver, Ph.D. ___________________________ Michael V. Norgard, Ph.D. ___________________________ Philip J. Thomas, Ph.D. ___________________________ Nicolai S.C. van Oers, Ph.D. ___________________________ BIOFILM FORMATION BY MORAXELLA CATARRHALIS by MELANIE MICHELLE PEARSON DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas March, 2004 Copyright by Melanie Michelle Pearson 2004 All Rights Reserved Acknowledgements As with any grand endeavor, there was a large supporting cast who guided me through the completion of my Ph.D. First and foremost, I would like to thank my mentor, Dr. Eric Hansen, for granting me the independence to pursue my ideas while helping me shape my work into a coherent story. I have seen that the time involved in supervising a graduate student is tremendous, and I am grateful for his advice and support. The members of my graduate committee (Drs. Michael Norgard, Kevin McIver, Phil Thomas, and Nicolai van Oers) have likewise given me a considerable investment of time and intellect. Many of the faculty, postdocs, students and staff of the Microbiology department have added to my education and made my experience here positive. Many members of the Hansen laboratory contributed to my work. Dr. Eric Lafontaine gave me my first introduction to M. catarrhalis. I hope I have learned from his example of patience, good nature, and hard work.
    [Show full text]
  • Blocking Transmission of Vector-Borne Diseases
    International Journal for Parasitology: Drugs and Drug Resistance 7 (2017) 90e109 Contents lists available at ScienceDirect International Journal for Parasitology: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijpddr Review Blocking transmission of vector-borne diseases * Sandra Schorderet-Weber a, Sandra Noack b, Paul M. Selzer b, Ronald Kaminsky c, a Sablons 30, 2000 Neuchatel,^ Switzerland b Boehringer Ingelheim Animal Health GmbH, Binger Str. 173, 55216 Ingelheim, Germany c ParaC Consulting for Parasitology and Drug Discovery, Altenstein 13, 79685 Haeg-Ehrsberg, Germany article info abstract Article history: Vector-borne diseases are responsible for significant health problems in humans, as well as in companion Received 14 November 2016 and farm animals. Killing the vectors with ectoparasitic drugs before they have the opportunity to pass Accepted 22 January 2017 on their pathogens could be the ideal way to prevent vector borne diseases. Blocking of transmission Available online 30 January 2017 might work when transmission is delayed during blood meal, as often happens in ticks. The recently described systemic isoxazolines have been shown to successfully prevent disease transmission under Keywords: conditions of delayed pathogen transfer. However, if the pathogen is transmitted immediately at bite as it Vector-borne diseases is the case with most insects, blocking transmission becomes only possible if ectoparasiticides prevent Transmission blocking Drug discovery the vector from landing on or, at least, from biting the host. Chemical entities exhibiting repellent activity Speed of kill in addition to fast killing, like pyrethroids, could prevent pathogen transmission even in cases of im- mediate transfer. Successful blocking depends on effective action in the context of the extremely diverse life-cycles of vectors and vector-borne pathogens of medical and veterinary importance which are summarized in this review.
    [Show full text]
  • Escherichia Coli Saccharomyces Cerevisiae Bacillus Subtilis はB
    研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止措 置等を定める省令の規定に基づき認定宿主ベクター系等を定める件 (平成十六年一月二十九日文部科学省告示第七号) 最終改正:令和三年二月十五日文部科学省告示第十三号 (認定宿主ベクター系) 第一条 研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止 措置等を定める省令(以下「省令」という。)第二条第十三号の文部科学大臣が定める認 定宿主ベクター系は、別表第一に掲げるとおりとする。 (実験分類の区分ごとの微生物等) 第二条 省令第三条の表第一号から第四号までの文部科学大臣が定める微生物等は、別表第 二の上欄に掲げる区分について、それぞれ同表の下欄に掲げるとおりとする。 (特定認定宿主ベクター系) 第三条 省令第五条第一号ロの文部科学大臣が定める特定認定宿主ベクター系は、別表第一 の2の項に掲げる認定宿主ベクター系とする。 (自立的な増殖力及び感染力を保持したウイルス及びウイロイド) 第四条 省令別表第一第一号ヘの文部科学大臣が定めるウイルス及びウイロイドは、別表第 三に掲げるとおりとする。 別表第1(第1条関係) 区 分 名 称 宿主及びベクターの組合せ 1 B1 (1) EK1 Escherichia coli K12株、B株、C株及びW株又は これら各株の誘導体を宿主とし、プラスミド又は バクテリオファージの核酸であって、接合等によ り宿主以外の細菌に伝達されないものをベクター とするもの(次項(1)のEK2に該当するものを除 く。) (2) SC1 Saccharomyces cerevisiae又はこれと交雑可能な 分類学上の種に属する酵母を宿主とし、これらの 宿主のプラスミド、ミニクロモソーム又はこれら の誘導体をベクターとするもの(次項(2)のSC2 に該当するものを除く。) (3) BS1 Bacillus subtilis Marburg168株、この誘導体又 はB. licheniformis全株のうち、アミノ酸若しく は核酸塩基に対する複数の栄養要求性突然変異を 有する株又は胞子を形成しない株を宿主とし、こ れらの宿主のプラスミド(接合による伝達性のな いものに限る。)又はバクテリオファージの核酸 をベクターとするもの(次項(3)のBS2に該当す るものを除く。) (4) Thermus属細菌 Thermus属細菌(T. thermophilus、T. aquaticus、 T. flavus、T. caldophilus及びT. ruberに限る。) を宿主とし、これらの宿主のプラスミド又はこの 誘導体をベクターとするもの (5) Rhizobium属細菌 Rhizobium属細菌(R. radiobacter(別名Agroba- cterium tumefaciens)及びR. rhizogenes(別名 Agrobacterium rhizogenes)に限る。)を宿主と し、これらの宿主のプラスミド又はRK2系のプラ スミドをベクターとするもの (6) Pseudomonas putida Pseudomonas putida KT2440株又はこの誘導体を 宿主とし、これら宿主への依存性が高く、宿主以 外の細胞に伝達されないものをベクターとするも の (7) Streptomyces属細菌 Streptomyces属細菌(S. avermitilis、S. coel- icolor [S. violaceoruberとして分類されるS. coelicolor A3(2)株を含む]、S. lividans、S. p- arvulus、S. griseus及びS.
    [Show full text]
  • Phase and Antigenic Variation Mediated by Genome Modifications
    Antonie van Leeuwenhoek (2008) 94:493–515 DOI 10.1007/s10482-008-9267-6 REVIEW PAPER Phase and antigenic variation mediated by genome modifications Florence Wisniewski-Dye´ Æ Ludovic Vial Received: 6 April 2008 / Accepted: 9 July 2008 / Published online: 29 July 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Phase and antigenic variation is used by Keywords Adaptation Á Antigenic variation Á several bacterial species to generate intra-population Genome plasticity Á Phenotypic switch diversity that increases bacterial fitness and is important in niche adaptation, or to escape host defences. By this adaptive process, bacteria undergo frequent and usually reversible phenotypic changes Introduction resulting from genetic or epigenetic alterations at specific genetic loci. Phase variation or phenotypic One of the most obvious features of phase variation is switch allows the expression of a given phenotype to the appearance of a minority of colonies or colony be switched ON or OFF. Antigenic variation refers to sectors displaying a different aspect. Phase variation the expression of a number of alternative forms of an or phenotypic switch is used by several bacterial antigen on the cell surface, and at a molecular level, species to generate intra-population diversity that shares common features with phase variation mech- increases bacterial fitness and is important in niche anisms. This review will focus on phase and antigenic adaptation, or to escape host defences. Phase varia- variation mechanisms implying genome modifica- tion allows that the expression of a given phenotype tions, with an emphasis on the diversity of is either ON or OFF; these events are usually phenotypes regulated by these mechanisms, and the reversible (ON $ OFF) but may be irreversible ecological relevance of variant appearance within a (ON ? OFF or OFF ? ON), and result from genetic given population.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Localization of Lactobacillus Plantarum in Bacterial Profile of Conjunctiva of Clinically Healthy Cattle
    Turkish Journal of Veterinary and Animal Sciences Turk J Vet Anim Sci (2013) 37: 302-305 http://journals.tubitak.gov.tr/veterinary/ © TÜBİTAK Research Article doi:10.3906/vet-1111-31 Localization of Lactobacillus plantarum in bacterial profile of conjunctiva of clinically healthy cattle Abdullah ARAGHI-SOOREH*, Meisam BANIARDALAN Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran Received: 27.11.2011 Accepted: 14.08.2012 Published Online: 03.06.2013 Printed: 27.06.2013 Abstract: The aim of this study was to determine the normal conjunctival bacterial flora and the effects of sex and age variations on them in healthy cattle in Urmia, Iran. The animals (n = 50) were selected from 2 sexes and divided into 2 age groups. Swabs were taken from the inferior conjunctival sac of both eyes (n = 100) and were cultured on blood and MacConkey agar. All (100%) of the specimens yielded positive bacterial isolations. The bacterial isolates (in order of decreasing frequency) wereLactobacillus plantarum, Escherichia coli, Bacillus cereus, Proteus mirabilis, Enterobacter aerogenes, Staphylococcus epidermidis, and S. aureus. There was no significant difference in number of isolates between sexes and age groups (P > 0.05). In the present study L. plantarum, as a normal flora organism, was reported from the conjunctival sac in cattle for the first time. Key words: Lactobacillus plantarum, bacterial flora, conjunctiva, cattle 1. Introduction 2. Materials and methods Being rich in nutrients, several microorganisms are often Iranian Holstein crossbred cattle were examined from found on the eye’s surface, i.e. the ocular flora (1).
    [Show full text]
  • Genome-Wide Detection of Conservative Site- Specific Recombination in Bacteria
    RESEARCH ARTICLE Genome-wide detection of conservative site- specific recombination in bacteria Ognjen Sekulovic1*, Elizabeth Mathias Garrett2, Jacob Bourgeois1, Rita Tamayo2, Aimee Shen1, Andrew Camilli1* 1 Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America, 2 Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America * [email protected] (OS); [email protected] (AC) a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 The ability of clonal bacterial populations to generate genomic and phenotypic heterogene- ity is thought to be of great importance for many commensal and pathogenic bacteria. One common mechanism contributing to diversity formation relies on the inversion of small geno- mic DNA segments in a process commonly referred to as conservative site-specific recom- OPEN ACCESS bination. This phenomenon is known to occur in several bacterial lineages, however it Citation: Sekulovic O, Mathias Garrett E, Bourgeois remains notoriously difficult to identify due to the lack of conserved features. Here, we report J, Tamayo R, Shen A, Camilli A (2018) Genome- an easy-to-implement method based on high-throughput paired-end sequencing for wide detection of conservative site-specific recombination in bacteria. PLoS Genet 14(4): genome-wide detection of conservative site-specific recombination on a single-nucleotide e1007332. https://doi.org/10.1371/journal. level. We demonstrate the effectiveness of the method by successfully detecting several pgen.1007332 novel inversion sites in an epidemic isolate of the enteric pathogen Clostridium difficile. Editor: Ivan Matic, Universite Paris Descartes, Using an experimental approach, we validate the inversion potential of all detected sites in INSERM U1001, FRANCE C.
    [Show full text]
  • Identification of a Novel Gene, Pilz, Essential for Type 4 Fimbrial
    JOURNAL OF BACTERIOLOGY, Jan. 1996, p. 46–53 Vol. 178, No. 1 0021-9193/96/$04.0010 Copyright q 1996, American Society for Microbiology Identification of a Novel Gene, pilZ, Essential for Type 4 Fimbrial Biogenesis in Pseudomonas aeruginosa RICHARD A. ALM, AMANDA J. BODERO, PATRICIA D. FREE, AND JOHN S. MATTICK* Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Queensland 4072, Australia Downloaded from Received 5 June 1995/Accepted 24 October 1995 The opportunistic pathogen Pseudomonas aeruginosa produces type 4 fimbriae which promote adhesion to epithelial cells and are associated with a form of surface translocation called twitching motility. We have used transposon mutagenesis to identify loci required for fimbrial assembly or function by screening for mutants that lack the spreading colony morphology characteristic of twitching motility. A subset of these mutants is resistant to fimbria-specific phage. One of these mutants (R270) was found to contain a transposon insertion in a new gene, termed pilZ, which is located on chromosomal SpeI fragment I at about 40 min on the P. http://jb.asm.org/ aeruginosa map, a position remote from other loci involved in fimbrial biogenesis. pilZ appears to be linked to and possibly forms an operon with a gene, holB*, which is homologous to the gene encoding the d* subunit of Escherichia coli DNA polymerase III. The product of the pilZ gene is a protein of 118 amino acids (predicted molecular weight, 12,895) which probably has a cytoplasmic location. PilZ appears to be a new class of protein which has not hitherto been represented in the sequence databases, and its function is unknown.
    [Show full text]
  • Iron As an Integral Constituent of Ancient Metabolism and Biochemistry
    IRON AS AN INTEGRAL CONSTITUENT OF ANCIENT METABOLISM AND BIOCHEMISTRY A Dissertation Presented to The Academic Faculty by Marcus Salvatore Bray In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Biology Georgia Institute of Technology August 2019 COPYRIGHT © MARCUS SALVATORE BRAY 2019 IRON AS AN INTEGRAL CONSTITUENT OF ANCIENT METABOLISM AND BIOCHEMISTRY Approved by: Dr. Jennifer B. Glass, Advisor Dr. Loren Dean Williams, Co-Advisor School of Earth & Atmospheric Sciences School of Chemistry & Biochemistry Georgia Institute of Technology Georgia Institute of Technology Dr. Joel E. Kostka Dr. Kostas T. Konstantinidis School of Biological Sciences, School of School of Civil & Environmental Earth & Atmospheric Sciences Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Frank J. Stewart School of Biological Sciences Georgia Institute of Technology Date Approved: April 25th, 2019 “Into the desert, with only a head and some crossing wires to trace. Here's the world - the one that kills our fathers, and that births our children. May we forever wind, crawl and stumble below the stars, barely living before we shed our mind to teach ourselves anew.” -anonymous ACKNOWLEDGEMENTS I would first like to express my deep gratitude to both of my thesis advisors, Dr. Jennifer B. Glass and Dr. Loren Dean Williams for their continued guidance, support, and mentorship. I would also like to thank all the members of my thesis committee: Dr. Frank Stewart, Dr. Joel Kostka, and Dr. Kostas Konstantinidis for their service and support. I would like to thank members of both the Glass and Williams labs, with whom I had the pleasure of working closely during my time at Tech.
    [Show full text]
  • Investigating Microbiomes and Developing Direct-Fed Microbials to Improve Cattle Health
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses and Dissertations in Animal Science Animal Science Department 4-2020 Investigating microbiomes and developing direct-fed microbials to improve cattle health Alison Bartenslager University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/animalscidiss Part of the Agriculture Commons, and the Animal Sciences Commons Bartenslager, Alison, "Investigating microbiomes and developing direct-fed microbials to improve cattle health" (2020). Theses and Dissertations in Animal Science. 194. https://digitalcommons.unl.edu/animalscidiss/194 This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses and Dissertations in Animal Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INVESTIGATING MICROBIOMES AND DEVELOPING DIRECT-FED MICROBIALS TO IMPROVE CATTLE HEALTH by Alison C. Bartenslager A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Animal Science Under the Supervision of Professor Samodha C. Fernando Lincoln, Nebraska 2 Investigating microbiomes and developing direct-fed microbials to improve cattle health Alison Clare Bartenslager, M.S. University of Nebraska 2020 Advisor: Samodha C. Fernando Over
    [Show full text]
  • Moraxella Nonliquefaciens and M. Osloensis Are Important Moraxella Species That Cause Ocular Infections
    microorganisms Article Moraxella nonliquefaciens and M. osloensis Are Important Moraxella Species That Cause Ocular Infections Samantha J. LaCroce 1, Mollie N. Wilson 2, John E. Romanowski 3, Jeffrey D. Newman 4 , Vishal Jhanji 3, Robert M. Q. Shanks 3 and Regis P. Kowalski 3,* 1 Department of Ophthalmology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; [email protected] 2 Clinical Laboratory—Microbiology, University of Pittsburgh Medical Center, Pittsburgh, PA 16148, USA; [email protected] 3 The Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; [email protected] (J.E.R.); [email protected] (V.J.); [email protected] (R.M.Q.S.) 4 Department of Biology, Lycoming College, Williamsport, PA 17701, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-(412)-647-7211; Fax: +1-(412)-647-5331 Received: 1 February 2019; Accepted: 31 May 2019; Published: 4 June 2019 Abstract: Moraxella is an ocular bacterial pathogen isolated in cases of keratitis, conjunctivitis, and endophthalmitis. Gram-negative brick-shaped diplobacilli from ocular specimens, and slow growth in culture, are early indications of Moraxella ocular infection; however, identifying Moraxella to species can be complex and inconsistent. In this study, bacteria consistent with Moraxella were identified to species using: (1) DNA sequencing coupled with vancomycin susceptibility, (2) MALDI-TOF mass spectrometry, and (3) the Biolog ID system. Study samples consisted of nine ATCC Moraxella controls, 82 isolates from keratitis, 21 isolates from conjunctivitis, and 4 isolates from endophthalmitis. The ATCC controls were correctly identified. For keratitis, 66 (80.5%) were identified as M.
    [Show full text]
  • Grouping of Gram-Positive and Gram-Negative Bacterial Genera
    Appendix Grouping of Gram-Positive and Gram-Negative Bacterial Genera Grouping of the genera of Gram-positive and Gram-negative bacteria is based on four phenotypic characters: Gram reaction (GP = positive; GN = negative), oxidase (+ or −), catalase (+ or −), and absence (n) or presence (p) of colony pigmentation. Groupings for most aerobic foodborne bacteria can be made within 24–48 hours after surface plating onto plate count agar with incubation at 30◦C. Foodborne and environmental bacterial genera are not known for the following two groups: GP 3 (Gr + Ox + Cat − n) and GP 4 (Gr + Ox + Cat − n). Among Gram negatives, the genera in GN 3 (Gr − Ox + Cat − n) and GN 4 (Gr − Ox + Cat − p) are rarely if ever reported in foods. Gram-Positive Groups GP1:Gr+Ox+Cat+n GP2:Gr+Ox+Cat+p Alicyclobacillus Arthrobacter Aneurinibacillus Bacillus (some) Arthrobacter Brachybacterium Bacillus (some) Brevibacillus Brachybacterium Brevibacterium (some) Brevibacillus Corynebacterium Brochothrix Deinococcus Corynebacterium (some) Dermacoccus Dermacoccus Exiguobacterium Geobacillus Halobacillus Gracilibacillus Janibacter Janibacter Kocuria Macrococcus Luteococcus Micrococcus Macrococcus Nesterenkonia Micrococcus Paenibacillus Nesterenkonia Propioniflex Salinococus Salibacillus Streptomyces (most) Sporosarcina Staphylococcus lentus, 747 748 Modern Food Microbiology sciuri, vitulus Stomatococcus Streptomyces (some) Terracoccus GP 5: Gr + Ox − Cat + n GP 6: Gr + Ox − Cat+p Anaerobacter Bacillus (some) Bacillus (most) Brachybacterium Brevibacterium (most) Brevibacterium
    [Show full text]