Grouping of Gram-Positive and Gram-Negative Bacterial Genera

Total Page:16

File Type:pdf, Size:1020Kb

Grouping of Gram-Positive and Gram-Negative Bacterial Genera Appendix Grouping of Gram-Positive and Gram-Negative Bacterial Genera Grouping of the genera of Gram-positive and Gram-negative bacteria is based on four phenotypic characters: Gram reaction (GP = positive; GN = negative), oxidase (+ or −), catalase (+ or −), and absence (n) or presence (p) of colony pigmentation. Groupings for most aerobic foodborne bacteria can be made within 24–48 hours after surface plating onto plate count agar with incubation at 30◦C. Foodborne and environmental bacterial genera are not known for the following two groups: GP 3 (Gr + Ox + Cat − n) and GP 4 (Gr + Ox + Cat − n). Among Gram negatives, the genera in GN 3 (Gr − Ox + Cat − n) and GN 4 (Gr − Ox + Cat − p) are rarely if ever reported in foods. Gram-Positive Groups GP1:Gr+Ox+Cat+n GP2:Gr+Ox+Cat+p Alicyclobacillus Arthrobacter Aneurinibacillus Bacillus (some) Arthrobacter Brachybacterium Bacillus (some) Brevibacillus Brachybacterium Brevibacterium (some) Brevibacillus Corynebacterium Brochothrix Deinococcus Corynebacterium (some) Dermacoccus Dermacoccus Exiguobacterium Geobacillus Halobacillus Gracilibacillus Janibacter Janibacter Kocuria Macrococcus Luteococcus Micrococcus Macrococcus Nesterenkonia Micrococcus Paenibacillus Nesterenkonia Propioniflex Salinococus Salibacillus Streptomyces (most) Sporosarcina Staphylococcus lentus, 747 748 Modern Food Microbiology sciuri, vitulus Stomatococcus Streptomyces (some) Terracoccus GP 5: Gr + Ox − Cat + n GP 6: Gr + Ox − Cat+p Anaerobacter Bacillus (some) Bacillus (most) Brachybacterium Brevibacterium (most) Brevibacterium linens Brachybacterium Caseobacter Caseobacter Clavibacter Clavibacter Corynebacterium (some) Corynebacterium (some) Demetria Demetria Exiguobacterium Erysipelothrix Gordona Geobacillus (some) Janibacter Janibacter Kineococcus Jonesia Kocuria Kocuria Kytococcus Kurthia Microbacterium Kytococcus Planococcus Leucobacter Propionibacterium Listeria Rathayibacter Paenibacillus (some) Sanguibacter Propionibacterium Staphylococcus aureus Staphylococcus Terribacter Terracoccus GP 7: Gr + Ox − Cat − n GP8:Gr+Ox− Cat − p Amphibacillus Clostridium (some) Bifidobacterium Lactobacillus (some) Clostridium Erysipelothrix Facklamia Helcococcus Lactic acid bacteriaa Sporolactobacillus S. aureus subsp. anaerobius Gram-Negative Groups GN 1: Gr − Ox + Cat + n GN 2: Gr − Ox+Cat+p Achromobacter Acidomonas Acidovorax Acidovorax Aeromonas Alteromonas Agrobacterium Aminobacter Grouping of Gram-Positive and Gram-Negative Bacterial Genera 749 Alcaligenes Azomonas Alteromonas Azotobacter Amaricoccus Brevundimonas Aminobacter Campylobacter (at least 2 spp.) Arcobacter Chryseobacterium Azomonas Chromobacterim Azotobacter Chryseomonas Bergeyella Burkholderia cepacia Brevundimonas Duganella Burkholderia Empedobacter Campylobacter Flavobacterium Carnimonas Hydrogenophaga Comamonas Hymenobacter actinosclerus Delftia Janthinobacterium Devosia Kingella Enhydrobacter Methylobacterium Halomonas Myroides Meniscus Pandoraea (some) Moraxella Paracoccus Ochrobacter Pedobacter Oligella Persicobacter Pandoraea Pseudoalteromonas Paracoccus Pseudoaminobacter Pedobacter Rhizomonas Photobacterium Sphingobacterium Plesiomona Sphingomonas Pseudoalteromonas Stenotrophomonas Pseudomonas Telluria chitinolytica Psychrobacter Variovorax Ralstonia Vogesella Rhizomonas Xanthobacter Shewanella Sphingomonas Stenotrophomonas Telluria Vibrio Xanthobacter GN 3: Gr − Ox + Cat − n GN4:Gr− Ox + Cat − p Campylobacter concisus Cytophaga Cardiobacterium Hydrogenophaga Eikenella Persicobacter Kingella Wolinella Suttonella GN 5: Gr − Ox − Cat + n GN 6: Gr − Ox − Cat+p Acetobacter Acinetobacter radioresistens Acidomonas Asaia Acinetobacter Azoarcus Asaia Chemohalobacter 750 Modern Food Microbiology Burkholderia cepacia, Citrobacter B. cocovenenans Deinobacter grandis Campylobacter (some) Erwinia Enterobacteriaceaeb Flavimonas Gluconobacter Fraturia Moraxella bovis, ovis Pandoraea Pandoraea Pantoea Pseudomonas (a few) Pectobacterium Raoultella Pedobacter Saccharobacter Serratia Stenotrophomonas (some) Xanthomonas Xylella Xylophilus Xanthomonas Zymobacter Zymomonas GN 7: Gr − Ox − Cat − n GN8:Gr− Ox − Cat − p Acidaminococcus Prevotella nigrescens Bacteroides Megasphera Pectinatus Streptobacillus Veillonella aAll of the lactic acid genera listed in Chapter 7. bIncludes Enterobacter, Escherichia, Salmonella, Shigella, and the other enteric bac- teria. Index A aw minimum, 46 bacon/ham, 108 Accelerated electrons, 376–377 enteral foods, 206 Acetic acid, 326–327 eggs, 198 Acetic acid bacteria, 155–156 liver spoilage, 77, 87 Acetobacter spp., 16, 40, 151, 155 meats, 65, 102 A. aceti, 189 poultry, 65, 90 A. xylinum, 183 radiation resistance, 388 beer spoilage, 183 seafoods, 110 cider spoilage, 185, 474 Acremonium breve, 722 fermentation pathway, 151 ACSSUT profile, 620 pH growth range, 40 Acylhomoserine lactone, 526–527 SO2 inhibition, 306 Activated lactoferrin, 314 wine spoilage, 184 Adenosine triphosphate mehods, 242, 247 Acetobacterium spp., 397 Aerobic plate count. See standard plate count. A. bakii, 16, 40, 155, 398 Aerococcus spp., 150, 593 Acetoin pathway, 154 Aerolysin, 734 Acetomonas. See Gluconobacter Aeromonas spp., 16–18, 21, 397, 734–735, Achromobacter spp., 748 748 A. anaerobium. See Zymonas anaerobia. A. caviae, 111, 201, 538, 734 Acidaminococcus spp., 750 A. eucrenophila, 734 Acidified sodium chlorite, 312, 318 A. hydrophila, 111, 396, 650, 732–735 Acidomonas spp., 155, 748–749 bioassay, 293, 734 Acidophilus milk, 166 CO2 storage, 363 “sweet”, 163 minimum growth temperature, 398 Acid tolerance response, 530–532. See also sigma pH growth range, 43 factors. radiation D value, 380 starvation induced, 531 ready-to-eat foods, 201 Acidovorax spp., 16, 25, 748 A. schubertii, 734 A. valerianellae, 130 A. sobria, 111, 201, 734 Acid-soluble proteins, 423 A. veronii, 734 Acinetobacter spp., 16–18, 21, 46, 749 AFLP, 265 A. calcoaceticus, 208 bioassay methods, 286 radiation D value, 380 eggs, 198 A. radioresistens, 389, 749 fish, 110–111 751 752 Modern Food Microbiology meats, 65, 102 aw minimum, 46, 445 ready-to-eat foods, 201 A. solani, 715 Alfalfa sprouts. See seed sprouts. A. tenuis, 135 Aflatoxins, 78, 709–715 A. tenuissima, 715 degradation, 714 bacon, 108 effect of SO2, 306 butter spoilage, 167 ELISA detection, 254 fruit spoilage, 135 F. aurantiacum effects, 714 meats, 66, 102 hepatitis B virus, 714 pickle spoilage, 182 LD50, 713 Alternariol, 715 legal limits, 712 Alternariol monomethyl ether, 715 milk, 159 Alternate sigma factor. See sigma factors potency in humans, animals, 714 Alteromonas spp., 16, 18, 26, 28, 397, 748–749 production, 710–712 A. colwelliana. See Shewanella structures, 710 A. putrefaciens. See Shewanella toxicity, 713–714 Altertoxin-I, 715 Agar drop method, 223 Amaricoccus spp., 749 Agar overlay method, 228 Amebiasis/amebic dysentery, 682–683 Agar syringe/agar “sausage” methods, 228 Ames assay, 715 Agaricus spp., 207 Aminobacter spp., 25, 748–749 A. bisporus, 582 Amnesic shellfish poisoning, 740–741 AgClor, 318 Amoebida, 680 Aggregate-hemagglutination, 242 Amphibacillus spp., 424, 748 Agrobacterium spp., 748 Amplified fragment length polymorphism, 265 A. tumefaciens, 131, 536 AmpliSensor, 258 Air and dust, organisms in, 30 Anaerobacter spp., 424, 747 L-alanine-p-nitroanilide, 249–250 A. polyendosporus, 423 Alarm water content, 446 Anamorph, defined, 27 Alcaligenes spp., 16–18, 21, 397, 749 Aneurinibacillus spp., 21, 424, 747 A. faecalis, 40–41 Animal feeds, 20, 621 A. eutrophus (see also Wautersia), 208 Animal hides, 20 A. viscolactis, 161 Anisakiasis, 7, 702–704 bacon, 108 prevalence, 703–704 cottage cheese, 167 prevention, 704 eggs, 198 Anisakinae, 697 fish, 110 Anisakis spp., 697 livers, 65, 87 A. simplex, 463, 702–704 meats, 65, 102 Antagonism. See microbial interference Ale. See beers. Anthracnose, 29, 133–135 Aleuriospores, 445 Anthrax, 158, 519 Alicyclobacillus spp., 21, 40, 416, 424, 430, 436, Antibiotics, 327–330 747 monensin, 328 A. acidocaldarius,43 natamycin, 328 pH range, 43 subtilin, 330 A. acidoterrestris, 422 tetracyclines, 329–330 D value, thermal, 423 tylosin, 330 HHP effects, 462 structures, 329 Allicin, 53 Antibotulinal hurdles, 341 Allyl isothiocyanate, 53, 319, 335 Antioxidants, 321–322 Alternaria spp., 17, 28 Anton test, 290 A. alternata, 715 Aphasmidia, 697 A. citri, 135, 715 Apicomplexa, 680 Index 753 Apoptosis, defined, 534, 536 A. oryzae, 28, 159, 186–187, 190 Appert, N., 4–5 koji, 186 Apple cider. See cider. takadiastase, 150 Apple juice, 144, 712 A. ostianus, 716 Arcobacter spp., 17–18, 21, 25, 669, 749 A. parasiticus, 324, 710–712 A. butleri, 21, 69–70 A. pseudotamartii, 710 radiation D values, 380 A. repens, 436 A. cryaerophilus, 70 A. restrictus, 28 A. nitrofigilis, 23 A. rugulosus, 718 A. skirrowii,70 A. soyae, 28, 187, 190 meats, 69–70 A. terreus, 716 poultry, 65 A. versicolor, 189, 710 Arizona spp., 252 bacon, 108 A. hinshawii, 476 butter, 167 Armillaria spp., 331 ham, 102, 108–109 Arrhenius equation, 55 meats/poultry, 66, 102 Arrhenius model, 491 pickles, 182 Arthrobacter spp., 747 seafoods, 110 Arthrospores, defined, 27, 31 Attachment-effacement, defined, 535–536 Asaia spp., 156, 211, 749 C. freundii, 535 A. siamensis,43 E. coli, 535, 648 Ascaridida, 697 H. alvei, 535 Ascaris spp., 697 ATP methods. See adenosine triphosphate Ascomycete state, defined, 27 Aureobasidium spp., 28, 66, 110 Ascomycota,27 A. pullulans, 28 Ascomycotina,31 Autosterilization, 430 Ascorbate/isoascorbate, 466–467 Averantin, 710 Ascospores, 466 Averufanin, 710 Aseptic packaging, 331 Averufin, 710 Aspergillus spp., 17, 28, 30 Avidin, 198
Recommended publications
  • Biofilm Formation by Moraxella Catarrhalis
    BIOFILM FORMATION BY MORAXELLA CATARRHALIS APPROVED BY SUPERVISORY COMMITTEE Eric J. Hansen, Ph.D. ___________________________ Kevin S. McIver, Ph.D. ___________________________ Michael V. Norgard, Ph.D. ___________________________ Philip J. Thomas, Ph.D. ___________________________ Nicolai S.C. van Oers, Ph.D. ___________________________ BIOFILM FORMATION BY MORAXELLA CATARRHALIS by MELANIE MICHELLE PEARSON DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas March, 2004 Copyright by Melanie Michelle Pearson 2004 All Rights Reserved Acknowledgements As with any grand endeavor, there was a large supporting cast who guided me through the completion of my Ph.D. First and foremost, I would like to thank my mentor, Dr. Eric Hansen, for granting me the independence to pursue my ideas while helping me shape my work into a coherent story. I have seen that the time involved in supervising a graduate student is tremendous, and I am grateful for his advice and support. The members of my graduate committee (Drs. Michael Norgard, Kevin McIver, Phil Thomas, and Nicolai van Oers) have likewise given me a considerable investment of time and intellect. Many of the faculty, postdocs, students and staff of the Microbiology department have added to my education and made my experience here positive. Many members of the Hansen laboratory contributed to my work. Dr. Eric Lafontaine gave me my first introduction to M. catarrhalis. I hope I have learned from his example of patience, good nature, and hard work.
    [Show full text]
  • Phylogenetic Relationships of the Genus Frenkelia
    International Journal for Parasitology 29 (1999) 957±972 Phylogenetic relationships of the genus Frenkelia: a review of its history and new knowledge gained from comparison of large subunit ribosomal ribonucleic acid gene sequencesp N.B. Mugridge a, D.A. Morrison a, A.M. Johnson a, K. Luton a, 1, J.P. Dubey b, J. Voty pka c, A.M. Tenter d, * aMolecular Parasitology Unit, University of Technology, Sydney NSW, Australia bUS Department of Agriculture, ARS, LPSI, PBEL, Beltsville MD, USA cDepartment of Parasitology, Charles University, Prague, Czech Republic dInstitut fuÈr Parasitologie, TieraÈrztliche Hochschule Hannover, BuÈnteweg 17, D-30559 Hannover, Germany Received 3 April 1999; accepted 3 May 1999 Abstract The dierent genera currently classi®ed into the family Sarcocystidae include parasites which are of signi®cant medical, veterinary and economic importance. The genus Sarcocystis is the largest within the family Sarcocystidae and consists of species which infect a broad range of animals including mammals, birds and reptiles. Frenkelia, another genus within this family, consists of parasites that use rodents as intermediate hosts and birds of prey as de®nitive hosts. Both genera follow an almost identical pattern of life cycle, and their life cycle stages are morphologically very similar. How- ever, the relationship between the two genera remains unresolved because previous analyses of phenotypic characters and of small subunit ribosomal ribonucleic acid gene sequences have questioned the validity of the genus Frenkelia or the monophyly of the genus Sarcocystis if Frenkelia was recognised as a valid genus. We therefore subjected the large subunit ribosomal ribonucleic acid gene sequences of representative taxa in these genera to phylogenetic analyses to ascertain a de®nitive relationship between the two genera.
    [Show full text]
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Blocking Transmission of Vector-Borne Diseases
    International Journal for Parasitology: Drugs and Drug Resistance 7 (2017) 90e109 Contents lists available at ScienceDirect International Journal for Parasitology: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijpddr Review Blocking transmission of vector-borne diseases * Sandra Schorderet-Weber a, Sandra Noack b, Paul M. Selzer b, Ronald Kaminsky c, a Sablons 30, 2000 Neuchatel,^ Switzerland b Boehringer Ingelheim Animal Health GmbH, Binger Str. 173, 55216 Ingelheim, Germany c ParaC Consulting for Parasitology and Drug Discovery, Altenstein 13, 79685 Haeg-Ehrsberg, Germany article info abstract Article history: Vector-borne diseases are responsible for significant health problems in humans, as well as in companion Received 14 November 2016 and farm animals. Killing the vectors with ectoparasitic drugs before they have the opportunity to pass Accepted 22 January 2017 on their pathogens could be the ideal way to prevent vector borne diseases. Blocking of transmission Available online 30 January 2017 might work when transmission is delayed during blood meal, as often happens in ticks. The recently described systemic isoxazolines have been shown to successfully prevent disease transmission under Keywords: conditions of delayed pathogen transfer. However, if the pathogen is transmitted immediately at bite as it Vector-borne diseases is the case with most insects, blocking transmission becomes only possible if ectoparasiticides prevent Transmission blocking Drug discovery the vector from landing on or, at least, from biting the host. Chemical entities exhibiting repellent activity Speed of kill in addition to fast killing, like pyrethroids, could prevent pathogen transmission even in cases of im- mediate transfer. Successful blocking depends on effective action in the context of the extremely diverse life-cycles of vectors and vector-borne pathogens of medical and veterinary importance which are summarized in this review.
    [Show full text]
  • Expanding the Knowledge on the Skillful Yeast Cyberlindnera Jadinii
    Journal of Fungi Review Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii Maria Sousa-Silva 1,2 , Daniel Vieira 1,2, Pedro Soares 1,2, Margarida Casal 1,2 and Isabel Soares-Silva 1,2,* 1 Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; [email protected] (M.S.-S.); [email protected] (D.V.); [email protected] (P.S.); [email protected] (M.C.) 2 Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal * Correspondence: [email protected]; Tel.: +351-253601519 Abstract: Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation.
    [Show full text]
  • Glossary Terms
    Glossary Terms € 1584 5W6 5501 a 7181, 12203 5’UTR 8126 a-g Transformation 6938 6Q1 5500 r 7181 6W1 5501 b 7181 a 12202 b-b Transformation 6938 A 12202 d 7181 AAV 10815 Z 1584 Abandoned mines 6646 c 5499 Abiotic factor 148 f 5499 Abiotic 10139, 11375 f,b 5499 Abiotic stress 1, 10732 f,i, 5499 Ablation 2761 m 5499 ABR 1145 th 5499 Abscisic acid 9145 th,Carnot 5499 Absolute humidity 893 th,Otto 5499 Absorbed dose 3022, 4905, 8387, 8448, 8559, 11026 v 5499 Absorber 2349 Ф 12203 Absorber tube 9562 g 5499 Absorption, a(l) 8952 gb 5499 Absorption coefficient 309 abs lmax 5174 Absorption 309, 4774, 10139, 12293 em lmax 5174 Absorptivity or absorptance (a) 9449 μ1, First molecular weight moment 4617 Abstract community 3278 o 12203 Abuse 6098 ’ 5500 AC motor 11523 F 5174 AC 9432 Fem 5174 ACC 6449, 6951 r 12203 Acceleration method 9851 ra,i 5500 Acceptable limit 3515 s 12203 Access time 1854 t 5500 Accessible ecosystem 10796 y 12203 Accident 3515 1Q2 5500 Acclimation 3253, 7229 1W2 5501 Acclimatization 10732 2W3 5501 Accretion 2761 3 Phase boundary 8328 Accumulation 2761 3D Pose estimation 10590 Acetosyringone 2583 3Dpol 8126 Acid deposition 167 3W4 5501 Acid drainage 6665 3’UTR 8126 Acid neutralizing capacity (ANC) 167 4W5 5501 Acid (rock or mine) drainage 6646 12316 Glossary Terms Acidity constant 11912 Adverse effect 3620 Acidophile 6646 Adverse health effect 206 Acoustic power level (LW) 12275 AEM 372 ACPE 8123 AER 1426, 8112 Acquired immunodeficiency syndrome (AIDS) 4997, Aerobic 10139 11129 Aerodynamic diameter 167, 206 ACS 4957 Aerodynamic
    [Show full text]
  • Escherichia Coli Saccharomyces Cerevisiae Bacillus Subtilis はB
    研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止措 置等を定める省令の規定に基づき認定宿主ベクター系等を定める件 (平成十六年一月二十九日文部科学省告示第七号) 最終改正:令和三年二月十五日文部科学省告示第十三号 (認定宿主ベクター系) 第一条 研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止 措置等を定める省令(以下「省令」という。)第二条第十三号の文部科学大臣が定める認 定宿主ベクター系は、別表第一に掲げるとおりとする。 (実験分類の区分ごとの微生物等) 第二条 省令第三条の表第一号から第四号までの文部科学大臣が定める微生物等は、別表第 二の上欄に掲げる区分について、それぞれ同表の下欄に掲げるとおりとする。 (特定認定宿主ベクター系) 第三条 省令第五条第一号ロの文部科学大臣が定める特定認定宿主ベクター系は、別表第一 の2の項に掲げる認定宿主ベクター系とする。 (自立的な増殖力及び感染力を保持したウイルス及びウイロイド) 第四条 省令別表第一第一号ヘの文部科学大臣が定めるウイルス及びウイロイドは、別表第 三に掲げるとおりとする。 別表第1(第1条関係) 区 分 名 称 宿主及びベクターの組合せ 1 B1 (1) EK1 Escherichia coli K12株、B株、C株及びW株又は これら各株の誘導体を宿主とし、プラスミド又は バクテリオファージの核酸であって、接合等によ り宿主以外の細菌に伝達されないものをベクター とするもの(次項(1)のEK2に該当するものを除 く。) (2) SC1 Saccharomyces cerevisiae又はこれと交雑可能な 分類学上の種に属する酵母を宿主とし、これらの 宿主のプラスミド、ミニクロモソーム又はこれら の誘導体をベクターとするもの(次項(2)のSC2 に該当するものを除く。) (3) BS1 Bacillus subtilis Marburg168株、この誘導体又 はB. licheniformis全株のうち、アミノ酸若しく は核酸塩基に対する複数の栄養要求性突然変異を 有する株又は胞子を形成しない株を宿主とし、こ れらの宿主のプラスミド(接合による伝達性のな いものに限る。)又はバクテリオファージの核酸 をベクターとするもの(次項(3)のBS2に該当す るものを除く。) (4) Thermus属細菌 Thermus属細菌(T. thermophilus、T. aquaticus、 T. flavus、T. caldophilus及びT. ruberに限る。) を宿主とし、これらの宿主のプラスミド又はこの 誘導体をベクターとするもの (5) Rhizobium属細菌 Rhizobium属細菌(R. radiobacter(別名Agroba- cterium tumefaciens)及びR. rhizogenes(別名 Agrobacterium rhizogenes)に限る。)を宿主と し、これらの宿主のプラスミド又はRK2系のプラ スミドをベクターとするもの (6) Pseudomonas putida Pseudomonas putida KT2440株又はこの誘導体を 宿主とし、これら宿主への依存性が高く、宿主以 外の細胞に伝達されないものをベクターとするも の (7) Streptomyces属細菌 Streptomyces属細菌(S. avermitilis、S. coel- icolor [S. violaceoruberとして分類されるS. coelicolor A3(2)株を含む]、S. lividans、S. p- arvulus、S. griseus及びS.
    [Show full text]
  • Phase and Antigenic Variation Mediated by Genome Modifications
    Antonie van Leeuwenhoek (2008) 94:493–515 DOI 10.1007/s10482-008-9267-6 REVIEW PAPER Phase and antigenic variation mediated by genome modifications Florence Wisniewski-Dye´ Æ Ludovic Vial Received: 6 April 2008 / Accepted: 9 July 2008 / Published online: 29 July 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Phase and antigenic variation is used by Keywords Adaptation Á Antigenic variation Á several bacterial species to generate intra-population Genome plasticity Á Phenotypic switch diversity that increases bacterial fitness and is important in niche adaptation, or to escape host defences. By this adaptive process, bacteria undergo frequent and usually reversible phenotypic changes Introduction resulting from genetic or epigenetic alterations at specific genetic loci. Phase variation or phenotypic One of the most obvious features of phase variation is switch allows the expression of a given phenotype to the appearance of a minority of colonies or colony be switched ON or OFF. Antigenic variation refers to sectors displaying a different aspect. Phase variation the expression of a number of alternative forms of an or phenotypic switch is used by several bacterial antigen on the cell surface, and at a molecular level, species to generate intra-population diversity that shares common features with phase variation mech- increases bacterial fitness and is important in niche anisms. This review will focus on phase and antigenic adaptation, or to escape host defences. Phase varia- variation mechanisms implying genome modifica- tion allows that the expression of a given phenotype tions, with an emphasis on the diversity of is either ON or OFF; these events are usually phenotypes regulated by these mechanisms, and the reversible (ON $ OFF) but may be irreversible ecological relevance of variant appearance within a (ON ? OFF or OFF ? ON), and result from genetic given population.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Synopsis of the Parasites of Fishes of Canada
    1 ci Bulletin of the Fisheries Research Board of Canada DFO - Library / MPO - Bibliothèque 12039476 Synopsis of the Parasites of Fishes of Canada BULLETIN 199 Ottawa 1979 '.^Y. Government of Canada Gouvernement du Canada * F sher es and Oceans Pëches et Océans Synopsis of thc Parasites orr Fishes of Canade Bulletins are designed to interpret current knowledge in scientific fields per- tinent to Canadian fisheries and aquatic environments. Recent numbers in this series are listed at the back of this Bulletin. The Journal of the Fisheries Research Board of Canada is published in annual volumes of monthly issues and Miscellaneous Special Publications are issued periodically. These series are available from authorized bookstore agents, other bookstores, or you may send your prepaid order to the Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que. K I A 0S9. Make cheques or money orders payable in Canadian funds to the Receiver General for Canada. Editor and Director J. C. STEVENSON, PH.D. of Scientific Information Deputy Editor J. WATSON, PH.D. D. G. Co«, PH.D. Assistant Editors LORRAINE C. SMITH, PH.D. J. CAMP G. J. NEVILLE Production-Documentation MONA SMITH MICKEY LEWIS Department of Fisheries and Oceans Scientific Information and Publications Branch Ottawa, Canada K1A 0E6 BULLETIN 199 Synopsis of the Parasites of Fishes of Canada L. Margolis • J. R. Arthur Department of Fisheries and Oceans Resource Services Branch Pacific Biological Station Nanaimo, B.C. V9R 5K6 DEPARTMENT OF FISHERIES AND OCEANS Ottawa 1979 0Minister of Supply and Services Canada 1979 Available from authorized bookstore agents, other bookstores, or you may send your prepaid order to the Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que.
    [Show full text]
  • Localization of Lactobacillus Plantarum in Bacterial Profile of Conjunctiva of Clinically Healthy Cattle
    Turkish Journal of Veterinary and Animal Sciences Turk J Vet Anim Sci (2013) 37: 302-305 http://journals.tubitak.gov.tr/veterinary/ © TÜBİTAK Research Article doi:10.3906/vet-1111-31 Localization of Lactobacillus plantarum in bacterial profile of conjunctiva of clinically healthy cattle Abdullah ARAGHI-SOOREH*, Meisam BANIARDALAN Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran Received: 27.11.2011 Accepted: 14.08.2012 Published Online: 03.06.2013 Printed: 27.06.2013 Abstract: The aim of this study was to determine the normal conjunctival bacterial flora and the effects of sex and age variations on them in healthy cattle in Urmia, Iran. The animals (n = 50) were selected from 2 sexes and divided into 2 age groups. Swabs were taken from the inferior conjunctival sac of both eyes (n = 100) and were cultured on blood and MacConkey agar. All (100%) of the specimens yielded positive bacterial isolations. The bacterial isolates (in order of decreasing frequency) wereLactobacillus plantarum, Escherichia coli, Bacillus cereus, Proteus mirabilis, Enterobacter aerogenes, Staphylococcus epidermidis, and S. aureus. There was no significant difference in number of isolates between sexes and age groups (P > 0.05). In the present study L. plantarum, as a normal flora organism, was reported from the conjunctival sac in cattle for the first time. Key words: Lactobacillus plantarum, bacterial flora, conjunctiva, cattle 1. Introduction 2. Materials and methods Being rich in nutrients, several microorganisms are often Iranian Holstein crossbred cattle were examined from found on the eye’s surface, i.e. the ocular flora (1).
    [Show full text]
  • GRAS Notice for Pichia Kudriavzevii ASCUSDY21 for Use As a Direct Fed Microbial in Dairy Cattle
    GRAS Notice for Pichia kudriavzevii ASCUSDY21 for Use as a Direct Fed Microbial in Dairy Cattle Prepared for: Division of Animal Feeds, (HFV-220) Center for Veterinary Medicine 7519 Standish Place Rockville, Maryland 20855 Submitted by: ASCUS Biosciences, Inc. 6450 Lusk Blvd Suite 209 San Diego, California 92121 GRAS Notice for Pichia kudriavzevii ASCUSDY21 for Use as a Direct Fed Microbial in Dairy Cattle TABLE OF CONTENTS PART 1 – SIGNED STATEMENTS AND CERTIFICATION ................................................................................... 9 1.1 Name and Address of Organization .............................................................................................. 9 1.2 Name of the Notified Substance ................................................................................................... 9 1.3 Intended Conditions of Use .......................................................................................................... 9 1.4 Statutory Basis for the Conclusion of GRAS Status ....................................................................... 9 1.5 Premarket Exception Status .......................................................................................................... 9 1.6 Availability of Information .......................................................................................................... 10 1.7 Freedom of Information Act, 5 U.S.C. 552 .................................................................................. 10 1.8 Certification ................................................................................................................................
    [Show full text]