Landscape Dynamics Determine the Small-Scale Genetic Structure of An

Total Page:16

File Type:pdf, Size:1020Kb

Landscape Dynamics Determine the Small-Scale Genetic Structure of An Journal of Coastal Research 28 4 780–786 West Palm Beach, Florida July 2012 Landscape Dynamics Determine the Small-Scale Genetic Structure of an Endangered Dune Slack Plant Species Dries Bonte{, Peter Breyne{, Rein Brys{{, Eduardo de la Pen˜a{, Bram D’hondt{, Ce´line Ghyselen{, Martijn L. Vandegehuchte{, and Maurice Hoffmann{{ www.cerf-jcr.org {Ghent University {Research Institute for Nature and Forest Department of Biology Department of Biodiversity and Natural Environment Terrestrial Ecology Unit Kliniekstraat 25 K.L. Ledeganckstraat 35 1070 Brussel, Belgium 9000 Ghent, Belgium [email protected] ABSTRACT Bonte, D.; Breyne, P.; Brys, R.; de la Pen˜ a, E.; D’hondt, B.; Ghyselen, C.; Vandegehuchte, M.L., and Hoffmann, M., 2012. Landscape dynamics determine the small-scale genetic structure of an endangered dune slack plant species. Journal of Coastal Research, 28(4), 780–786. West Palm Beach (Florida), ISSN 0749-0208. Understanding the processes that determine genetic variation within landscapes is a crucial factor for successful management of threatened plant species that are sensitive to both environmental and genetic bottlenecks. While current insights point to the importance of historical landscape processes for the genetic structure of populations at large spatial scales, their relevance at small spatial scales has been largely neglected. In this context, coastal dunes are a typical example of dynamic and geologically young landscapes in which current and historical sand drift may have strong impacts on the spatial dynamics of a large number of plant species. One of these is the endangered plant species Parnassia palustris, typically inhabiting dune slacks formed by recent sand displacements in parabolic dune landscapes. Dune slacks originating from the same sand drift process are located within the same parabola unit. The species is known to suffer from dispersal limitation and from inbreeding when genetic exchange between populations is restricted. By means of amplified fragment length polymorphism, we demonstrate that the species shows a genetic substructuring both at the level of the metapopulation and the local landscape. Populations located within the same parabola unit are much more closely related than expected on the basis of geographic distance. Moreover, population size is related to genetic diversity within populations. The species’ population genetic structure should consequently be regarded as a shifting mosaic of genetic variation, mediated by sand drift driven landscape formation. Therefore, the maintenance of sand dynamics is essential to preserve genetic diversity in dynamic dune landscapes. ADDITIONAL INDEX WORDS: AFLP, metapopulation, Parnassia palustris, population size, sand dynamics. INTRODUCTION biology (Manel et al., 2003). Recent population genetic studies have demonstrated the relationship between population size, Understanding the processes and patterns of gene flow and distance between populations, and genetic differentiation local adaptation requires a detailed knowledge of how among populations, which is strongly affected by the species’ landscape characteristics affect the genetic structure of set of life history traits (see, e.g., Hamrick and Godt, 1996; populations (Holderegger and Wagner, 2008). This is especially Honnay and Jacquemyn 2007; Nybom and Bartish, 2000 for true for plants, in which the process of gene flow is often comprehensive reviews). In contrast, only few studies have strongly influenced by the configuration of the surrounding explicitly tested how landscape genesis (i.e., processes that landscape and prevented by the barriers within it (Sork et al., shape the landscape configuration) may affect spatial patterns 1999). This understanding is crucial, not only to improve in neutral genetic variation, underlying microevolutionary general insights on genetics in conservation biology, but also to processes, and the eventual feedback on life history traits properly manage endangered species in order to maintain and (Balkenhol et al., 2009; Storfer et al., 2007). restore the genetic diversity of their populations. Approaches In general, studies aiming to test the relative importance of from so-called landscape genetics (Holderegger and Wagner historicalvs.currentgeneflowinrelationtolandscapegenesisare 2008) promise to facilitate our understanding of how geograph- constrained by the fact that the configuration of most landscapes ic and environmental features may affect genetic variation at to date is heavily influenced by anthropogenic factors on a very both the population and individual level and may have short timescale relative to most natural processes of landscape important implications for ecology, evolution, and conservation formation. Therefore, the observed genetic variation of these populations often does not confirm general predictions of (meta-) population genetic theory, for instance, the fact that genetic DOI: 10.2112/JCOASTRES-D-10-00128.1 received 24 August 2010; accepted in revision 1 November 2010. distance and geographic distance are not always found to be ’ Coastal Education & Research Foundation 2012 related (Bonnin et al., 2002; Leimu et al., 2006). Sand Dynamics and Plant Genetic Structure 781 Landscape formation may induce spatial genetic variation ulation crosses resulting in a higher reproduction capacity than due to historic gene flow and common founder effects and by within-metapopulation crosses, indicated a larger degree of decreasing local population sizes if habitat formation becomes compatibility between plants originating from different meta- restricted. Two consequences of small population size are populations (Bossuyt 2007). By means of amplified fragment increased genetic drift and inbreeding. Genetic drift and length polymorphism (AFLP) analysis, we tested the hypoth- inbreeding may influence small plant populations by changing esis that landscape dynamics (i.e., parabolic dune genesis) are patterns of genetic diversity. Genetic drift decreases genetic important drivers of genetic differentiation in P. palustris variation within populations, while it generally increases within existing metapopulations relative to among-metapopu- differentiation among populations, an effect that becomes lation differentiation. more pronounced in declining populations (Barrett and Kohn, 1991; Ellstrand and Elam, 1993; Young, Boyle, and Brown, MATERIAL AND METHODS 1996). Inbreeding increases homozygosity within populations, whereas smaller populations lose genetic variation faster than Study Species larger populations (Ellstrand and Elam, 1993). The expected Parnassia palustris (Saxifragaceae) is a perennial herb with relationship between population size and genetic diversity is, a circumboreal distribution (Bonnin et al., 2002; Borgen and however, often missing (Bonnin et al., 2002; Leimu et al., 2006) Hultga˚rd, 2003). Each plant has basal leaves and 1–30 because populations occur in human managed habitats that flowering stems, each with one terminal flower. The species could have experienced dramatic short-term changes. As is hermaphroditic and protandrous. The five stamens sequen- Bonnin et al. (2002) suggest, these changes may include tially discharge their pollen before the stigma becomes bottlenecks and a changing degree of connection to other receptive. It is usually cross-pollinated and rarely autoga- populations (Holderegger and Wagner, 2008). mously pollinated (Martens, 1936). The species is mainly In dynamic landscapes, landscape genesis is by definition a outcrossing and strongly depends on pollinators for optimal geologically young process that can often be disentangled from pollination and seed set (Sandvik and Totland, 2003). Parnas- human interference on habitat configuration. Coastal dunes sia palustris is insect pollinated, mainly by Diptera, particu- along the North Sea comprise such a system. Owing to sand larly hoverflies (Syrphidae), but other insects contribute to drift dynamics, dry parabolic dune ridges are continuously pollen transfer (Sandvik and Totland, 2003). It flowers from shifting in a northeasterly direction, leaving behind young August through September, and fruits, containing several ephemeral dune slacks (Provoost, Jones, and Edmondson, hundreds of seeds, ripen from September through October. The 2009), whose ecological characteristics are often determined by small, light seeds are dispersed by water and wind. Parnassia the groundwater level and the carbonate content at the palustris is considered endangered in northern France, moment of development. Here, several plant species find their Luxembourg, Belgium, and the Netherlands (Bonnin et al., optimal, though temporary, growing conditions; they are often 2002), where it is a rare plant in lime-rich dune slacks along the restricted to specific environmental conditions in space and coast and inland lime-rich marshes. time. Their populations are subsequently expected to be predominantly linked to the historical dynamics of these Study Area landscapes, in which gene flow patterns are strongly deter- mined by the occurrence of dry parabolic dune ridges that may The study was conducted in a sandy dune area along the function as effective dispersal barriers. On the other hand, the western Belgian and northeastern French coast. This area has fragmentation of larger dune entities due to the steady increase been extensively fragmented by human activities since the of urbanized areas is another factor that may induce genetic beginning of the 20th century. The remaining dune
Recommended publications
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • (Cruciferae) – Mustard Family
    BRASSICACEAE (CRUCIFERAE) – MUSTARD FAMILY Plant: herbs mostly, annual to perennial, sometimes shrubs; sap sometimes peppery Stem: Root: Leaves: mostly simple but sometimes pinnately divided; alternate, rarely opposite or whorled; no stipules Flowers: mostly perfect, mostly regular (actinomorphic); 4 sepals, 4 petals often forming a cross; 6 stamens with usually 2 outer ones shorter than the inner 4; ovary superior, mostly 2 fused carpels, 1 to many ovules, 1 pistil Fruit: seed pods, often used in classification, many are slender and long (Silique), some broad (Silicle) – see morphology slide Other: a large family, many garden plants such as turnip, radish, and cabbage, also some spices; often termed the Cruciferae family; Dicotyledons Group Genera: 350+ genera; 40+ locally WARNING – family descriptions are only a layman’s guide and should not be used as definitive Flower Morphology in the Brassicaceae (Mustard Family) - flower with 4 sepals, 4 petals (often like a cross, sometimes split or lobed), commonly small, often white or yellow, distinctive fruiting structures often important for ID 2 types of fruiting pods: in addition, fruits may be circular, flattened or angled in cross-section Silicle - (usually <2.5x long as wide), 2-valved with septum (replum) Silique - (usually >2.5x long as wide), 2- valved with septum (replum) Flowers, Many Genera BRASSICACEAE (CRUCIFERAE) – MUSTARD FAMILY Sanddune [Western] Wallflower; Erysimum capitatum (Douglas ex Hook.) Greene var. capitatum Wormseed Wallflower [Mustard]; Erysimum cheiranthoides L. (Introduced) Spreading Wallflower [Treacle Mustard]; Erysimum repandum L. (Introduced) Dame’s Rocket [Dame’s Violet]; Hesperis matronalis L. (Introduced) Purple [Violet] Rocket; Iodanthus pinnatifidus (Michx.) Steud. Michaux's Gladecress; Leavenworthia uniflora (Michx.) Britton [Cow; Field] Cress [Peppergrass]; Lepidium campestre L.) Ait.
    [Show full text]
  • (Last Updated: 8 January 2021) List of the Plants Subject to Specific
    (Annex4) (Last updated: 8 January 2021) List of the plants subject to specific phytosanitary measures to be carried out in exporting countries (Annexed table 2-2 of the Ordinance for Enforcement of the Plant Protection Act) and the details of requirements for each of the quarantine pests: Note: Underlined regions/countries, plants, quarantine pests or requirements will be added. Strikethrough regions/countries or plants will be deleted. Common requirements The plants must be accompanied by a phytosanitary certificate or a certified copy of the phytosanitary certificate issued by the NPPO of an exporting country to certify that the plants have been inspected and are considered to be free from quarantine pests. Item Region/countries Plants Quarantine pests Requirements No 1 [Latin America] Argentina, Uruguay, Fresh fruits of the following plants: Anastrepha fraterculus The plants must fulfill either of the following specific requirement under Ecuador, El Salvador, Guyana, Pouteria obovata, abiu (Pouteria caimito), apricot (South American fruit fly) the supervision of the NPPO of the exporting country and found to be Guatemala, Costa Rica, Colombia, (Prunus armeniaca), yellow pitahaya free from Anastrepha fraterculus. Surinam, Trinidad and Tobago, (Hylocereus megalanthus (syn. Selenicereus The additional declaration and the details of treatment (e.g. registration Nicaragua, Panama, Paraguay, megalanthus)), common fig (Ficus carica), number of facility, date, temperature, time) are made on the Brazil, French Guiana, Venezuela, persimmon (Diospyros), Campomanesia phytosanitary certificate or the certified copy of the phytosanitary Belize, Peru, Bolivia, Honduras, xanthocarpa, kiwi fruit (Actinidia deliciosa, A. certificate based on the work plan. Mexico chinensis)), passion fruit (Passiflora edulis), Chrysophyllum gonocarpum, tamarillo The work plan which describes the following specific requirements (Cyphomandra betacea (syn.
    [Show full text]
  • Determination of Genetic Diversity of Some Species of Brassicaceae Using SDS-PAGE of Seed Protein and ISSR Markers
    20 Egypt. J. Bot., Vol. 55, No.2 pp. 307- 318 (2015) Determination of Genetic Diversity of Some Species of Brassicaceae Using SDS-PAGE of Seed Protein and ISSR Markers Nelly M. George Botany Department, Faculty of Science, Zagazig University, 44519 Egypt VALUATION of genetic diversity among 10 species of E Brassicaceae have been performed based on variations in seed protein electrophoretic patterns as revealed by SDS-PAGE and ISSR analyses, separately and in combination. The maximum genetic similarity was observed between Brassica nigra and B. rapa, while the lowest genetic similarity was observed between B. nigra and Sisymbrium irrio. Cluster analysis generated a dendrogram that separated the studied taxa in two main clusters; the five species of tribe Brassiceae were grouped close to each other in one cluster with Sisymbrium irrio. The remaining studied species; Capsella bursa- pastoris, Erysimum cheiranthoides, Mathiola longipetale and Thlaspi arvense, were grouped in a second cluster. Keywords: Brassicaceae, SDS-PAGE, ISSR, Genetic diversity. The Brassicaceae (Cruciferae or mustard family) includes several crop plants grown worldwide, some of which have been cultivated since prehistoric times. Various species are grown for oil, mustard condiment, fodder and forage for animals, or as vegetables (Crisp, 1976 and Simmonds, 1986). Several classification systems were proposed from the early 19th to the mid 20th century. According to these systems, the Brassicaceae divided into anywhere from 4 to 19 tribes and 20 to 30 sub-tribes (Schulz, 1936 and Janchen, 1942). Mark et al. (2006) suggested that Brassicaceae includes two important model systems; the first included the Arabidopsis thaliana (L.) Heynh.
    [Show full text]
  • Erysimum Cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores
    Journal of Chemical Ecology https://doi.org/10.1007/s10886-020-01225-y Less Is More: a Mutation in the Chemical Defense Pathway of Erysimum cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores Mahdieh Mirzaei1 & Tobias Züst2 & Gordon C. Younkin1 & Amy P. Hastings3 & Martin L. Alani1 & Anurag A. Agrawal3 & Georg Jander1 Received: 26 April 2020 /Revised: 6 October 2020 /Accepted: 9 October 2020 # Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract Erysimum cheiranthoides L (Brassicaceae; wormseed wallflower) accumulates not only glucosinolates, which are characteristic of the Brassicaceae, but also abundant and diverse cardenolides. These steroid toxins, primarily glycosylated forms of digitoxi- genin, cannogenol, and strophanthidin, inhibit the function of essential Na+/K+-ATPases in animal cells. We screened a popu- lation of 659 ethylmethanesulfonate-mutagenized E. cheiranthoides plants to identify isolates with altered cardenolide profiles. One mutant line exhibited 66% lower cardenolide content, resulting from greatly decreased cannogenol and strophanthidin glycosides, partially compensated for by increases in digitoxigenin glycosides. This phenotype was likely caused by a single- locus recessive mutation, as evidenced by a wildtype phenotype of F1 plants from a backcross, a 3:1 wildtype:mutant segregation in the F2 generation, and genetic mapping of the altered cardenolide phenotype to one position in the genome. The mutation created a more even cardenolide distribution, decreased the average cardenolide polarity, but did not impact most glucosinolates. Growth of generalist herbivores from two feeding guilds, Myzus persicae Sulzer (Hemiptera: Aphididae; green peach aphid) and Trichoplusia ni Hübner (Lepidoptera: Noctuidae; cabbage looper), was decreased on the mutant line compared to wildtype.
    [Show full text]
  • OLFS Plant List
    Checklist of Vascular Plants of Oak Lake Field Station Compiled by Gary E. Larson, Department of Natural Resource Management Trees/shrubs/woody vines Aceraceae Boxelder Acer negundo Anacardiaceae Smooth sumac Rhus glabra Rydberg poison ivy Toxicodendron rydbergii Caprifoliaceae Tatarian hone ysuckle Lonicera tatarica* Elderberry Sambucus canadensis Western snowberry Symphoricarpos occidentalis Celastraceae American bittersweet Celastrus scandens Cornaceae Redosier dogwood Cornus sericea Cupressaceae Eastern red cedar Juniperus virginiana Elaeagnaceae Russian olive Elaeagnus angustifolia* Buffaloberry Shepherdia argentea* Fabaceae Leadplant Amorpha canescens False indigo Amorpha fruticosa Siberian peashrub Caragana arborescens* Honey locust Gleditsia triacanthos* Fagaceae Bur oak Quercus macrocarpa Grossulariaceae Black currant Ribes americanum Missouri gooseberry Ribes missouriense Hippocastanaceae Ohio buckeye Aesculus glabra* Oleaceae Green ash Fraxinus pennsylvanica Pinaceae Norway spruce Picea abies* White spruce Picea glauca* Ponderosa pine Pinus ponderosa* Rhamnaceae Common buckthorn Rhamnus cathartica* Rosaceae Serviceberry Amelanchier alnifolia Wild plum Prunus americana Hawthorn Crataegus succulenta Chokecherry Prunus virginiana Siberian crab Pyrus baccata* Prairie rose Rosa arkansana Black raspberry Rubus occidentalis Salicaceae Cottonwood Populus deltoides Balm-of-Gilead Populus X jackii* White willow Salix alba* Peachleaf willow Salix amygdaloides Sandbar willow Salix exigua Solanaceae Matrimony vine Lycium barbarum* Ulmaceae
    [Show full text]
  • Alien Plants in Central European River Ports
    A peer-reviewed open-access journal NeoBiota 45: 93–115 (2019) Alien plants in Central European river ports 93 doi: 10.3897/neobiota.45.33866 RESEARCH ARTICLE NeoBiota http://neobiota.pensoft.net Advancing research on alien species and biological invasions Alien plants in Central European river ports Vladimír Jehlík1, Jiří Dostálek2, Tomáš Frantík3 1 V Lesíčku 1, 150 00 Praha 5 – Smíchov, Czech Republic 2 Silva Tarouca Research Institute for Landscape and Ornamental Gardening, CZ-252 43 Průhonice, Czech Republic 3 Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic Corresponding author: Jiří Dostálek ([email protected]) Academic editor: Ingo Kowarik | Received 14 February 2019 | Accepted 27 March 2019 | Published 7 May 2019 Citation: Jehlík V, Dostálek J, Frantík T (2019) Alien plants in Central European river ports. NeoBiota 45: 93–115. https://doi.org/10.3897/neobiota.45.33866 Abstract River ports represent a special type of urbanized area. They are considered to be an important driver of biological invasion and biotic homogenization on a global scale, but it remains unclear how and to what degree they serve as a pool of alien species. Data for 54 river ports (16 German, 20 Czech, 7 Hungarian, 3 Slovak, and 8 Austrian ports) on two important Central European waterways (the Elbe-Vltava and Dan- ube waterways) were collected over 40 years. In total, 1056 plant species were found. Of these, 433 were alien, representing 41% of the total number of species found in all the studied Elbe, Vltava, and Danube ports. During comparison of floristic data from literary sources significant differences in the percentage of alien species in ports (50%) and cities (38%) were found.
    [Show full text]
  • Complete Iowa Plant Species List
    !PLANTCO FLORISTIC QUALITY ASSESSMENT TECHNIQUE: IOWA DATABASE This list has been modified from it's origional version which can be found on the following website: http://www.public.iastate.edu/~herbarium/Cofcons.xls IA CofC SCIENTIFIC NAME COMMON NAME PHYSIOGNOMY W Wet 9 Abies balsamea Balsam fir TREE FACW * ABUTILON THEOPHRASTI Buttonweed A-FORB 4 FACU- 4 Acalypha gracilens Slender three-seeded mercury A-FORB 5 UPL 3 Acalypha ostryifolia Three-seeded mercury A-FORB 5 UPL 6 Acalypha rhomboidea Three-seeded mercury A-FORB 3 FACU 0 Acalypha virginica Three-seeded mercury A-FORB 3 FACU * ACER GINNALA Amur maple TREE 5 UPL 0 Acer negundo Box elder TREE -2 FACW- 5 Acer nigrum Black maple TREE 5 UPL * Acer rubrum Red maple TREE 0 FAC 1 Acer saccharinum Silver maple TREE -3 FACW 5 Acer saccharum Sugar maple TREE 3 FACU 10 Acer spicatum Mountain maple TREE FACU* 0 Achillea millefolium lanulosa Western yarrow P-FORB 3 FACU 10 Aconitum noveboracense Northern wild monkshood P-FORB 8 Acorus calamus Sweetflag P-FORB -5 OBL 7 Actaea pachypoda White baneberry P-FORB 5 UPL 7 Actaea rubra Red baneberry P-FORB 5 UPL 7 Adiantum pedatum Northern maidenhair fern FERN 1 FAC- * ADLUMIA FUNGOSA Allegheny vine B-FORB 5 UPL 10 Adoxa moschatellina Moschatel P-FORB 0 FAC * AEGILOPS CYLINDRICA Goat grass A-GRASS 5 UPL 4 Aesculus glabra Ohio buckeye TREE -1 FAC+ * AESCULUS HIPPOCASTANUM Horse chestnut TREE 5 UPL 10 Agalinis aspera Rough false foxglove A-FORB 5 UPL 10 Agalinis gattingeri Round-stemmed false foxglove A-FORB 5 UPL 8 Agalinis paupercula False foxglove
    [Show full text]
  • Non-Native Plant Surveys Along the Delta and Gulkana National Wild and Scenic Rivers
    NNoonn--nnaattiivvee ppllaanntt ssuurrvveeyyss \ aalloonngg tthhee DDeellttaa aanndd GGuullkkaannaa NNaattiioonnaall WWiilldd aanndd SScceenniicc RRiivveerrss Report prepared for: The Bureau of Land Management – Glennallen Field Office Helen Cortés-Burns, Lindsey Flagstad, Matthew Carlson, and Timm Nawrocki The Alaska Natural Heritage Program, University of Alaska Anchorage May 2010 Table of contents Table of contents .............................................................................................................................................................................................. I List of figures ................................................................................................................................................................................................... III List of tables ....................................................................................................................................................................................................... V Abstract ............................................................................................................................................................................................................. VI Acknowledgments ....................................................................................................................................................................................... VII Introduction ......................................................................................................................................................................................................
    [Show full text]
  • Agrobiological Potential of Some Soil Crucifers of Lithuania's Spontaneous
    ISSN 1392-3196 Zemdirbyste-Agriculture Vol. 101, No. 2 (2014) 153 ISSN 1392-3196 / e-ISSN 2335-8947 Zemdirbyste-Agriculture, vol. 101, No. 2 (2014), p. 153–160 DOI 10.13080/z-a.2014.101.020 Agrobiological potential of some soil crucifers of Lithuania’s spontaneous flora Nijolė MARŠALKIENĖ1, Algirdas SLIESARAVIČIUS1, Asta RAMAŠKEVIČIENĖ1, Liuda ŽILĖNAITĖ1, Gintautas Juozas ŠVIRMICKAS2 1Aleksandras Stulginskis University Studentų 11, Akademija, Kaunas distr., Lithuania E-mail: [email protected] 2Institute of Animal Science of Veterinary Academy, Lithuanian University of Health Sciences R. Žebenkos 12, Baisogala, Radviliškis distr., Lithuania Abstract A total of 56 seed samples of five spontaneus Brassicaceae species – flixweed (Descurainia sophia L.), wallflower mustard (Erysimum cheiranthoides L.), fanweed (Thlaspi arvense L.), sea rocket (Cakile baltica Jord. ex Pobed.) and garlic mustard (Alliaria petiolata (M. Bieb.)) were collected in different regions of Lithuania. The samples were sown in autumn (2008–2009) and spring (2009–2010) in the fields of Experimental Station of Lithuanian University of Agriculture on a Calc(ar)i-Epihypogleyic Luvisol (LVg-p-w-cc). Phenological observations and assessment of productivity parameters were performed. All the investigated autumn-sown species, except for T. arvense, produced higher stems and surpassed spring-sown plants in productivity parameters. Meanwhile, for T. arvense the weather conditions had greater influence than sowing time. The most stable parameters for the study period were the amount of oil in seeds (V = 6.3–11.3) and the number of silicles per inflorescence (V = 20.7– 43.2). The most unstable parameters were the number of inflorescences (V = 30.93–94.4) and seed yield per plant (V = 16.5–135.0).
    [Show full text]
  • Germination of Erysimum Pieninicum and Erysimum Odoratum Seeds After Various Storage Conditions
    Tájökológiai Lapok 8 (3): 389–394. (2010) 389 GERMINATION OF ERYSIMUM PIENINICUM AND ERYSIMUM ODORATUM SEEDS AFTER VARIOUS STORAGE CONDITIONS Péter CSONTOS1, Anna RUCINSKA2, Jerzy T. PUCHALSKI2 1 Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Herman O. út 15, Budapest, H-1022, Hungary, e-mail: [email protected] 2 Botanical Garden, Center for Biological Diversity Conservation of the Polish Academy of Sciences, Prawdziwka 2, 02-973 Warszawa 76, Poland Keywords: cold treatment, germination, liquid nitrogen, seed storage, protected species, endemic species, wallflower. Abstract Erysimum pieninicum and E. odoratum have similar morphology and habitat preference, however biogeography of the two species is contrasting. E. pieninicum is a narrow endemic, expressing a very limited distribution in SE Poland, whereas E. odoratum is rather frequent in Hungary and the surrounding countries. The aim of this paper is to investigate the germination behaviour of the two species and to highlight if the differences in the germination of the two species could be related with their distribution patterns. Prior to germination tests, seeds of the two species were subjected to three different storage conditions: 1) room temperature (RT); 2) room temperature followed by 40 days at +4 °C before germination test (CT); 3) eight years storage in liquid nitrogen (LN) (for E. pieninicum only). After surface sterilisation of the seeds germination tests in Petri-dishes were initiated on 5th March 2009, and were terminated after 25 days. The studied Erysimum species germinated very fast showing a germination pattern of “Erysimum wittmannii type” sensu CZARNE C KA and Wł a d y k a (2007).
    [Show full text]
  • Annexed Table 1-2 And
    (Last updated: 9 March 2016) Proposed revision of List of the Plants Subject to Field Inspection in Exporting Countries (Annexed Table 1-2 of the Ordinance for Enforcement of the Plant Protection Act) Note: Underlined countries, plants, quarantine pests and requirements will be added. Strikethrough will be deleted. Common requirements The plants must be accompanied by a phytosanitary certificate or a certified copy of the phytosanitary certificate issued by the NPPO of an exporting country to certify that the plants have been inspected and are considered to be free from quarantine pests. Item Region/countries Plants Quarantine pests Requirements No 1 [Asia] India, Indonesia, Cambodia, Live plants and plants parts for planting Aleurocanthus woglumi The plants must fulfill the following specific requirement (i) and (ii) AND Singapore, Sri Lanka, Thailand, China of the following plants (excluding seeds, (citrus blackfly) the phytosanitary certificate or the certified copy of the phytosanitary (excluding Hong Kong), Nepal, fruits and underground part): certificate must include "the required additional declaration". Pakistan, Bangladesh, Philippines, avocado (Persea americana), cashew Bhutan, Viet Nam, Hong Kong, (Anacardium occidentale), African mahogany (i) The plants are grown at a place of production or a production site Malaysia, Myanmar, Maldives, Laos, (Khaya ivorensis), passion fruit (Passiflora edulis), (including a plant growth facility where the control against [Middle East] United Arab Emirates, bay laurel (Laurus nobilis), coconut (Cocos Aleurocanthus woglumi is carried out. Yemen, Iran, Oman, nucifera), carambola (Averrhoa carambola), AND [Africa] Uganda, Kenya, Zimbabwe, pomegranate (Punica granatum), (ii) The plants are found to be free from Aleurocanthus woglumi by Swaziland, Seychelles, Tanzania, sapodilla(Manilkara zapota (=Achras zapota)), inspection at the place of production or the production site at least South African Republic, ginger (Zingiber officinale), papaya (Carica monthly during the three months prior to export.
    [Show full text]