Non-Native Plant Surveys Along the Delta and Gulkana National Wild and Scenic Rivers

Total Page:16

File Type:pdf, Size:1020Kb

Non-Native Plant Surveys Along the Delta and Gulkana National Wild and Scenic Rivers NNoonn--nnaattiivvee ppllaanntt ssuurrvveeyyss \ aalloonngg tthhee DDeellttaa aanndd GGuullkkaannaa NNaattiioonnaall WWiilldd aanndd SScceenniicc RRiivveerrss Report prepared for: The Bureau of Land Management – Glennallen Field Office Helen Cortés-Burns, Lindsey Flagstad, Matthew Carlson, and Timm Nawrocki The Alaska Natural Heritage Program, University of Alaska Anchorage May 2010 Table of contents Table of contents .............................................................................................................................................................................................. I List of figures ................................................................................................................................................................................................... III List of tables ....................................................................................................................................................................................................... V Abstract ............................................................................................................................................................................................................. VI Acknowledgments ....................................................................................................................................................................................... VII Introduction ....................................................................................................................................................................................................... 1 Methods ............................................................................................................................................................................................................... 2 Non-native species recorded along the Gulkana ............................................................................................................................... 3 Overview ....................................................................................................................................................................................................... 3 Plot data ......................................................................................................................................................................................................... 5 Conclusions and management recommendations .................................................................................................................... 25 Problematic areas and infestations ........................................................................................................................................... 25 High priority sites and infestations ..................................................................................................................................... 26 Lower priority sites and infestations ................................................................................................................................. 26 Lowest priority infestations ................................................................................................................................................... 27 Factors associated with non-native plant invasion along the Gulkana River ......................................................... 31 Weed propagule source areas and routes of introduction ........................................................................................ 31 Site vulnerability .......................................................................................................................................................................... 34 Weed distribution patterns ........................................................................................................................................................... 36 Weed management recommendations .................................................................................................................................... 36 Non-native plants recorded along the Delta ..................................................................................................................................... 38 Overview ..................................................................................................................................................................................................... 38 Non-native plant populations recorded ........................................................................................................................................ 39 Conclusions and recommendations for the Delta NWSR....................................................................................................... 44 Problematic areas and infestations ........................................................................................................................................... 44 Weed management recommendations .................................................................................................................................... 46 Species factsheets.......................................................................................................................................................................................... 47 Species bios and control recommendations ................................................................................................................................ 47 Alopecurus pratensis (meadow foxtail, NR) ........................................................................................................................... 47 Brassica napus (rapeseed mustard or rutabaga, NR) ........................................................................................................ 48 Bromus inermis ssp. inermis (smooth brome, 62) ............................................................................................................... 48 Capsella bursa-pastoris (shepherd’s purse, 40) ................................................................................................................... 49 Cerastium fontanum (mouse-ear chickweed, 36)................................................................................................................ 50 Chenopodium album (lambsquarters, 37) .............................................................................................................................. 51 Crepis tectorum (narrowleaf hawksbeard, 54) ..................................................................................................................... 51 Melilotus alba (white sweetclover, 81) .................................................................................................................................... 53 Stellaria media (common chickweed, 42) .............................................................................................................................. 55 Trifolium hybridum (alsike clover, 57) ..................................................................................................................................... 55 Trifolium repens (white clover, 59) ........................................................................................................................................... 56 Tripleurospermum inodorum (scentless false mayweed, 48) ........................................................................................ 57 Low priority species ............................................................................................................................................................................... 58 Taraxacum officinale ssp. officinale (common dandelion, 58) ...................................................................................... 58 Poa annua (annual bluegrass, 46) .............................................................................................................................................. 58 Poa pratensis spp. pratensis (Kentucky bluegrass, 52) ..................................................................................................... 58 Poa pratensis ssp. irrigata (spreading bluegrass, 52) ....................................................................................................... 58 Species whose non-nativity is questionable: .............................................................................................................................. 59 Erysimum cheiranthoides (wormseed wallflower) ............................................................................................................. 59 Lepidium densiflorum (common pepperweed, 27) ............................................................................................................. 60 Hordeum jubatum (foxtail barley, 63) ...................................................................................................................................... 60 References ........................................................................................................................................................................................................ 62 I Appendix 1. Example field datasheet used for the 2008 Gulkana National Wild and Scenic River non-native plant survey ....................................................................................................................................................................................................
Recommended publications
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • (Cruciferae) – Mustard Family
    BRASSICACEAE (CRUCIFERAE) – MUSTARD FAMILY Plant: herbs mostly, annual to perennial, sometimes shrubs; sap sometimes peppery Stem: Root: Leaves: mostly simple but sometimes pinnately divided; alternate, rarely opposite or whorled; no stipules Flowers: mostly perfect, mostly regular (actinomorphic); 4 sepals, 4 petals often forming a cross; 6 stamens with usually 2 outer ones shorter than the inner 4; ovary superior, mostly 2 fused carpels, 1 to many ovules, 1 pistil Fruit: seed pods, often used in classification, many are slender and long (Silique), some broad (Silicle) – see morphology slide Other: a large family, many garden plants such as turnip, radish, and cabbage, also some spices; often termed the Cruciferae family; Dicotyledons Group Genera: 350+ genera; 40+ locally WARNING – family descriptions are only a layman’s guide and should not be used as definitive Flower Morphology in the Brassicaceae (Mustard Family) - flower with 4 sepals, 4 petals (often like a cross, sometimes split or lobed), commonly small, often white or yellow, distinctive fruiting structures often important for ID 2 types of fruiting pods: in addition, fruits may be circular, flattened or angled in cross-section Silicle - (usually <2.5x long as wide), 2-valved with septum (replum) Silique - (usually >2.5x long as wide), 2- valved with septum (replum) Flowers, Many Genera BRASSICACEAE (CRUCIFERAE) – MUSTARD FAMILY Sanddune [Western] Wallflower; Erysimum capitatum (Douglas ex Hook.) Greene var. capitatum Wormseed Wallflower [Mustard]; Erysimum cheiranthoides L. (Introduced) Spreading Wallflower [Treacle Mustard]; Erysimum repandum L. (Introduced) Dame’s Rocket [Dame’s Violet]; Hesperis matronalis L. (Introduced) Purple [Violet] Rocket; Iodanthus pinnatifidus (Michx.) Steud. Michaux's Gladecress; Leavenworthia uniflora (Michx.) Britton [Cow; Field] Cress [Peppergrass]; Lepidium campestre L.) Ait.
    [Show full text]
  • (Last Updated: 8 January 2021) List of the Plants Subject to Specific
    (Annex4) (Last updated: 8 January 2021) List of the plants subject to specific phytosanitary measures to be carried out in exporting countries (Annexed table 2-2 of the Ordinance for Enforcement of the Plant Protection Act) and the details of requirements for each of the quarantine pests: Note: Underlined regions/countries, plants, quarantine pests or requirements will be added. Strikethrough regions/countries or plants will be deleted. Common requirements The plants must be accompanied by a phytosanitary certificate or a certified copy of the phytosanitary certificate issued by the NPPO of an exporting country to certify that the plants have been inspected and are considered to be free from quarantine pests. Item Region/countries Plants Quarantine pests Requirements No 1 [Latin America] Argentina, Uruguay, Fresh fruits of the following plants: Anastrepha fraterculus The plants must fulfill either of the following specific requirement under Ecuador, El Salvador, Guyana, Pouteria obovata, abiu (Pouteria caimito), apricot (South American fruit fly) the supervision of the NPPO of the exporting country and found to be Guatemala, Costa Rica, Colombia, (Prunus armeniaca), yellow pitahaya free from Anastrepha fraterculus. Surinam, Trinidad and Tobago, (Hylocereus megalanthus (syn. Selenicereus The additional declaration and the details of treatment (e.g. registration Nicaragua, Panama, Paraguay, megalanthus)), common fig (Ficus carica), number of facility, date, temperature, time) are made on the Brazil, French Guiana, Venezuela, persimmon (Diospyros), Campomanesia phytosanitary certificate or the certified copy of the phytosanitary Belize, Peru, Bolivia, Honduras, xanthocarpa, kiwi fruit (Actinidia deliciosa, A. certificate based on the work plan. Mexico chinensis)), passion fruit (Passiflora edulis), Chrysophyllum gonocarpum, tamarillo The work plan which describes the following specific requirements (Cyphomandra betacea (syn.
    [Show full text]
  • Erysimum Bulgaricum (Brassicaceae), a Newly Distinguished Species for the Balkan Peninsula
    Ann. Naturhist. Mus. Wien 104 B 691 - 698 Wien, März 2003 Erysimum bulgaricum (Brassicaceae), a newly distinguished species for the Balkan Peninsula M. Ancev* & A. Polatschek** Abstract Erysimum bulgaricum proposed here as a species new to science is based on the combination Erysimum goniocaulon BOISS. var. bulgaricum VELEN. It is a diploid, biannual plant, whose area of distribution ranges from Thracia north-eastwards along the West Black Sea coast to North Dobroudza. Key words: Brassicaceae, Erysimum bulgaricum; new species, Flora of Balkan Peninsula. Introduction J. VELENOVSKY in his Flora Bulgarica, Supplementum I (1898) listed 5 species of the genus Erysimum. Among them was the Anatolian Erysimum goniocaulon BOISS. VELENOVSKY separated the Bulgarian specimens from the typical species by describing var. bulgaricum. It was only in the fourth edition of Flora of Bulgaria (Stojanov, Stefanov & Kitanov 1966) that Erysimum goniocaulon var. bulgaricum was dismissed in the synonymy of E. cuspidatum or misdetermined as E. crepidifolium. The recent critical taxonomic studies on Erysimum in the Bulgarian flora revealed that E. bulgaricum deserves species status. Material and Methods This study is based on herbarium material deposited in BP, BRNU, GJO, GOET, GZU, H, LE, LI, M, MHA, PR, PRC, SO, SOA, SOM, W and WU and authors' collections along the West Black Sea coast, in North-Eastern Bulgaria and the North Dobroudza plain. The chromosome number counted by both authors was studied on mitotic metaphase plates obtained from flower buds, collected in the field (see also ANCEV & POLATSCHEK, 1998). The karyologically studied populations are marked by an asterisk (*) in the list of examined specimens, vouchers have been deposited in SOM and W.
    [Show full text]
  • Landscape Dynamics Determine the Small-Scale Genetic Structure of An
    Journal of Coastal Research 28 4 780–786 West Palm Beach, Florida July 2012 Landscape Dynamics Determine the Small-Scale Genetic Structure of an Endangered Dune Slack Plant Species Dries Bonte{, Peter Breyne{, Rein Brys{{, Eduardo de la Pen˜a{, Bram D’hondt{, Ce´line Ghyselen{, Martijn L. Vandegehuchte{, and Maurice Hoffmann{{ www.cerf-jcr.org {Ghent University {Research Institute for Nature and Forest Department of Biology Department of Biodiversity and Natural Environment Terrestrial Ecology Unit Kliniekstraat 25 K.L. Ledeganckstraat 35 1070 Brussel, Belgium 9000 Ghent, Belgium [email protected] ABSTRACT Bonte, D.; Breyne, P.; Brys, R.; de la Pen˜ a, E.; D’hondt, B.; Ghyselen, C.; Vandegehuchte, M.L., and Hoffmann, M., 2012. Landscape dynamics determine the small-scale genetic structure of an endangered dune slack plant species. Journal of Coastal Research, 28(4), 780–786. West Palm Beach (Florida), ISSN 0749-0208. Understanding the processes that determine genetic variation within landscapes is a crucial factor for successful management of threatened plant species that are sensitive to both environmental and genetic bottlenecks. While current insights point to the importance of historical landscape processes for the genetic structure of populations at large spatial scales, their relevance at small spatial scales has been largely neglected. In this context, coastal dunes are a typical example of dynamic and geologically young landscapes in which current and historical sand drift may have strong impacts on the spatial dynamics of a large number of plant species. One of these is the endangered plant species Parnassia palustris, typically inhabiting dune slacks formed by recent sand displacements in parabolic dune landscapes.
    [Show full text]
  • Determination of Genetic Diversity of Some Species of Brassicaceae Using SDS-PAGE of Seed Protein and ISSR Markers
    20 Egypt. J. Bot., Vol. 55, No.2 pp. 307- 318 (2015) Determination of Genetic Diversity of Some Species of Brassicaceae Using SDS-PAGE of Seed Protein and ISSR Markers Nelly M. George Botany Department, Faculty of Science, Zagazig University, 44519 Egypt VALUATION of genetic diversity among 10 species of E Brassicaceae have been performed based on variations in seed protein electrophoretic patterns as revealed by SDS-PAGE and ISSR analyses, separately and in combination. The maximum genetic similarity was observed between Brassica nigra and B. rapa, while the lowest genetic similarity was observed between B. nigra and Sisymbrium irrio. Cluster analysis generated a dendrogram that separated the studied taxa in two main clusters; the five species of tribe Brassiceae were grouped close to each other in one cluster with Sisymbrium irrio. The remaining studied species; Capsella bursa- pastoris, Erysimum cheiranthoides, Mathiola longipetale and Thlaspi arvense, were grouped in a second cluster. Keywords: Brassicaceae, SDS-PAGE, ISSR, Genetic diversity. The Brassicaceae (Cruciferae or mustard family) includes several crop plants grown worldwide, some of which have been cultivated since prehistoric times. Various species are grown for oil, mustard condiment, fodder and forage for animals, or as vegetables (Crisp, 1976 and Simmonds, 1986). Several classification systems were proposed from the early 19th to the mid 20th century. According to these systems, the Brassicaceae divided into anywhere from 4 to 19 tribes and 20 to 30 sub-tribes (Schulz, 1936 and Janchen, 1942). Mark et al. (2006) suggested that Brassicaceae includes two important model systems; the first included the Arabidopsis thaliana (L.) Heynh.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Chamaemelum Nobile
    Chamaemelum nobile Status Disc florets UK Biodiversity Action Plan Priority species. IUCN threat category: Vulnerable (2005). Ray florets Taxonomy Magnoliopsida: Asteraceae Scientific name: Chamaemelum nobile (L.) All. Receptacle Common names: Chamomile, Camri. Chamaemelum nobile (Anthemis nobilis L.) is one of the superficially similar group of plants often referred to as Mayweeds. Mayweeds usually have leaves divided into narrow segments and daisy-like heads with yellow disc florets in the centres and white ray florets outside (Figure 1). Chamaemelum nobile itself is not a variable species in the wild, though some populations are distinctive (Kay & John 1994) and there are many cultivars (the Leaves aromatic, latter rarely escape or persist in the wild). Once finely divided, known, it is easily recognised, but the distinctive and hairy well-known aroma of crushed leaves is similar to some Anthemis species. No hybrids are known. Biology & Distribution Rooting Chamaemelum nobile is predominantly recorded at nodes in SW and SE England and SW Ireland, and is Figure 1. Chamaemelum nobile (from J. E. Smith & J. Sowerby rare or extinct in Wales and central England. It is (1852). English Botany. London). occasionally introduced elsewhere (Preston et al. 2002). It is characteristic of seasonally-inundated turf, heathland, grassland, sports fields and grassy sea Key characters Procumbent, hairy, perennial herb rooting at the cliffs, especially where grazing or mowing keeps the nodes and often forming patches. Pleasantly aromatic vegetation short and open (Winship 1994). when rubbed. Leaves finely divided. Flowering Identification & Field survey heads 18-25 mm across, solitary, on long stalks. Ray florets white, spreading (rarely absent), disc florets It is easiest to identify Chamaemelum from other yellow.
    [Show full text]
  • AUDLEY END Winter/Spring Planting
    AUDLEY END Winter/Spring planting Erysimum ‘Sugar Rush Purple’ Flowering throughout winter and into spring this cultivar has larger owers than standard wallowers in lavender purple and a sweet scent. Tulipa ‘Recreado’ A late spring dark purple owering tulip, it is one of the tallest cup- or goblet-shaped tulips. Myosotis sylvatica ‘Dwarf Indigo’ A small and compact forget-me-not with deep rich blue owers from early spring and forming a carpet under taller owering bulbs. Tulipa ‘Don Quichotte’ A stately triumph tulip with vibrant, cherry pink owers that appear in mid-spring. Primula ‘Showstopper Cream’ A polyanthus type primulas with lime cream owers with a yellow centre that rst appear in late winter atop bright green foliage. Tulipa ‘Angelique’ A soft pink, double, bowl-shaped tulip, reminiscent of peony owers, owering in late spring and is often one of the last tulips to ower. Narcissus ‘Avalanche’ A strongly scented daffodil with showy clusters of around 15 small owers with white petals and bowl-shaped yellow trumpets in mid spring. Primula ‘Crescendo Pink and Rose Shades’ A polyanthus with large owers in shades of rose-pink, with a conspicuous yellow eye owering from winter into spring. Tulipa ‘Merlot’ A deep crimson-carmine coloured cup-shaped tulip with pointed petals which owers from mid to late spring. Tulipa ‘White Triumphator’ A pure white tulip with petals that arch upwards giving the ower a uted shape, owering from mid to late spring. Erysimum ‘Sugar Rush Orange’ Flowering throughout winter and into spring this cultivar has yellow to burnt orange owers with a rich spicy scent.
    [Show full text]
  • Smooth Sailing Rethinking Succession Plantings and Plant Combinations for Smooth Transition from Spring Into Summer
    Feature Article Smooth Sailing Rethinking succession plantings and plant combinations for smooth transition from spring into summer. By Jonathan Wright ike many gardeners, I love the estimate the process of hardening-off. course of time in one’s garden lessons, Lact of gardening. It is very satisfying Another important rule is to ignore observations are made and lessons to plunge a trowel into freshly turned any preconceived notions as to what are learned. Through the passage of soil or take pair of sharp pruners to types of plants can or should be used seasons, one can become, dare I say, an unruly branch. I am sure that I am in combinations. I’ve become a big fan comfortable in one’s own garden. Last not the first gardener who has gotten of edibles, such as cool season vegeta- autumn, in a brilliant move to encour- antsy after a dreary winter and headed bles and culinary herbs. This group of age fresh ideas and new perspectives to the local garden center for a bit plants can take frost and, on occasion, in the garden and among staff, our of spring color in late March. Why I have had beds planted for opening director Bill Thomas moved the full- listen to weather forecasters or the day suddenly buried under 5" of snow time gardeners around, assigning new advice of other (perhaps more sane?) without showing any signs of damage garden areas. With this change, many gardeners. This is complete optimism when the snow melted away. of the horticulturists, including myself, and gardening encourages this sort of Until this past spring, I was re- are now tending new spaces.
    [Show full text]
  • Erysimum Cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores
    Journal of Chemical Ecology https://doi.org/10.1007/s10886-020-01225-y Less Is More: a Mutation in the Chemical Defense Pathway of Erysimum cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores Mahdieh Mirzaei1 & Tobias Züst2 & Gordon C. Younkin1 & Amy P. Hastings3 & Martin L. Alani1 & Anurag A. Agrawal3 & Georg Jander1 Received: 26 April 2020 /Revised: 6 October 2020 /Accepted: 9 October 2020 # Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract Erysimum cheiranthoides L (Brassicaceae; wormseed wallflower) accumulates not only glucosinolates, which are characteristic of the Brassicaceae, but also abundant and diverse cardenolides. These steroid toxins, primarily glycosylated forms of digitoxi- genin, cannogenol, and strophanthidin, inhibit the function of essential Na+/K+-ATPases in animal cells. We screened a popu- lation of 659 ethylmethanesulfonate-mutagenized E. cheiranthoides plants to identify isolates with altered cardenolide profiles. One mutant line exhibited 66% lower cardenolide content, resulting from greatly decreased cannogenol and strophanthidin glycosides, partially compensated for by increases in digitoxigenin glycosides. This phenotype was likely caused by a single- locus recessive mutation, as evidenced by a wildtype phenotype of F1 plants from a backcross, a 3:1 wildtype:mutant segregation in the F2 generation, and genetic mapping of the altered cardenolide phenotype to one position in the genome. The mutation created a more even cardenolide distribution, decreased the average cardenolide polarity, but did not impact most glucosinolates. Growth of generalist herbivores from two feeding guilds, Myzus persicae Sulzer (Hemiptera: Aphididae; green peach aphid) and Trichoplusia ni Hübner (Lepidoptera: Noctuidae; cabbage looper), was decreased on the mutant line compared to wildtype.
    [Show full text]
  • Host Range and Impact of Dichrorampha Aeratana, the First Potential Biological Control Agent for Leucanthemum Vulgare in North America and Australia
    insects Article Host Range and Impact of Dichrorampha aeratana, the First Potential Biological Control Agent for Leucanthemum vulgare in North America and Australia Sonja Stutz 1,* , Rosemarie De Clerck-Floate 2 , Hariet L. Hinz 1, Alec McClay 3 , Andrew J. McConnachie 4 and Urs Schaffner 1 1 CABI, Rue des Grillons 1, CH-2800 Delémont, Switzerland; [email protected] (H.L.H.); [email protected] (U.S.) 2 Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403—1 Ave. S., Lethbridge, AB T1J 4B1, Canada; rosemarie.declerck-fl[email protected] 3 12 Roseglen Private, Ottawa, ON K1H 1B6, Canada; [email protected] 4 Weed Research Unit, New South Wales Department of Primary Industries, Biosecurity and Food Safety, Orange, NSW 2800, Australia; [email protected] * Correspondence: [email protected] Simple Summary: Oxeye daisy, a Eurasian member of the daisy family, has become invasive in several parts of the world, including North America and Australia. We investigated whether a root-feeding moth found closely associated with oxeye daisy in Europe could be used as a biological control agent for the plant when weedy. We found that the moth could develop on 11 out of 74 plant species that we tested in laboratory conditions when it was given no choice of plants. When the Citation: Stutz, S.; De Clerck-Floate, moths were given a choice of food plants outdoors, we found its larvae only on the ornamentals R.; Hinz, H.L.; McClay, A.; Shasta daisy and creeping daisy. Larval feeding had no impact on the weight and number of flowers McConnachie, A.J.; Schaffner, U.
    [Show full text]