Annexed Table 1-2 And

Total Page:16

File Type:pdf, Size:1020Kb

Annexed Table 1-2 And (Last updated: 9 March 2016) Proposed revision of List of the Plants Subject to Field Inspection in Exporting Countries (Annexed Table 1-2 of the Ordinance for Enforcement of the Plant Protection Act) Note: Underlined countries, plants, quarantine pests and requirements will be added. Strikethrough will be deleted. Common requirements The plants must be accompanied by a phytosanitary certificate or a certified copy of the phytosanitary certificate issued by the NPPO of an exporting country to certify that the plants have been inspected and are considered to be free from quarantine pests. Item Region/countries Plants Quarantine pests Requirements No 1 [Asia] India, Indonesia, Cambodia, Live plants and plants parts for planting Aleurocanthus woglumi The plants must fulfill the following specific requirement (i) and (ii) AND Singapore, Sri Lanka, Thailand, China of the following plants (excluding seeds, (citrus blackfly) the phytosanitary certificate or the certified copy of the phytosanitary (excluding Hong Kong), Nepal, fruits and underground part): certificate must include "the required additional declaration". Pakistan, Bangladesh, Philippines, avocado (Persea americana), cashew Bhutan, Viet Nam, Hong Kong, (Anacardium occidentale), African mahogany (i) The plants are grown at a place of production or a production site Malaysia, Myanmar, Maldives, Laos, (Khaya ivorensis), passion fruit (Passiflora edulis), (including a plant growth facility where the control against [Middle East] United Arab Emirates, bay laurel (Laurus nobilis), coconut (Cocos Aleurocanthus woglumi is carried out. Yemen, Iran, Oman, nucifera), carambola (Averrhoa carambola), AND [Africa] Uganda, Kenya, Zimbabwe, pomegranate (Punica granatum), (ii) The plants are found to be free from Aleurocanthus woglumi by Swaziland, Seychelles, Tanzania, sapodilla(Manilkara zapota (=Achras zapota)), inspection at the place of production or the production site at least South African Republic, ginger (Zingiber officinale), papaya (Carica monthly during the three months prior to export. The inspection should [North America] United States of papaya), guava (Psidium guajava), common box be carried out to determine if eggs, larvae, pupae and adults are not America (excluding Hawaiian Islands), (Buxus sempervirens), quince (Cydonia oblonga), present on the underside of leaves, taking into account the [Latin America] Ecuador, El Salvador, mango (Mangifera indica), lichi (Litchi chinensis), characteristic of this pest, such as the batches of eggs in a spiral Guyana, Guatemala, Costa Rica, Morus, Cestrum, Murraya, Coffea, Pyrus, pattern on the undersides of leaves and the signs of black sooty mold Colombia, Surinam, Nicaragua, West Populus, Musa, Rosa, Annona, Vitis, Hibiscus, on leaves caused by this pest. Indies, Panama, Bermuda islands, Plumeria, Citrus, Eugenia Brazil, French Guiana, Venezuela, The required additional declaration: 1 Belize, Mexico, Fulfills item 1 of the Annexed Table 1-2 of the Ordinance for [Oceania] Christmas Island, Papua Enforcement of the Plant Protection Act (MAF Ordinance No73/1950) New Guinea, Hawaiian Islands 2 [Asia] India, Live plants and plant parts for planting Tuta absoluta The plants must fulfill the following specific requirement (i) and (ii) AND [Middle East] United Arab Emirates, (excluding seed and underground parts) the phytosanitary certificate or the certified copy of the phytosanitary Yemen, Israel, Iraq, Iran, Qatar, Saudi and cut flowers and cut branches for certificate must include "the required additional declaration". Arabia, Syria, Turkey, Jordan, consumption and ornament of the [Europe] Albania, Italy, United Kingdom following plants: (i) The plants are grown at a production site (including a plant growth (Great Britain and Northern Ireland), common bean (kidney bean) (Phaseolus facility such as greenhouses or screen houses) where Tuta absoluta British Channel Islands, Netherlands, vulgaris), tree tobacco (Nicotiana glauca), cape is monitored by traps and controlled for two months prior to harvesting. Cyprus, Greece, Croatia, Kosovo, gooseberry (Physalis peruviana), jimsonweed AND Switzerland, Spain, Slovenia, Serbia, (Datura stramonium), tobacco (Nicotiana (ii) The plants are regularly inspected at the production site during this Hungary, France, Bulgaria, Bosnia and tabacum), fierce thornapple (Datura ferox), sweet period and found to be free from Tuta absoluta Herzegovina, Portugal, Malta, pepper (chili peppers, Shishito pepper, bell Montenegro, Lithuania, Romania, pepper) (Capsicum annuum), tomato (including The required additional declaration: Russia, Lycopersicon esculentum (=Solanum Fulfills item 2 of the Annexed Table 1-2 of the Ordinance for [Africa] Algeria, Ethiopia, Canary lycopersicum), S. arcanum, S. cheesmaniae, S. Enforcement of the Plant Protection Act (MAF Ordinance Islands, Kenya, Sudan, Senegal, chilense, S. galapagense, S. peruvianum, S. No73/1950) Tunisia, Niger, South Sudan, Morocco, pimpinellifolium)), Lycium, Solanum Libya, [Latin America] Argentina, Uruguay, Fresh fruit of the following plants: Ecuador, Costa Rica, Colombia, Chile, tomato (including Lycopersicon esculentum Panama, Paraguay, Brazil, Venezuela, (=Solanum lycopersicum), S. arcanum, S. Peru, Bolivia cheesmaniae, S. chilense, S. galapagense, S. peruvianum, S. pimpinellifolium)) 3 [Middle East] Turkey, Underground parts of the live plant Meloidogyne chitwoodi The plants must fulfill the following specific requirement (i) and (ii) AND [Europe] Netherlands, Germany, being capable of planting for cultivation (Columbia root-knot the phytosanitary certificate or the certified copy of the phytosanitary France, Belgium, Portugal, of the following plants: nematode) certificate must include "the required additional declaration". 2 [Africa] South African Republic, bell heather (Erica cinerea), oyster plant (black [North America] United States of salsify) (Scorzonera hispanica), black cohosh (i) The plants are grown at a place of production or a production site America (excluding Hawaiian Islands), (Cimicifuga racemosa), beet (including garden (including a plant growth facility) where Meloidogyne chitwoodi has not [Latin America] Argentina, Mexico beet, red beet, sugar beet) (Beta vulgaris been known to occur or was known to occur previously but has been (including var. altissima, var. rapa, var. rubra)), flag eradicated. (Iris germanica), tomato (including Lycopersicon AND esculentum (=Solanum lycopersicum), S. (ii) The plants are inspected at the place of production or the arcanum, S. cheesmaniae, S. chilense, S. production site during the growing season, and the growing medium galapagense, S. peruvianum, S. pimpinellifolium)), and the underground parts of the plants are examined by an carrot (Daucus carota (including Daucus carota appropriate nematological test and found to be free from Meloidogyne var. sativa)), potato (Solanum tuberosum), chitwoodi. shrubby cinquefoil (Potentilla fruticosa (syn. Dasiphora fruticosa)), silver birch(Betula The required additional declaration: verrucosa (syn. Betula pendula)), fly honeysuckle Fulfills item 3 of the Annexed Table 1-2 of the Ordinance for (Lonicera xylosteum), Acer, Dicentra, Enforcement of the Plant Protection Act (MAF Ordinance No73/1950) 4 [Asia] Republic of Korea, Pakistan, Underground parts of the live plant being Heterodera schachtii The plants must fulfill the following specific requirement (i) and (ii) AND [Middle East] Israel, Iraq, Iran, Turkey, capable of planting for cultivation of the (beet cyst eelworm) the phytosanitary certificate or the certified copy of the phytosanitary Jordan, following plants: certificate must include "the required additional declaration". [Europe] Ireland, Azerbaijan, Albania, garden rhubarb (Rheum rhabarbarum), Brassica, Armenia, Italy, Ukraine, Uzbekistan, Beta (i) The plants are grown at a place of production or a production site United Kingdom (Great Britain and (including a plant growth facility) where Heterodera schachtii has not Northern Ireland), Estonia, Austria, been known to occur or was known to occur previously but has been Netherlands, Kazakhstan, Greece, eradicated. Kyrgyz Republic, Croatia, Kosovo, AND Georgia, Switzerland, Sweden, Spain, (ii) The plants are inspected at the place of production or the Slovakia, Slovenia, Serbia, Tajikistan, production site during the growing season, and the growing medium Czech, Denmark, Germany, and the underground parts of the plants are examined by an Turkmenistan, Hungary, Finland, appropriate nematological test and found to be free from Heterodera France, Bulgaria, Belarus, Belgium, schachtii. Poland, Bosnia and Herzegovina, 3 Former Yugoslav Republic of The required additional declaration: Macedonia, Moldova, Montenegro, Fulfills item 4 of the Annexed Table 1-2 of the Ordinance for Latvia, Lithuania, Romania, Russia, Enforcement of the Plant Protection Act (MAF Ordinance No73/1950) [Africa] Cape Verde, Canary Islands, Gambia, Senegal, South African Republic, Morocco, Libya, [North America] United States of America (excluding Hawaiian Islands), Canada, [Latin America] Chile, Peru, Mexico [Oceania] Australia, New Zealand, Hawaiian Islands 5 [Europe] Netherlands, Switzerland, Underground parts of the live plant being Meloidogyne fallax The plants must fulfill the following specific requirement (i) and (ii) AND France, Belgium, capable of planting for cultivation of the (false Columbia root- the phytosanitary certificate or the certified copy of the phytosanitary [Oceania] Australia, New Zealand following
Recommended publications
  • Review of the Potential for Biological Control of Wild Radish (Raphanus Raphanistrum) Based on Surveys in the Mediterranean Region
    Thirteenth Australian Weeds Conference Review of the potential for biological control of wild radish (Raphanus raphanistrum) based on surveys in the Mediterranean region John K. Scott1,2,3, Janine Vitou2 and Mireille Jourdan2 1 Cooperative Research Centre for Australian Weed Management 2 CSIRO European Laboratory, Campus International de Baillarguet, 34980 Montferrier sur Lez, France 3 Present Address: CSIRO Entomology, Private Bag 5, PO Wembley, Western Australia 6913, Australia Summary Wild radish (Raphanus raphanistrum) BIOLOGICAL CONTROL STRATEGY (Brassicaceae) is one of southern Australia’s worst Classical biological control of wild radish is a diffi cult weeds of cropping. The potential for biological objective. In the sections below are summarised the control of this weed in Australia is being investigated main issues, which are mainly to do with the safety of in the weed’s original distribution, southern Europe biological control because of the shared evolution be- and the circum-Mediterranean region. Surveys for tween wild radish and some important crop species. insects and pathogens have been made throughout the Mediterranean region, concentrating on southern Genetics and evolution of Raphanus Wild radish Portugal, northern Tunisia, the Mediterranean coast relatives in the family Brassicaceae comprises about of France, and southern Greece. While many of 13 tribes, 375 genera and 3200 species (Hewson the organisms found are specialists on the family 1982, Schulz 1936). The genus Raphanus is included Brassicaceae, most of these are not suffi ciently host in the tribe Brassiceae, which is regarded as a natural specifi c to exclude the risk to canola (Brassica napus), grouping. Within the Brassiceae, most phylogenetic the most important crop related to wild radish.
    [Show full text]
  • Pest Management of Small Grains—Weeds
    PUBLICATION 8172 SMALL GRAIN PRODUCTION MANUAL PART 9 Pest Management of Small Grains—Weeds MICK CANEVARI, University of California Cooperative Extension Farm Advisor, San Joaquin County; STEVE ORLOFF, University of California Cooperative Extension Farm Advisor, Siskiyou County; RoN VARGAS, University of California Cooperative Extension Farm Advisor, UNIVERSITY OF Madera County; STEVE WRIGHT, University of California Cooperative Extension Farm CALIFORNIA Advisor, Tulare County; RoB WILsoN, University of California Cooperative Extension Farm Division of Agriculture Advisor, Lassen County; DAVE CUDNEY, Extension Weed Scientist Emeritus, Botany and and Natural Resources Plant Sciences, University of California, Riverside; and LEE JACKsoN, Extension Specialist, http://anrcatalog.ucdavis.edu Small Grains, Department of Plant Sciences, University of California, Davis This publication, Pest Management of Small Grains—Weeds, is the ninth in a fourteen- part series of University of California Cooperative Extension online publications that comprise the Small Grain Production Manual. The other parts cover specific aspects of small grain production practices in California: • Part 1: Importance of Small Grain Crops in California Agriculture, Publication 8164 • Part 2: Growth and Development, Publication 8165 • Part 3: Seedbed Preparation, Sowing, and Residue Management, Publication 8166 • Part 4: Fertilization, Publication 8167 • Part 5: Irrigation and Water Relations, Publication 8168 • Part 6: Pest Management—Diseases, Publication 8169 • Part 7:
    [Show full text]
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • (RAPHANUS RAPHANISTRUM) Heather F. Sahli
    Genetics: Published Articles Ahead of Print, published on October 14, 2008 as 10.1534/genetics.107.085084 ADAPTIVE DIFFERENTIATION OF QUANTITATIVE TRAITS IN THE GLOBALLY DISTRIBUTED WEED, WILD RADISH (RAPHANUS RAPHANISTRUM) Heather F. Sahli1,3 Jeffrey K. Conner1, Frank H. Shaw2, Stephen Howe1, and Allison Lale1 1Kellogg Biological Station and Department of Plant Biology, Michigan State University 3700 East Gull Lake Drive, Hickory Corners, MI 49060 USA 2Department of Ecology, Evolution and Behavior , University of Minnesota St. Paul, Minnesota 55108 3 Present address: Department of Biology, University of Hawaii-Hilo, 200 W. Kawili St., Hilo, HI 96720 Sahli et al. p.2 Running Head: POPULATION DIFFERENTIATION IN WILD RADISH Key Words: FST, QST, colonization, natural selection, rapid weed evolution Corresponding Author: Heather Sahli University of Hawaii, 200 West Kawili Street, Hilo, HI 96720 Phone: 808-933-0320 Fax: 808-974-7693 email: [email protected] Sahli et al. p.3 Abstract Weedy species with wide geographical distributions may face strong selection to adapt to new environments, which can lead to adaptive genetic differentiation among populations. However, genetic drift, particularly due to founder effects, will also commonly result in differentiation in colonizing species. To test whether selection has contributed to trait divergence, we compared differentiation at eight microsatellite loci (measured as FST) to differentiation of quantitative floral and phenological traits (measured as QST) of wild radish (Raphanus raphanistrum) across populations from three continents. We sampled eight populations: seven naturalized populations and one from its native range. By comparing estimates of QST and FST, we found that petal size was the only floral trait that may have diverged more than expected due to drift alone, but inflorescence height, flowering time and rosette formation have greatly diverged between the native and non-native populations.
    [Show full text]
  • (Cruciferae) – Mustard Family
    BRASSICACEAE (CRUCIFERAE) – MUSTARD FAMILY Plant: herbs mostly, annual to perennial, sometimes shrubs; sap sometimes peppery Stem: Root: Leaves: mostly simple but sometimes pinnately divided; alternate, rarely opposite or whorled; no stipules Flowers: mostly perfect, mostly regular (actinomorphic); 4 sepals, 4 petals often forming a cross; 6 stamens with usually 2 outer ones shorter than the inner 4; ovary superior, mostly 2 fused carpels, 1 to many ovules, 1 pistil Fruit: seed pods, often used in classification, many are slender and long (Silique), some broad (Silicle) – see morphology slide Other: a large family, many garden plants such as turnip, radish, and cabbage, also some spices; often termed the Cruciferae family; Dicotyledons Group Genera: 350+ genera; 40+ locally WARNING – family descriptions are only a layman’s guide and should not be used as definitive Flower Morphology in the Brassicaceae (Mustard Family) - flower with 4 sepals, 4 petals (often like a cross, sometimes split or lobed), commonly small, often white or yellow, distinctive fruiting structures often important for ID 2 types of fruiting pods: in addition, fruits may be circular, flattened or angled in cross-section Silicle - (usually <2.5x long as wide), 2-valved with septum (replum) Silique - (usually >2.5x long as wide), 2- valved with septum (replum) Flowers, Many Genera BRASSICACEAE (CRUCIFERAE) – MUSTARD FAMILY Sanddune [Western] Wallflower; Erysimum capitatum (Douglas ex Hook.) Greene var. capitatum Wormseed Wallflower [Mustard]; Erysimum cheiranthoides L. (Introduced) Spreading Wallflower [Treacle Mustard]; Erysimum repandum L. (Introduced) Dame’s Rocket [Dame’s Violet]; Hesperis matronalis L. (Introduced) Purple [Violet] Rocket; Iodanthus pinnatifidus (Michx.) Steud. Michaux's Gladecress; Leavenworthia uniflora (Michx.) Britton [Cow; Field] Cress [Peppergrass]; Lepidium campestre L.) Ait.
    [Show full text]
  • (Last Updated: 8 January 2021) List of the Plants Subject to Specific
    (Annex4) (Last updated: 8 January 2021) List of the plants subject to specific phytosanitary measures to be carried out in exporting countries (Annexed table 2-2 of the Ordinance for Enforcement of the Plant Protection Act) and the details of requirements for each of the quarantine pests: Note: Underlined regions/countries, plants, quarantine pests or requirements will be added. Strikethrough regions/countries or plants will be deleted. Common requirements The plants must be accompanied by a phytosanitary certificate or a certified copy of the phytosanitary certificate issued by the NPPO of an exporting country to certify that the plants have been inspected and are considered to be free from quarantine pests. Item Region/countries Plants Quarantine pests Requirements No 1 [Latin America] Argentina, Uruguay, Fresh fruits of the following plants: Anastrepha fraterculus The plants must fulfill either of the following specific requirement under Ecuador, El Salvador, Guyana, Pouteria obovata, abiu (Pouteria caimito), apricot (South American fruit fly) the supervision of the NPPO of the exporting country and found to be Guatemala, Costa Rica, Colombia, (Prunus armeniaca), yellow pitahaya free from Anastrepha fraterculus. Surinam, Trinidad and Tobago, (Hylocereus megalanthus (syn. Selenicereus The additional declaration and the details of treatment (e.g. registration Nicaragua, Panama, Paraguay, megalanthus)), common fig (Ficus carica), number of facility, date, temperature, time) are made on the Brazil, French Guiana, Venezuela, persimmon (Diospyros), Campomanesia phytosanitary certificate or the certified copy of the phytosanitary Belize, Peru, Bolivia, Honduras, xanthocarpa, kiwi fruit (Actinidia deliciosa, A. certificate based on the work plan. Mexico chinensis)), passion fruit (Passiflora edulis), Chrysophyllum gonocarpum, tamarillo The work plan which describes the following specific requirements (Cyphomandra betacea (syn.
    [Show full text]
  • Landscape Dynamics Determine the Small-Scale Genetic Structure of An
    Journal of Coastal Research 28 4 780–786 West Palm Beach, Florida July 2012 Landscape Dynamics Determine the Small-Scale Genetic Structure of an Endangered Dune Slack Plant Species Dries Bonte{, Peter Breyne{, Rein Brys{{, Eduardo de la Pen˜a{, Bram D’hondt{, Ce´line Ghyselen{, Martijn L. Vandegehuchte{, and Maurice Hoffmann{{ www.cerf-jcr.org {Ghent University {Research Institute for Nature and Forest Department of Biology Department of Biodiversity and Natural Environment Terrestrial Ecology Unit Kliniekstraat 25 K.L. Ledeganckstraat 35 1070 Brussel, Belgium 9000 Ghent, Belgium [email protected] ABSTRACT Bonte, D.; Breyne, P.; Brys, R.; de la Pen˜ a, E.; D’hondt, B.; Ghyselen, C.; Vandegehuchte, M.L., and Hoffmann, M., 2012. Landscape dynamics determine the small-scale genetic structure of an endangered dune slack plant species. Journal of Coastal Research, 28(4), 780–786. West Palm Beach (Florida), ISSN 0749-0208. Understanding the processes that determine genetic variation within landscapes is a crucial factor for successful management of threatened plant species that are sensitive to both environmental and genetic bottlenecks. While current insights point to the importance of historical landscape processes for the genetic structure of populations at large spatial scales, their relevance at small spatial scales has been largely neglected. In this context, coastal dunes are a typical example of dynamic and geologically young landscapes in which current and historical sand drift may have strong impacts on the spatial dynamics of a large number of plant species. One of these is the endangered plant species Parnassia palustris, typically inhabiting dune slacks formed by recent sand displacements in parabolic dune landscapes.
    [Show full text]
  • Cocoa Beach Maritime Hammock Preserve Management Plan
    MANAGEMENT PLAN Cocoa Beach’s Maritime Hammock Preserve City of Cocoa Beach, Florida Florida Communities Trust Project No. 03 – 035 –FF3 Adopted March 18, 2004 TABLE OF CONTENTS SECTION PAGE I. Introduction ……………………………………………………………. 1 II. Purpose …………………………………………………………….……. 2 a. Future Uses ………….………………………………….…….…… 2 b. Management Objectives ………………………………………….... 2 c. Major Comprehensive Plan Directives ………………………..….... 2 III. Site Development and Improvement ………………………………… 3 a. Existing Physical Improvements ……….…………………………. 3 b. Proposed Physical Improvements…………………………………… 3 c. Wetland Buffer ………...………….………………………………… 4 d. Acknowledgment Sign …………………………………..………… 4 e. Parking ………………………….………………………………… 5 f. Stormwater Facilities …………….………………………………… 5 g. Hazard Mitigation ………………………………………………… 5 h. Permits ………………………….………………………………… 5 i. Easements, Concessions, and Leases …………………………..… 5 IV. Natural Resources ……………………………………………..……… 6 a. Natural Communities ………………………..……………………. 6 b. Listed Animal Species ………………………….…………….……. 7 c. Listed Plant Species …………………………..…………………... 8 d. Inventory of the Natural Communities ………………..………….... 10 e. Water Quality …………..………………………….…..…………... 10 f. Unique Geological Features ………………………………………. 10 g. Trail Network ………………………………….…..………..……... 10 h. Greenways ………………………………….…..……………..……. 11 i Adopted March 18, 2004 V. Resources Enhancement …………………………..…………………… 11 a. Upland Restoration ………………………..………………………. 11 b. Wetland Restoration ………………………….…………….………. 13 c. Invasive Exotic Plants …………………………..…………………... 13 d. Feral
    [Show full text]
  • A Case Study of the Endangered Carnaby's Cockatoo
    A peer-reviewed open-access journal Nature ConservationNature 9: 19–43 conservation (2014) on agricultural land: a case study of the endangered... 19 doi: 10.3897/natureconservation.9.8385 CONSERVATION IN PRACTICE http://natureconservation.pensoft.net Launched to accelerate biodiversity conservation Nature conservation on agricultural land: a case study of the endangered Carnaby’s Cockatoo Calyptorhynchus latirostris breeding at Koobabbie in the northern wheatbelt of Western Australia Denis A. Saunders1, Rick Dawson2, Alison Doley3, John Lauri4, Anna Le Souëf5, Peter R. Mawson6, Kristin Warren5, Nicole White7 1 CSIRO Land and Water, GPO Box 1700, Canberra ACT 2601, Australia 2 Department of Parks and Wildlife, Locked Bag 104, Bentley DC, WA 6983, Australia 3 Koobabbie, Coorow, WA 6515 4 BirdLife Australia, 48 Bournemouth Parade, Trigg WA 6029 5 College of Veterinary Medicine, Murdoch University, South Street, Murdoch, WA 6150 6 Perth Zoo, 20 Labouchere Road, South Perth, WA 6151, Australia 7 Trace and Environmental DNA laboratory, Curtin University, Kent Street, Bentley, WA 6102 Corresponding author: Denis A. Saunders ([email protected]) Academic editor: Klaus Henle | Received 5 August 2014 | Accepted 21 October 2014 | Published 8 December 2014 http://zoobank.org/660B3593-F8D6-4965-B518-63B2071B1111 Citation: Saunders DA, Dawson R, Doley A, Lauri J, Le Souëf A, Mawson PR, Warren K, White N (2014) Nature conservation on agricultural land: a case study of the endangered Carnaby’s Cockatoo Calyptorhynchus latirostris breeding at Koobabbie in the northern wheatbelt of Western Australia. Nature Conservation 9: 19–43. doi: 10.3897/ natureconservation.9.8385 This paper is dedicated to the late John Doley (1937–2007), whose wise counsel and hard work contributed greatly to the Carnaby’s Cockatoo conservation program on Koobabbie.
    [Show full text]
  • Determination of Genetic Diversity of Some Species of Brassicaceae Using SDS-PAGE of Seed Protein and ISSR Markers
    20 Egypt. J. Bot., Vol. 55, No.2 pp. 307- 318 (2015) Determination of Genetic Diversity of Some Species of Brassicaceae Using SDS-PAGE of Seed Protein and ISSR Markers Nelly M. George Botany Department, Faculty of Science, Zagazig University, 44519 Egypt VALUATION of genetic diversity among 10 species of E Brassicaceae have been performed based on variations in seed protein electrophoretic patterns as revealed by SDS-PAGE and ISSR analyses, separately and in combination. The maximum genetic similarity was observed between Brassica nigra and B. rapa, while the lowest genetic similarity was observed between B. nigra and Sisymbrium irrio. Cluster analysis generated a dendrogram that separated the studied taxa in two main clusters; the five species of tribe Brassiceae were grouped close to each other in one cluster with Sisymbrium irrio. The remaining studied species; Capsella bursa- pastoris, Erysimum cheiranthoides, Mathiola longipetale and Thlaspi arvense, were grouped in a second cluster. Keywords: Brassicaceae, SDS-PAGE, ISSR, Genetic diversity. The Brassicaceae (Cruciferae or mustard family) includes several crop plants grown worldwide, some of which have been cultivated since prehistoric times. Various species are grown for oil, mustard condiment, fodder and forage for animals, or as vegetables (Crisp, 1976 and Simmonds, 1986). Several classification systems were proposed from the early 19th to the mid 20th century. According to these systems, the Brassicaceae divided into anywhere from 4 to 19 tribes and 20 to 30 sub-tribes (Schulz, 1936 and Janchen, 1942). Mark et al. (2006) suggested that Brassicaceae includes two important model systems; the first included the Arabidopsis thaliana (L.) Heynh.
    [Show full text]
  • AMERICAN BEAUTYBERRY (Callicarpa Americana)
    ECOSYSTEM MANAGEMENT AND RESTORATION RESEARCH PROGRAM TECHNICAL REPORT EL-97-15 AMERICAN BEAUTYBERRY (Callicarpa americana) Section 7.5.8, U.S. ARMY CORPS OF ENGINEERS WILDLIFE RESOURCES MANAGEMENT MANUAL by Chester O. Martin DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199 and Sarah P. Mott Conservation Communications Vicksburg, Mississippi 39180 August 1997 Final Report Approved For Public Release; Distribution Is Unlimited EL-97-15 ^ 1997 Prepared for DEPARTMENT OF THE ARMY U.S. Army Corps of Engineers Washington, DC 20314-1000 Under EIRP Work Unit 32420 library OEC I 1 The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents. PRINTED ON RECYCLED PAPER ÍJ\ LIBRARY 92046874 "; ■ 11 -J - y] PREFACE This work was sponsored by the Headquarters, U.S. Army Corps of Engineers (HQUSACE), as part of the Ecosystem Management and Restoration Research Program (EMRRP), Work Unit 32420, entitled Development of U.S. Army Corps of Engineers Wildlife Resources Management Manual. Mr. Dave Mathis, CERD-C, was the EIRP Coordinator at the Directorate of Research and Development, HQUSACE. The Program Monitors for the study were Ms. Cheryl Smith, Mr. F. B. Juhle, and Mr. Forrester Einarsen, HQUSACE. The report serves as a section of the U.S. Army Corps of Engineers Wildlife Resources Management Manual.
    [Show full text]
  • Erysimum Cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores
    Journal of Chemical Ecology https://doi.org/10.1007/s10886-020-01225-y Less Is More: a Mutation in the Chemical Defense Pathway of Erysimum cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores Mahdieh Mirzaei1 & Tobias Züst2 & Gordon C. Younkin1 & Amy P. Hastings3 & Martin L. Alani1 & Anurag A. Agrawal3 & Georg Jander1 Received: 26 April 2020 /Revised: 6 October 2020 /Accepted: 9 October 2020 # Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract Erysimum cheiranthoides L (Brassicaceae; wormseed wallflower) accumulates not only glucosinolates, which are characteristic of the Brassicaceae, but also abundant and diverse cardenolides. These steroid toxins, primarily glycosylated forms of digitoxi- genin, cannogenol, and strophanthidin, inhibit the function of essential Na+/K+-ATPases in animal cells. We screened a popu- lation of 659 ethylmethanesulfonate-mutagenized E. cheiranthoides plants to identify isolates with altered cardenolide profiles. One mutant line exhibited 66% lower cardenolide content, resulting from greatly decreased cannogenol and strophanthidin glycosides, partially compensated for by increases in digitoxigenin glycosides. This phenotype was likely caused by a single- locus recessive mutation, as evidenced by a wildtype phenotype of F1 plants from a backcross, a 3:1 wildtype:mutant segregation in the F2 generation, and genetic mapping of the altered cardenolide phenotype to one position in the genome. The mutation created a more even cardenolide distribution, decreased the average cardenolide polarity, but did not impact most glucosinolates. Growth of generalist herbivores from two feeding guilds, Myzus persicae Sulzer (Hemiptera: Aphididae; green peach aphid) and Trichoplusia ni Hübner (Lepidoptera: Noctuidae; cabbage looper), was decreased on the mutant line compared to wildtype.
    [Show full text]