Mines Branch, Feb., 1950, Ottawa, Canada

Total Page:16

File Type:pdf, Size:1020Kb

Mines Branch, Feb., 1950, Ottawa, Canada *4 4V MM SCIENCE Li 3RpRY UMI. r " Y ! a .fie! :- . ' O.F l©plRrr o s . 1817 A R T E S SCIENT'i A V R I TAS TITANIUM A Suwiry of the Literature Presented as a Thesis in Economic Geology by Charles D. Campbell )*15 Qm---- i9 3 4- TABLE OF CONTENTS Introduction ... O.........................O.."....1. Purpose of the Paper Chemical Properties of Titanium Nine ral1ogy and Petrography ......... ............. 3. Origin O..........O..OS........ 5. ~........oo. 4. Distribution Domestic .................................. 5. Foreign NothAmerica ........... 0ee~.. .. 5..13 Central America *..."o."..."."""""""."14. South America ... "...000........""""... 15. Asia *..O..O.................:.......15. Af'rica .........................SSSO 17. Oceania """"""""""""".""""""S""""""..".S18. Europe """""..""".""."""19. mining and Concentration ".""""""""""""""."""""" .20. Uses of Titaniam S....................OOOO.....22. Bibliograpy.......SS@ ... ..................... 25. Introduction There has been, of late years, a growing demand for titanium in various forms for use in the paint industry, in metal making, in dyeing, pottery manufacture, and as an incandescent medium. For this reason, the problems of its occurrence in nature, its mining, and its preparation for use, have received some attention in the form of numerous articles and monographs. In this paper, I wish to give a summary of the more prominent of these writings, with spe- cial emphasis on the geologic phases of them. Titanium is generally classed with the rare elem- ents, although it is the ninth element in abundance on the lithosphere. In analyses of 800 igneous rocks, carried out in the laboratories of the United States Geological Survey, all but sixteen contained titanium. Because it was found in the dust of the Mt. Pelee explosion, it is assumed to be pre- sent at depth in the earth. From the soil, titanium makes its way into certain plants, and its traces are present in peat and some coals. The spectra of the sun and other stars show titanium lines. The chemical relations of titanium with other elem- ents of Group IV of the periodic table is shown below: Group IV. 0 12.000 Si. 28.06 Ti 48.1 Go 72.60 Sr 91. - Sn 118.70 178.6 Pb 207.20 Th 232.15 2 The pure element is difficult to make. It is iso- morphous in crystal form with silicon and zirconium, and is a brittle and very hard gray metal. If heated in air over 1200 0., titanium oombines with oxygen and nitrogen to form oxide and nitride. It burns in oxygen at 6100, and in nitrogen at 8000. In blast furnaoes, the troublesome red compound of uncertain composition, titanium oyanonitride, is formed by a reaction between Ti02 , carbon, and nitrogen. Titanium also burns in chlorine at 350°0., and with bromine and iodine at higher temperatures, forming halides of the TiXi type. Its silicide (TiSi) and boride (TiB) are nearly as hard as diamond. The reactions with acids are variable. Hot dilute hydrochloric or sulphuric acids yield hydrogen and trivalent salt, while titanic acid and metatitanic acid are the respective products of reaction with dilute and concentrated nitric acid. Titanium forms alloys with many metals, but the most valuale are with iron, copper, manganese, nickel, and cobalt. 3 Mineralogy and petrology. W. K. Thornton lists fifty titanium minerals and ten minerals which may contain titanium in varying amounts, but of these only rutile (Tio 2), ilmenite (FeTiO 3), and titaniferous iron ore are commercially important. In the case of titaniferous magnetite, microscopic examination may or may not show ilmenite intergrown with mag- netite. Where such intergrowth shows, the ilmenite lies along the directions of octahedral cleavage in the magnetite. Where such is not evident, Singewald says that the ilmenite is in solid homogeneous solution with the magnetite. However, F. F. Osborne takes exception to this view, and suggests that the intergrowth is too fine to be observed. According to him, the titaniferous magnetite of the Adirondacks and Canada was at high temperatures a homogeneous solution, but that falling of temperature caused a supersaturation of the ilmenite so that it separated out well above 5004 C. In localities where hematite is the iron oxide Inter- grown with ilmenite the former occurs as discs parallel to the basal parting of the ilmenite. The occurrence of hematite rather than magnetite is attributed to the exhaustion df FeO in forming ilmenite and the associated ortho--and metasilioates. The rarity of rutile (the pure titanium oxide) seems to show that here at least it has a strong affinity for ferrous oxide. Ilmenite is also found in pegmatites, evidently a late segregation mineral. In Virginia and Southern Norway, rutile and apatite, or ilmenite and apatite occur together in dikes cutting less basic igneous rock. Such ultrabasic dike rocks are called "nelsonites", from Nelson County, Virginia, where they occur. Ilmenite and rutile are found in contact and reg- gional metamorphic rocks. The ilmenite of the great Travancore beach sands in India is derived from gneisses. These minerals also occur as microscopic constituents in many igneous and meta- morphic rocks. Rutile needles occur in quartz and the rock- forming silicates. River or beach sands containing rutile, ilmenite, or titaniferous iron ore are worked in many places, notably on the India beach and on the northeast coast of Florida. For the properties of the various minerals mentioned, reference to any text on mineralogy can be made. Origin. Black beach sands,of course, owe their presence to the mechanical disintegration of titanium and magnetite-bearing rocks. A gravity sorting by rivers and waves results in concen- tration of ilmenite, etc., along with other heavy, minerals like garnet, zircon, monazite, and others. Sometimes cassiterite and gold are associated. The accepted theory of origin of concentrations of titanium ore in the usual igneous rocks has long been that such 5 deposits were early magmatic segregations. These segregations may either have remained in place or may have been re-fused and injected into the cooled residual rock. In the latter instance, the re-fused iron-titanium ore or rutile-apatite ore would be found as dikes cutting the parent rock, or as stratiform masses in a gneissoid igneous rock. Perhaps the re-fusion is due to a concentration of mineralizers in the mass of first-formed crystals after the rei-- idual magma has been drawn off. The attendant release of pres- sure would have the effect of keeping them solid, but the miner- alizers oppose this tendency to an unknown degree. At any rate, there is a possibility for this origin of the segregations. For the t itaniferous iron ores of New York, Quebec, and Ontario, Osborne has indicated a different origin, based on the following facts: 1. The contacts between ore and the surrounding anor- thosite are everywhere sharp. 2. Central segregations of ore do not exist. 3. There are no marginal segregations. 4. Anorthosite exhibits a reversal of crystallization order in all places, according to Vogt. Pyroxene is intersti- tial in previously-formed labradorite. Osborne claims that the ores were the last minerals to crystallize out, the order of crystallization being: plagio- clase, augite, ore. All gradations in the perfection of this separation have been observed. A pressing-out of the residual Fe-Ti rich liquid, was probably due to earth movements, as the anorthosite shows evidence of it. The temperature of the ore 6 formation was probably 8000 to 10000 d. The presence of concordant, or sill-like, bodies of ilmenite and olivine in gabbro is not definitely explained. The olivine may be a reaction product, but probably is a first- formed crystal product. The reversal of the order of crystallization in a mag- ma is not an unusual exception to Rosenbusch' law that the order is from basic to acid; i.e., iron ores first. Bowen, Teall, and Vogt, have observed it. Rogers and Tolman have concludedthat mineralizers are responsible, especially in the case of sulphides. In pegmatites, the presence of ilmenite shows conclusively that mineralizers were important. Distribution A. Domestic distribution: 1. Alabama. Rutile was reported in Chilton County by the state geological survey in 1874. It is associated with peg- matite dikes in a pre-Cambrian mica schist. 2. Arkansas. Rutile, octahedrite, and brookite (all forms of titanium dioxide) occur at Magnet Cove associated with nepheline syenite. 3. California. A black sand in Santa Cruz County, on the shore of Monterey Bay contains 16% of T10 2 as ilmenite, together with magnetite and martite. The richest deposits form irregular ores- cents 100 to 200 feet long and as much as 50 feet wide, ad may be 5 to 6 inches thick. These beds overlie one another, and are separated by beds of lean sand several feet thick. 7 Los Angeles County has two sources of titanium: in the San Gabriel Mts., south of Soledad Canyon, and along the Pacific beach from Redondo to Palos Verdes. At the former locality, magnetite and ilmenite form segregations in an anorthosite (pure labradorite). The beach sands at Clifton, south of Redondo, contain a lenticular black sand body which extends 24 miles, and varies from 14 inches to 9 feet thick, with an overburden of gray and white sand. The black sand contains zircon. This deposit is supposedly a delta formed by an old outlet of the Los Angeles River. Before closing down at the end of 1928, the Burdick Mineral Corporation concentrated this sand by wet tabling and dry magnetic separation into clean magnetite and ilmenite. Previous shipments of ilmenite averaged over 7,600 tone per year, with a TiO 2 content of from 15 to 52 percent. In San Bernardino County, an ore oarying about 35% rutile was reported, and could be concentrated to 90%. 4. Colorado. Three localities are known.
Recommended publications
  • Hawaiian Volcanoes US$1225
    The Geological Society of America’s Explore Hawaiian Volcanoes FIELD EXPERIENCE 27 July - 4 August 2014 Experience the wonders of active volcanism on the Earth’s most accessable and active volcano - Kilauea on the Big Island of Hawaii! This eight-day field trip on the Big Island of Hawaii will expand your knowl- edge in the field of plate tectonics, hot spot volcanism and the geologic features and hazards associated with living on an active volcano. We will discuss volcanic edifices, eruption styles, magma evolution and see various types of lava flows, lava lakes, tree molds and lava trees, fault scarps, rifts, craters and calderas. We will use our observations and new- found knowledge to discuss methods on how to effectively communicate geologic concepts. We will model inquiry in the field. US Prince does not include$1225 airfares to/from Hilo, HI. Trip ITINERARY* Sunday, July 27 - Participants arrive in Hilo, Hawaii for transfer via van to Kilauea Military Camp. No meals pro- vided. We will go to dinner as a group at Ken’s House of Pancakes (at your own expense) Monday, July 28 - Overview/logistics, Kilauea Visitor Center, Steaming Bluffs, Sulphur Banks, Kilauea Overlook, HVO, Jaggar Museum, SW Rift, Halema’uma’u Overlook (if open), Keanakako’I overlook, Devastation Trail, Pu’u Pua’i Overlook. ~ 4 miles of hiking on easy trails. BLD. Tuesday, July 29 - Chain of Craters Road including stops at Lua Manu Crater, Pauahi Crater and others, Mauna Ulu trail to Pu’u Huluhulu, Kealakomo Overlook, Alanui Kahiko, P’u Loa Petroglyphs, Holei Sea Arch, end of Chain of Craters Road.
    [Show full text]
  • The I\,Iagnetic Separation of Soi'ie Alluvial I,Iinerals in I'ialaya*
    THE AMERICAN MINERAI,OGIST, VOL. 41, JULY AUGUST, 1959 THE I\,IAGNETIC SEPARATION OF SOI'IE ALLUVIAL I,IINERALS IN I'IALAYA* B. H. FnNrant, Minerals Eramination Diaision, GeologicalSurttey D epartment, F'ederotion of M al,aya. Assrnlcr This paper presents the results of a seriesof magnetic separationswhich have been in- vestigated {or a number of minerals occurring in X{alayan alluvial concentrates.The pur- pose of the investigations was to establish,by the isolation of individual mineral species,a reproducible and reliable method for the identification and quantitative estimation of minerals in alluvial concentrates examined by the Geological Survey in Malaya In par- ticular was sought the isolation of columbite from ubiquitous ilmenite. All the separations were made on the small, highly sensitive Frantz Isodynamic Model L-1 laboratory separa- tor, The minerals which have been successfully separated include ailanite, anatase, andalu- site (and chiastolite), arsenopyrite, brookite, cassiterite,columbite, epidote, gahnite, garnet (pink), ilmenite, manganeseoxide (51.6/e Mn), monazite, pyrite, rutile, scheelite,siderite, staurolite, thorite, topaz, tourmaline, uranoan monazite, wolframite, xenotime, and zircon. PnocBpunp When using an inclined feed, the Frantz Isodynamic separator (see Figs. 1(A) & (B)) hasthree inherent variables. These are the field strengLh (current used),the sideslope, and the forward slope. 5;6s $lope wdrd 511)Pe (A) (B) Irc. 1. Diagrammatic representation of side slope and forward slope. The field strength is increasedby means of a rheostat which raises the current from zero in stagesof 0.05 amps. to 1.4 amps. Early in the investigationsit was decidedthat stepsof 0.1 amp. would be sufficiently gradual.
    [Show full text]
  • Compilation of Reported Sapphire Occurrences in Montana
    Report of Investigation 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg 2015 Cover photo by Richard Berg. Sapphires (very pale green and colorless) concentrated by panning. The small red grains are garnets, commonly found with sapphires in western Montana, and the black sand is mainly magnetite. Compilation of Reported Sapphire Occurrences, RI 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg Montana Bureau of Mines and Geology MBMG Report of Investigation 23 2015 i Compilation of Reported Sapphire Occurrences, RI 23 TABLE OF CONTENTS Introduction ............................................................................................................................1 Descriptions of Occurrences ..................................................................................................7 Selected Bibliography of Articles on Montana Sapphires ................................................... 75 General Montana ............................................................................................................75 Yogo ................................................................................................................................ 75 Southwestern Montana Alluvial Deposits........................................................................ 76 Specifi cally Rock Creek sapphire district ........................................................................ 76 Specifi cally Dry Cottonwood Creek deposit and the Butte area ....................................
    [Show full text]
  • The Efficient Improvement of Original Magnetite in Iron Ore Reduction
    minerals Article The Efficient Improvement of Original Magnetite in Iron Ore Reduction Reaction in Magnetization Roasting Process and Mechanism Analysis by In Situ and Continuous Image Capture Bing Zhao 1,2, Peng Gao 1,2,*, Zhidong Tang 1,2 and Wuzhi Zhang 1,2 1 School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; [email protected] (B.Z.); [email protected] (Z.T.); [email protected] (W.Z.) 2 National-Local Joint Engineering Research Center of High-Efficient Exploitation Technology for Refractory Iron Ore Resources, Shenyang 110819, China * Correspondence: [email protected]; Tel.: +86-024-8368-8920 Abstract: Magnetization roasting followed by magnetic separation is considered an effective method for recovering iron minerals. As hematite and magnetite are the main concomitant constituents in iron ores, the separation index after the magnetization roasting will be more optimized than with only hematite. In this research, the mechanism of the original magnetite improving iron ore reduction during the magnetization roasting process was explored using ore fines and lump ore samples. Under optimum roasting conditions, the iron grade increased from 62.17% to 65.22%, and iron recovery increased from 84.02% to 92.02% after separation, when Fe in the original magnetite content increased from 0.31% to 8.09%, although the Fe masses in each sample were equal. For lump ores with magnetite and hematite intergrowth, the method of in situ and continuous image capture Citation: Zhao, B.; Gao, P.; Tang, Z.; for microcrack generation and the evolution of the magnetization roasting process was innovatively Zhang, W.
    [Show full text]
  • Recovery of Magnetite-Hematite Concentrate from Iron Ore Tailings
    E3S Web of Conferences 247, 01042 (2021) https://doi.org/10.1051/e3sconf/202124701042 ICEPP-2021 Recovery of magnetite-hematite concentrate from iron ore tailings Mikhail Khokhulya1,*, Alexander Fomin1, and Svetlana Alekseeva1 1Mining Institute of Kola Science Center of Russian Academy of Sciences, Apatity, 184209, Russia Abstract. The research is aimed at study of the probable recovery of iron from the tailings of the Olcon mining company located in the north-western Arctic zone of Russia. Material composition of a sample from a tailings dump was analysed. The authors have developed a separation production technology to recover magnetite-hematite concentrate from the tailings. A processing flowsheet includes magnetic separation, milling and gravity concentration methods. The separation technology provides for production of iron ore concentrate with total iron content of 65.9% and recovers 91.0% of magnetite and 80.5% of hematite from the tailings containing 20.4% of total iron. The proposed technology will increase production of the concentrate at a dressing plant and reduce environmental impact. 1 Introduction The mineral processing plant of the Olcon JSC, located at the Murmansk region, produces magnetite- At present, there is an important problem worldwide in hematite concentrate. The processing technology the disposal of waste generated during the mineral includes several magnetic separation stages to produce production and processing. Tailings dumps occupy huge magnetite concentrate and two jigging stages to produce areas and pollute the environment. However, waste hematite concentrate from a non-magnetic fraction of material contains some valuable components that can be magnetic separation [13]. used in various industries. In the initial period of plant operation (since 1955) In Russia, mining-induced waste occupies more than iron ore tailings were stored in the Southern Bay of 300 thousand hectares of lands.
    [Show full text]
  • Banded Iron Formations
    Banded Iron Formations Cover Slide 1 What are Banded Iron Formations (BIFs)? • Large sedimentary structures Kalmina gorge banded iron (Gypsy Denise 2013, Creative Commons) BIFs were deposited in shallow marine troughs or basins. Deposits are tens of km long, several km wide and 150 – 600 m thick. Photo is of Kalmina gorge in the Pilbara (Karijini National Park, Hamersley Ranges) 2 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock Iron rich bands: hematite (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). Iron poor bands: chert (fine‐grained quartz) and low iron oxide levels Rock sample from a BIF (Woudloper 2009, Creative Commons 1.0) Iron rich bands are composed of hematitie (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). The iron poor bands contain chert (fine‐grained quartz) with lesser amounts of iron oxide. 3 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock • Archaean and Proterozoic in age BIF formation through time (KG Budge 2020, public domain) BIFs were deposited for 2 billion years during the Archaean and Proterozoic. There was another short time of deposition during a Snowball Earth event. 4 Why are BIFs important? • Iron ore exports are Australia’s top earner, worth $61 billion in 2017‐2018 • Iron ore comes from enriched BIF deposits Rio Tinto iron ore shiploader in the Pilbara (C Hargrave, CSIRO Science Image) Australia is consistently the leading iron ore exporter in the world. We have large deposits where the iron‐poor chert bands have been leached away, leaving 40%‐60% iron.
    [Show full text]
  • INCLUSIONS in AQUAMARINE from AMBATOFOTSIKELY, MADAGASCAR Fabrice Danet, Marie Schoor, Jean-Claude Boulliard, Daniel R
    NEW Danet G&G Fall 2012_Layout 1 9/27/12 11:31 AM Page 205 RAPID COMMUNICATIONS INCLUSIONS IN AQUAMARINE FROM AMBATOFOTSIKELY, MADAGASCAR Fabrice Danet, Marie Schoor, Jean-Claude Boulliard, Daniel R. Neuville, Olivier Beyssac, and Vincent Bourgoin grams of translucent to transparent beryl were pro- duced, as well as several tonnes of opaque material In January 2012, aquamarine crystals containing for industrial use. While only a very small percentage interesting inclusions were extracted from the Am- was suitable for faceting, several hundred aqua- batofotsikely area northwest of Antsirabe, Mada- marines in the 1–35 ct range have been cut. In April gascar. These specimens displayed various types 2012, one of the authors (FD) traveled to the locality of eye-visible and microscopic inclusions, and and obtained representative samples. some had an unusual form. Raman microspec- troscopy identified reddish brown plate lets as Location and Geologic Setting. The workings are lo- hematite, while ilmenite was found as black cated less than 1 km north of Ambatofotsikely (a village platelets, black needles, and distinctive dark gray now locally known as Ambatofotsy Carole), 22 km dendrites. Similar inclusions are known in beryl north-northwest of Ankazomiriotra, and 74 km north- from Brazil, India, Mozambique, and Sri Lanka. west of Antsirabe. The deposit is centered at coordinates 19°27.662¢S, 46°27.450¢E, at an elevation of 1,010 m. The site is accessed by a paved road (RN 34) from ining activity near the central Malagasy village Antsirabe to a point 16 km west of Ankazomiriotra. of Ambatofotsikely was first documented nearly From there, a trail extends 15 km to Ambatofotsikely.
    [Show full text]
  • Smelting Iron from Laterite: Technical Possibility Or Ethnographic Aberration?
    Smelting Iron from Laterite: Technical Possibility or Ethnographic Aberration? T. O. PRYCE AND S. NATAPINTU introduction Laterites deposits (orlateriticsoilsastheyarealsocalled)arefrequently reported in Southeast Asia, and are ethnographically attested to have been used for the smelting of iron in the region (Abendanon 1917 in Bronson 1992:73; Bronson and Charoenwongsa 1986), as well as in Africa (Gordon and Killick 1993; Miller and Van Der Merwe 1994). The present authors do not dispute this evidence; we merely wish to counsel cautioninitsextrapolation.Modifyingour understanding of a population’s potential to locally produce their own iron has immediate ramifications for how we reconstruct ancient metal distribution net- works, and the social exchanges that have facilitated them since iron’s generally agreed appearance in Southeast Asian archaeological contexts during the mid-first millennium b.c. (e.g., Bellwood 2007:268; Higham 1989:190). We present this paper as a wholly constructive critique of what appears to be a prevailingperspectiveonpre-modernSoutheastAsianironmetallurgy.Wehave tried to avoid technical language and jargon wherever possible, as our aim is to motivate scholars working within the regiontogivefurtherconsiderationtoiron as a metal, as a technology, and as a socially significant medium (e.g., Appadurai 1998; Binsbergen 2005; Gosden and Marshall 1999). When writing a critique it is of course necessary to cite researchers with whom one disagrees, and we have done this with full acknowledgment that in modern archaeology no one person can encompass the entire knowledge spectrum of the discipline.1 The archaeome- tallurgy of iron is probably on the periphery of most of our colleagues’ interests, but sometimes, within the technical, lies the pivotal, and in sharing some of our insights we hope to illuminate issues of benefit to all researchers in Metal Age Southeast Asia.
    [Show full text]
  • Mineralogy and Origin of the Titanium
    MINERALOGY AND ORIGIN OF THE TITANIUM DEPOSIT AT PLUMA HIDALGO, OAXACA, MEXICO by EDWIN G. PAULSON S. B., Massachusetts Institute of Technology (1961) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 18, 1962 Signature of At r . Depardnent of loggand Geophysics, May 18, 1962 Certified by Thesis Supervisor Ab Accepted by ...... Chairman, Departmental Committee on Graduate Students M Abstract Mineralogy and Origin of the Titanium Deposit at Pluma Hidalgo, Oaxaca, Mexico by Edwin G. Paulson "Submitted to the Department of Geology and Geophysics on May 18, 1962 in partial fulfillment of the requirements for the degree of Master of Science." The Pluma Hidalgo titanium deposits are located in the southern part of the State of Oaxaca, Mexico, in an area noted for its rugged terrain, dense vegetation and high rainfall. Little is known of the general and structural geology of the region. The country rocks in the area are a series of gneisses containing quartz, feldspar, and ferromagnesians as the dominant minerals. These gneisses bear some resemblance to granulites as described in the literature. Titanium minerals, ilmenite and rutile, occur as disseminated crystals in the country rock, which seems to grade into more massive and large replacement bodies, in places controlled by faulting and fracturing. Propylitization is the main type of alteration. The mineralogy of the area is considered in some detail. It is remarkably similar to that found at the Nelson County, Virginia, titanium deposits. The main minerals are oligoclase - andesine antiperthite, oligoclase- andesine, microcline, quartz, augite, amphibole, chlorite, sericite, clinozoi- site, ilmenite, rutile, and apatite.
    [Show full text]
  • Weathering of Ilmenite from Granite and Chlorite Schist in the Georgia Piedmont
    American Mineralogist, Volume 87, pages 1616–1625, 2002 Weathering of ilmenite from granite and chlorite schist in the Georgia Piedmont PAUL A. SCHROEDER,* JOHN J. LE GOLVAN, AND MICHAEL F. RODEN Department of Geology, University of Georgia, Athens, Georgia 30602-2501, U.S.A. ABSTRACT Ilmenite grains from weathering profiles developed on granite and ultramafic chlorite schist in the Georgia Piedmont were studied for evidence of morphological and chemical alteration. Ilmenite- rich concentrates from the fine sand (90–150 mm) component were studied to test the assumption that there is no difference between ilmenite in the parent rock and that in colluvium delivered to primary drainage systems. Ilmenite grains in the granite profile are rounded to subhedral, and commonly contain hematite exsolution blebs. Dissolution pits are observed along the boundaries of the exsolution blebs, with goethite occurring as an alteration product. Ilmenite grains in the schist profile occur as fractured anhedral grains with uncommon lamellae of rutile. Grain fractures are filled with goethite and he- matite, particularly in the B-horizon. Ilmenite from the granite profile is Mn rich (7–15 mol% MnTiO3), whereas ilmenite from the schist profile contains only 1–2 mol% MnTiO3 and up to 8 mol% MgTiO3. Two populations of grains develop in both profiles. Grains with abundant exsolution blebs and fractures alter through a proposed two-step reaction mechanism. It is proposed that il- menite first undergoes a solid-state transformation to pseudorutile via an anodic oxidation mecha- nism. Oxidized Fe and Mn diffuse from the structure and precipitate as goethite and MnO2. Pseudorutile is ephemeral and undergoes incongruent dissolution to form anatase, hematite, and goethite.
    [Show full text]
  • Formation of Chrysocolla and Secondary Copper Phosphates in the Highly Weathered Supergene Zones of Some Australian Deposits
    Records of the Australian Museum (2001) Vol. 53: 49–56. ISSN 0067-1975 Formation of Chrysocolla and Secondary Copper Phosphates in the Highly Weathered Supergene Zones of Some Australian Deposits MARTIN J. CRANE, JAMES L. SHARPE AND PETER A. WILLIAMS School of Science, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797, Australia [email protected] (corresponding author) ABSTRACT. Intense weathering of copper orebodies in New South Wales and Queensland, Australia has produced an unusual suite of secondary copper minerals comprising chrysocolla, azurite, malachite and the phosphates libethenite and pseudomalachite. The phosphates persist in outcrop and show a marked zoning with libethenite confined to near-surface areas. Abundant chrysocolla is also found in these environments, but never replaces the two secondary phosphates or azurite. This leads to unusual assemblages of secondary copper minerals, that can, however, be explained by equilibrium models. Data from the literature are used to develop a comprehensive geochemical model that describes for the first time the origin and geochemical setting of this style of economically important mineralization. CRANE, MARTIN J., JAMES L. SHARPE & PETER A. WILLIAMS, 2001. Formation of chrysocolla and secondary copper phosphates in the highly weathered supergene zones of some Australian deposits. Records of the Australian Museum 53(1): 49–56. Recent exploitation of oxide copper resources in Australia these deposits are characterized by an abundance of the has enabled us to examine supergene mineral distributions secondary copper phosphates libethenite and pseudo- in several orebodies that have been subjected to intense malachite associated with smaller amounts of cornetite and weathering.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 106, pages 1360–1364, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1, and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 11 new species, including 7 minerals of jahnsite group: jahnsite- (NaMnMg), jahnsite-(NaMnMn), jahnsite-(CaMnZn), jahnsite-(MnMnFe), jahnsite-(MnMnMg), jahnsite- (MnMnZn), and whiteite-(MnMnMg); lasnierite, manganflurlite (with a new data for flurlite), tewite, and wumuite. Lasnierite* the LA-ICP-MS analysis, but their concentrations were below detec- B. Rondeau, B. Devouard, D. Jacob, P. Roussel, N. Stephant, C. Boulet, tion limits. The empirical formula is (Ca0.59Sr0.37)Ʃ0.96(Mg1.42Fe0.54)Ʃ1.96 V. Mollé, M. Corre, E. Fritsch, C. Ferraris, and G.C. Parodi (2019) Al0.87(P2.99Si0.01)Ʃ3.00(O11.41F0.59)Ʃ12 based on 12 (O+F) pfu. The strongest lines of the calculated powder X-ray diffraction pattern are [dcalc Å (I%calc; Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompany- ing lazulite from Mt. Ibity, Madagascar: an example of structural hkl)]: 4.421 (83; 040), 3.802 (63, 131), 3.706 (100; 022), 3.305 (99; 141), characterization from dynamic refinement of precession electron 2.890 (90; 211), 2.781 (69; 221), 2.772 (67; 061), 2.601 (97; 023). It diffraction data on submicrometer sample. European Journal of was not possible to perform powder nor single-crystal X-ray diffraction Mineralogy, 31(2), 379–388.
    [Show full text]