Molecular Structure and Physiological Function of Chloride Channels

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Structure and Physiological Function of Chloride Channels Physiol Rev 82: 503–568, 2002; 10.1152/physrev.00029.2001. Molecular Structure and Physiological Function of Chloride Channels THOMAS J. JENTSCH, VALENTIN STEIN, FRANK WEINREICH, AND ANSELM A. ZDEBIK Zentrum fu¨r Molekulare Neurobiologie Hamburg, Universita¨t Hamburg, Hamburg, Germany I. Introduction 504 II. Cellular Functions of Chloride Channels 506 A. Plasma membrane channels 506 B. Channels of intracellular organelles 507 III. The CLC Chloride Channel Family 508 A. General features of CLC channels 510 B. ClC-0: the Torpedo electric organ ClϪ channel 516 C. ClC-1: a muscle-specific ClϪ channel that stabilizes the membrane voltage 517 D. ClC-2: a broadly expressed channel activated by hyperpolarization, cell swelling, and acidic pH 519 Ϫ E. ClC-K/barttin channels: Cl channels involved in transepithelial transport in the kidney and the Downloaded from inner ear 523 F. ClC-3: an intracellular ClϪ channel that is present in endosomes and synaptic vesicles 525 G. ClC-4: a poorly characterized vesicular channel 527 H. ClC-5: an endosomal channel involved in renal endocytosis 527 I. ClC-6: an intracellular channel of unknown function 531 J. ClC-7: a lysosomal ClϪ channel whose disruption leads to osteopetrosis in mice and humans 531 K. CLC proteins in model organisms 532 on October 3, 2014 IV. Cystic Fibrosis Transmembrane Conductance Regulator: a cAMP-Activated Chloride Channel 533 A. Structure and function of the CFTR ClϪ channel 533 B. Cellular regulation of CFTR activity 534 C. CFTR as a regulator of other ion channels 534 V. Swelling-Activated Chloride Channels 535 A. Biophysical characteristics of swelling-activated ClϪ currents 536 B. Regulation of ICl,swell 536 C. Several molecular candidates for ICl,swell have failed 537 VI. Calcium-Activated Chloride Channels 537 A. Native Ca2ϩ-activated ClϪ channels 537 B. The CLCA (CaCC) family of putative Ca2ϩ-activated ClϪ channels 538 VII. The p64 (CLIC) Gene Family of Putative Intracellular Chloride Channels 539 A. A family of p64-related (CLIC) proteins exists in mammals 540 B. Intracellular distribution and possible functions of CLIC proteins 540 VIII. ␥-Aminobutyric Acid and Glycine Receptors: Ligand-Gated Chloride Channels 541 A. Introduction 541 B. Glycine receptors 543 C. GABAA receptors 544 D. GABAC receptors 546 E. Proteins involved in synaptic localization of GABA and glycine receptors 546 IX. Channel Function in Transporters 547 A. Amino acid transporters 547 B. Phosphate transporters 547 X. Pharmacology of Chloride Channels 548 A. Why bother with pharmacology? 548 B. Mechanisms of ion channel block 548 C. Selective blockers are hard to find: comparison of ClϪ channel classes 549 XI. Outlook 551 Jentsch, Thomas J., Valentin Stein, Frank Weinreich, and Anselm A. Zdebik. Molecular Structure and Physiological Function of Chloride Channels. Physiol Rev 82: 503–568, 2002; 10.1152/physrev.00029.2001.—ClϪ channels reside both in the plasma membrane and in intracellular organelles. Their functions range from ion www.prv.org 0031-9333/02 $15.00 Copyright © 2002 the American Physiological Society 503 504 JENTSCH, STEIN, WEINREICH, AND ZDEBIK homeostasis to cell volume regulation, transepithelial transport, and regulation of electrical excitability. Their physiological roles are impressively illustrated by various inherited diseases and knock-out mouse models. Thus the loss of distinct ClϪ channels leads to an impairment of transepithelial transport in cystic fibrosis and Bartter’s syndrome, to increased muscle excitability in myotonia congenita, to reduced endosomal acidification and impaired endocytosis in Dent’s disease, and to impaired extracellular acidification by osteoclasts and osteopetrosis. The disruption of several ClϪ channels in mice results in blindness. Several classes of ClϪ channels have not yet been identified at the molecular level. Three molecularly distinct ClϪ channel families (CLC, CFTR, and ligand-gated GABA and glycine receptors) are well established. Mutagenesis and functional studies have yielded considerable insights into their structure and function. Recently, the detailed structure of bacterial CLC proteins was determined by X-ray analysis of three-dimensional crystals. Nonetheless, they are less well understood than cation channels and show remarkably different biophysical and structural properties. Other gene families (CLIC or CLCA) were also reported to encode ClϪ channels but are less well characterized. This review focuses on molecularly identified ClϪ channels and their physiological roles. I. INTRODUCTION make comparisons often difficult, this suggests a large molecular diversity of ClϪ channels. ClϪ channels may be Anion channels are proteinaceous pores in biological classified as to their localization (plasma membrane vs. membranes that allow the passive diffusion of negatively vesicular), single-channel conductance, or mechanism of charged ions along their electrochemical gradient. Al- regulation. However, such classification schemes are am- though these channels may conduct other anions (e.g., IϪ biguous. For instance, the same channel may reside in the Ϫ Ϫ Ϫ Downloaded from or NO3 ) better than Cl , they are often called Cl chan- plasma membrane and in intracellular organelles, or the nels because ClϪ is the most abundant anion in organisms mechanisms of activation may overlap. Furthermore, with and hence is the predominant permeating species under the exception of GABA and glycine receptors, such a most circumstances. ClϪ channel gating may depend on classification is unlikely to correlate with the underlying the transmembrane voltage (in voltage-gated channels), gene families. on cell swelling, on the binding of signaling molecules (as The most logical classification of ClϪ channels will in ligand-gated anion channels of postsynaptic mem- be based on their molecular structures. However, the on October 3, 2014 branes), on various ions [e.g., anions, Hϩ (pH), or Ca2ϩ], large variety of biophysically identified ClϪ channels is on the phosphorylation of intracellular residues by vari- not yet matched by a similar number of known ClϪ chan- ous protein kinases, or on the binding or hydrolysis nel genes, suggesting that entire gene families of anion of ATP. channels remain to be discovered. For instance, we prob- Like other ion channels, ClϪ channels may perform ably do not yet know the gene encoding the channel Ϫ their functions in the plasma membrane or in membranes mediating the swelling-activated Cl current (ICl,swell) of intracellular organelles. On the one hand, these func- (volume-sensitive organic anion channel, volume-regu- tions are related to the transport of charge, i.e., to the lated anion channel), and many investigators would agree electric current flowing through the channel, and on the that the genes encoding the archetypal Ca2ϩ-activated ClϪ other hand to the transport of matter. For instance, channels have not yet been identified. plasma membrane ClϪ currents are important for the The correlation of a cloned gene with an ion channel regulation of excitability in nerve and muscle. Currents function is often problematic due to the presence of en- flowing through intracellular ClϪ channels are thought to dogenous channels in the expression system. For in- ensure the overall electroneutral transport of the electro- stance, it now appears that neither mdr (652) nor pICln genic Hϩ-ATPase that acidifies several intracellular com- (469) represents the swelling-activated ClϪ channel (460, partments. On the other hand, bulk flow of chloride is 490). Furthermore, several reports on currents elicited by important for cell volume regulation, as well as for trans- CLC proteins (which form a well-established ClϪ channel epithelial transport. Unlike Ca2ϩ,ClϪ does not seem to family) have probably described currents that are endog- play a role as intracellular messenger. However, the reg- enous to the expression system (75, 127, 359, 366). ulation of ClϪ channel activity by anions (90, 495, 538) So far, we know three well-established gene families also implies that changes in intracellular ClϪ concentra- of ClϪ channels. In mammals, the CLC gene family of Ϫ tion ([Cl ]i) may have a regulatory role. A recent report chloride channels has nine members that may function in (114) additionally suggested that [ClϪ] may serve as an the plasma membrane or in intracellular compartments. allosteric effector in post-Golgi compartments. CLC proteins were thought to have probably 10 or 12 Patch-clamp studies have revealed a bewildering va- transmembrane domains (Fig. 1A, top). This model has riety of anion channels that differ in their single-channel now to be revised because Dutzler et al. (131a) recently conductance, anion selectivity, and mechanism of regula- reported the three-dimensional crystal structure of bacte- tion. Although differences in experimental conditions rial CLC proteins (Fig. 1A, bottom). As already indicated Physiol Rev • VOL 82 • APRIL 2002 • www.prv.org CHLORIDE CHANNELS 505 FIG. 1. Topology models for the es- tablished ClϪ channel families. A, top: CLC ClϪ channel model based on bio- chemical analysis (552). Conflicting re- sults exist in the D4/D5 region (156). The broad hydrophobic region between D9 and D12 was difficult to investigate ex- perimentally, but it was clear that it has an odd number of membrane crossings. The carboxy terminus of all eukaryotic CLC proteins has two CBS domains (30, 484) that have a so far unspecified role in protein-protein interaction. ClC-K pro- teins associate with the ␤-subunit bart- tin, which spans the membrane twice (147) (shown at right). A, bottom: model of CLC ClϪ channel derived from three- dimensional crystal structure of a bacte- Downloaded from rial CLC protein shows that the mem- brane-associated part of the protein is composed of 17 ␣-helices (helix A is not inserted into the membrane). Inspection of the crystal (131a) reveals that most of these helices are not perpendicular to the membrane, but severely tilted. Many of these helices do not span the width of on October 3, 2014 the bilayer. This even serves an impor- tant function, as ClϪ is coordinated in the pore by helices extending from either side of the membrane into the center plane.
Recommended publications
  • Aalseth Aaron Aarup Aasen Aasheim Abair Abanatha Abandschon Abarca Abarr Abate Abba Abbas Abbate Abbe Abbett Abbey Abbott Abbs
    BUSCAPRONTA www.buscapronta.com ARQUIVO 35 DE PESQUISAS GENEALÓGICAS 306 PÁGINAS – MÉDIA DE 98.500 SOBRENOMES/OCORRÊNCIA Para pesquisar, utilize a ferramenta EDITAR/LOCALIZAR do WORD. A cada vez que você clicar ENTER e aparecer o sobrenome pesquisado GRIFADO (FUNDO PRETO) corresponderá um endereço Internet correspondente que foi pesquisado por nossa equipe. Ao solicitar seus endereços de acesso Internet, informe o SOBRENOME PESQUISADO, o número do ARQUIVO BUSCAPRONTA DIV ou BUSCAPRONTA GEN correspondente e o número de vezes em que encontrou o SOBRENOME PESQUISADO. Número eventualmente existente à direita do sobrenome (e na mesma linha) indica número de pessoas com aquele sobrenome cujas informações genealógicas são apresentadas. O valor de cada endereço Internet solicitado está em nosso site www.buscapronta.com . Para dados especificamente de registros gerais pesquise nos arquivos BUSCAPRONTA DIV. ATENÇÃO: Quando pesquisar em nossos arquivos, ao digitar o sobrenome procurado, faça- o, sempre que julgar necessário, COM E SEM os acentos agudo, grave, circunflexo, crase, til e trema. Sobrenomes com (ç) cedilha, digite também somente com (c) ou com dois esses (ss). Sobrenomes com dois esses (ss), digite com somente um esse (s) e com (ç). (ZZ) digite, também (Z) e vice-versa. (LL) digite, também (L) e vice-versa. Van Wolfgang – pesquise Wolfgang (faça o mesmo com outros complementos: Van der, De la etc) Sobrenomes compostos ( Mendes Caldeira) pesquise separadamente: MENDES e depois CALDEIRA. Tendo dificuldade com caracter Ø HAMMERSHØY – pesquise HAMMERSH HØJBJERG – pesquise JBJERG BUSCAPRONTA não reproduz dados genealógicos das pessoas, sendo necessário acessar os documentos Internet correspondentes para obter tais dados e informações. DESEJAMOS PLENO SUCESSO EM SUA PESQUISA.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Soy Isoflavones: Database Development, Estrogenic Activity of Glycitein and Hypocholesterolemic Effect of Daidzein Tongtong Song Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1998 Soy isoflavones: database development, estrogenic activity of glycitein and hypocholesterolemic effect of daidzein Tongtong Song Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Food Science Commons, and the Human and Clinical Nutrition Commons Recommended Citation Song, Tongtong, "Soy isoflavones: database development, estrogenic activity of glycitein and hypocholesterolemic effect of daidzein " (1998). Retrospective Theses and Dissertations. 12528. https://lib.dr.iastate.edu/rtd/12528 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fi-om the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • Ophthalmic Phenotype of TCIRG1 Gene Mutations in Chinese Infantile Malignant Osteopetrosis
    BMJ Open Ophth: first published as 10.1136/bmjophth-2018-000180 on 17 November 2018. Downloaded from Original articles Ophthalmic phenotype of TCIRG1 gene mutations in Chinese infantile malignant osteopetrosis Wenhong Cao,1,2 Wenbin Wei,2 Qian Wu1 To cite: Cao W, Wei W, Wu Q. ABSTRACT Key messages Ophthalmic phenotype of Objective To evaluate the ophthalmic phenotypes TCIRG1 gene mutations associated with T-cell immune regulator 1 (TCIRG1) What is already known about this subject? in Chinese infantile mutations in Chinese patients with infantile malignant malignant osteopetrosis. T-cell immune regulator 1 (TCIRG1) is one of the osteopetrosis (IMO). ► BMJ Open Ophthalmology main genes that are responsible for the majority of Methods and analysis 27 Chinese TCIRG1-related 2018;3:e000180. doi:10.1136/ infantile malignant osteopetrosis (IMO) cases, which osteoporosis infants were enrolled using direct DNA bmjophth-2018-000180 are characterised by neonatal and infantile onset, a sequencing of PCR-amplified exons. 12 cases had systemic sclerosis of bones, vulnerability to fracture, frameshift mutation (the frameshift mutation group, group progressive anaemia, infection, hepatosplenomega- Received 30 May 2018 F), and 15 cases had point mutation (the point mutation ly and cranial nerve dysfunction, including poor gaze Revised 25 September 2018 group, group P). The clinical features of the two groups qualities, optic atrophy and optic canal stenosis. Accepted 26 September 2018 were compared, including age at onset, gaze qualities, To our knowledge, there is no study on the ophthal- optic atrophy, optic canal stenosis and waveforms of Flash ► mic phenotypes of TCIRG1 mutations in patients visual-evoked potential (FVEP).
    [Show full text]
  • Transcriptomic and Proteomic Profiling Provides Insight Into
    BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes.
    [Show full text]
  • Flavonoids and Isoflavonoids Biosynthesis in the Model
    plants Review Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration Margarita García-Calderón 1, Carmen M. Pérez-Delgado 1, Peter Palove-Balang 2, Marco Betti 1 and Antonio J. Márquez 1,* 1 Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; [email protected] (M.G.-C.); [email protected] (C.M.P.-D.); [email protected] (M.B.) 2 Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Mánesova 23, SK-04001 Košice, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +34-954557145 Received: 28 April 2020; Accepted: 18 June 2020; Published: 20 June 2020 Abstract: Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase.
    [Show full text]
  • Diet, Autophagy, and Cancer: a Review
    1596 Review Diet, Autophagy, and Cancer: A Review Keith Singletary1 and John Milner2 1Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois and 2Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland Abstract A host of dietary factors can influence various cellular standing of the interactions among bioactive food processes and thereby potentially influence overall constituents, autophagy, and cancer. Whereas a variety cancer risk and tumor behavior. In many cases, these of food components including vitamin D, selenium, factors suppress cancer by stimulating programmed curcumin, resveratrol, and genistein have been shown to cell death. However, death not only can follow the stimulate autophagy vacuolization, it is often difficult to well-characterized type I apoptotic pathway but also can determine if this is a protumorigenic or antitumorigenic proceed by nonapoptotic modes such as type II (macro- response. Additional studies are needed to examine autophagy-related) and type III (necrosis) or combina- dose and duration of exposures and tissue specificity tions thereof. In contrast to apoptosis, the induction of in response to bioactive food components in transgenic macroautophagy may contribute to either the survival or and knockout models to resolve the physiologic impli- death of cells in response to a stressor. This review cations of early changes in the autophagy process. highlights current knowledge and gaps in our under- (Cancer Epidemiol Biomarkers Prev 2008;17(7):1596–610) Introduction A wealth of evidence links diet habits and the accompa- degradation. Paradoxically, depending on the circum- nying nutritional status with cancer risk and tumor stances, this process of ‘‘self-consumption’’ may be behavior (1-3).
    [Show full text]
  • 2018 SLU Mcnair Research Journal
    THE SLU MCNAIR RESEARCH JOURNAL Summer 2018, Vol 1 Saint Louis University 1 THE SLU MCNAIR RESEARCH JOURNAL Summer 2018, Vol. 1 Published by the Ronald E. McNair Post-Baccalaureate Achievement Program St. Louis University Center for Global Citizenship, Suite 130 3672 West Pine Mall St. Louis, MO 63108 Made possible through a grant from the U.S. Department of Education to Saint Louis University, the Ronald E. McNair Post-Baccalaureate Achievement Program (McNair Scholars Program) is a TRIO program that prepares eligible high- achieving undergraduate students for the rigor of doctoral studies. These services are also extended to undergraduates from Harris-Stowe State University, Washington University in St. Louis, Webster University, University of Missouri St. Louis and Fontbonne University. The SLU McNair Research Journal is published annually and is the official publication of the Ronald E. McNair Post- Baccalaureate Achievement Program (McNair Scholars Program) at Saint Louis University. Neither the McNair Scholars Program nor the editors of this journal assume responsibility for the vieWs expressed by the authors featured in this publication. © 2018 Ronald E. McNair Post-Baccalaureate Achievement Program, Saint Louis University 2 Table of Contents MESSAGE FROM THE DIRECTOR ...................................................................................... 4 MCNAIR PROGRAM ADVISORY BOARD MEMBERS 2018 ............................................ 5 LIST OF 2018 MCNAIR SCHOLARS ....................................................................................
    [Show full text]
  • The Vacuolar H Atpase Α3 Subunit Negatively Regulates Migration And
    cells Article The Vacuolar H+ ATPase α3 Subunit Negatively Regulates Migration and Invasion of Human Pancreatic Ductal Adenocarcinoma Cells Mette Flinck 1, Sofie Hagelund 1, Andrej Gorbatenko 2, Marc Severin 1, Elena Pedraz-Cuesta 1, Ivana Novak 1, Christian Stock 3 and Stine Falsig Pedersen 1,* 1 Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; mette.fl[email protected] (M.F.); [email protected] (S.H.); [email protected] (M.S.); [email protected] (E.P.-C.); [email protected] (I.N.) 2 Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; [email protected] 3 Department of Gastroentero-, Hepato- and Endocrinology, Hannover Medical School, D-30625 Hannover, Germany; [email protected] * Correspondence: [email protected] Received: 12 December 2019; Accepted: 13 February 2020; Published: 18 February 2020 Abstract: Increased metabolic acid production and upregulation of net acid extrusion render pH homeostasis profoundly dysregulated in many cancers. Plasma membrane activity of vacuolar H+ ATPases (V-ATPases) has been implicated in acid extrusion and invasiveness of some cancers, yet often on the basis of unspecific inhibitors. Serving as a membrane anchor directing V-ATPase localization, the a subunit of the V0 domain of the V-ATPase (ATP6V0a1-4) is particularly interesting in this regard. Here, we map the regulation and roles of ATP6V0a3 in migration, invasion, and growth in pancreatic ductal adenocarcinoma (PDAC) cells. a3 mRNA and protein levels were upregulated in PDAC cell lines compared to non-cancer pancreatic epithelial cells.
    [Show full text]
  • Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery
    fphar-07-00121 May 7, 2016 Time: 11:45 # 1 REVIEW published: 10 May 2016 doi: 10.3389/fphar.2016.00121 Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery Paola Imbrici1*, Antonella Liantonio1, Giulia M. Camerino1, Michela De Bellis1, Claudia Camerino2, Antonietta Mele1, Arcangela Giustino3, Sabata Pierno1, Annamaria De Luca1, Domenico Tricarico1, Jean-Francois Desaphy3 and Diana Conte1 1 Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy, 2 Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy, 3 Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Bari, Italy In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, Edited by: disabling, or life-threatening. In spite of this, ion channels are the primary target of only Maria Cristina D’Adamo, University of Perugia, Italy about 5% of the marketed drugs suggesting their potential in drug discovery. The current Reviewed by: review summarizes the therapeutic management of the principal ion channelopathies Mirko Baruscotti, of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and University of Milano, Italy Adrien Moreau, pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion Institut Neuromyogene – École channels.
    [Show full text]