Diet, Autophagy, and Cancer: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ATG5 Mediates a Positive Feedback Loop Between Wnt Signaling and Autophagy In
Author Manuscript Published OnlineFirst on September 8, 2017; DOI: 10.1158/0008-5472.CAN-17-0907 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ATG5 mediates a positive feedback loop between Wnt signaling and autophagy in melanoma Abibatou Ndoye1,2, Anna Budina-Kolomets1,3, Curtis H. Kugel III1, Marie Webster1, Amanpreet Kaur1,2, Reeti Behera1, Vito Rebecca3, Ling Li1, Patricia Brafford1, Qin Liu1, Y.N. Vashisht Gopal4, Michael A. Davies4, Gordon B. Mills4, Xiaowei Xu3, Hong Wu5, Meenhard Herlyn1, Michael Nicastri3, Jeffrey Winkler3, Maria S. Soengas6, Ravi Amaravadi3, Maureen Murphy1, and Ashani T. Weeraratna1* 1The Wistar Institute Melanoma Research Center, Philadelphia, PA, 19104, 2The University of the Sciences, Philadelphia, PA, 19104, 3The University of Pennsylvania, Philadelphia PA, 19104, 4The University of Texas MD Anderson Cancer Center, Houston, TX, 77050, and 5Melanoma Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain *To Whom Correspondence Should Be Addressed: Ashani T. Weeraratna, Ph.D. The Wistar Institute 3601 Spruce Street Philadelphia, PA 19104 Office: 215 495-6937 Email: [email protected] KEYWORDS: Wnt5A, autophagy, melanoma, lysosome, cellular homeostasis FINANCIAL SUPPORT: A.T. Weeraratna, A. Kaur, and R. Behera are supported by R01CA174746. A. Ndoye, A. Budina-Kolomets, V.W. Rebecca, M. Murphy, R. Amaravadi and A.T. Weeraratna. are supported by P01 CA114046 and A Ndoye, A.T. Weeraratna and R Amaravadi are also supported by P50CA174523. CH Kugel III is supported by T32CA009171. M.R. Webster is supported by K99 CA208012-01. R. Amaravadi is supported by R01CA169134M. Soengas and AT Weeraratna are also supported by a Melanoma Research Alliance/ L’Oréal Paris-USA Women in Science Team Science Award. -
The Role of the Ubiquitin Ligase Nedd4-1 in Skeletal Muscle Atrophy
The Role of the Ubiquitin Ligase Nedd4-1 in Skeletal Muscle Atrophy by Preena Nagpal A thesis submitted in conformity with the requirements for the degree of Masters in Medical Science Institute of Medical Science University of Toronto © Copyright by Preena Nagpal 2012 The Role of the Ubiquitin Ligase Nedd4-1 in Skeletal Muscle Atrophy Preena Nagpal Masters in Medical Science Institute of Medical Science University of Toronto 2012 Abstract Skeletal muscle (SM) atrophy complicates many illnesses, diminishing quality of life and increasing disease morbidity, health resource utilization and health care costs. In animal models of muscle atrophy, loss of SM mass results predominantly from ubiquitin-mediated proteolysis and ubiquitin ligases are the key enzymes that catalyze protein ubiquitination. We have previously shown that ubiquitin ligase Nedd4-1 is up-regulated in a rodent model of denervation- induced SM atrophy and the constitutive expression of Nedd4-1 is sufficient to induce myotube atrophy in vitro, suggesting an important role for Nedd4-1 in the regulation of muscle mass. In this study we generate a Nedd4-1 SM specific-knockout mouse and demonstrate that the loss of Nedd4-1 partially protects SM from denervation-induced atrophy confirming a regulatory role for Nedd4-1 in the maintenance of muscle mass in vivo. Nedd4-1 did not signal downstream through its known substrates Notch-1, MTMR4 or FGFR1, suggesting a novel substrate mediates Nedd4-1’s induction of SM atrophy. ii Acknowledgments and Contributions I would like to thank my supervisor, Dr. Jane Batt, for her undying support throughout my time in the laboratory. -
Autophagy Promotes Hepatic Differentiation of Hepatic Progenitor Cells by Regulating the Wnt/Β-Catenin Signaling Pathway
Journal of Molecular Histology (2019) 50:75–90 https://doi.org/10.1007/s10735-018-9808-x ORIGINAL PAPER Autophagy promotes hepatic differentiation of hepatic progenitor cells by regulating the Wnt/β-catenin signaling pathway Zhenzeng Ma1 · Fei Li1 · Liuying Chen1 · Tianyi Gu1 · Qidi Zhang1 · Ying Qu1 · Mingyi Xu1 · Xiaobo Cai1 · Lungen Lu1 Received: 25 September 2018 / Accepted: 7 December 2018 / Published online: 2 January 2019 © The Author(s) 2019 Abstract Hepatic progenitor cells (HPCs) can be activated when the liver suffers persistent and severe damage and can differenti- ate into hepatocytes to maintain liver regeneration and homeostasis. However, the molecular mechanism underlying the hepatic differentiation of HPCs is unclear. Therefore, in this study, we aimed to investigate the roles of autophagy and the Wnt/β-catenin signaling pathway during hepatic differentiation of HPCs in vivo and in vitro. First, immunohistochemistry, immunofluorescence and electron microscopy showed that Atg5 and β-catenin were highly expressed in human fibrotic liver and mouse liver injury induced by feeding a 50% choline-deficient diet plus 0.15% ethionine solution in drinking water (CDE diet) for 21 days; in addition, these factors were expressed in CK19-positive HPCs. Second, Western blotting and immunofluorescence confirmed that CK19-positive HPCs incubated in differentiation medium for 7 days can differentiate into hepatocytes and that differentiated HPCs were able to take up ICG and secrete albumin and urea. Further investigation via Western blotting, immunofluorescence and electron microscopy revealed autophagy and the Wnt/β-catenin pathway to be activated during hepatic differentiation of HPCs. Next, we found that inhibiting autophagy by downregulating Atg5 gene expression impaired hepatic differentiation of HPCs and inhibited activation of the Wnt/β-catenin pathway, which was rescued by overexpression of the β-catenin gene. -
Atg4b Antibody A
Revision 1 C 0 2 - t Atg4B Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 9 9 Web: [email protected] 2 www.cellsignal.com 5 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB H M R Endogenous 48 Rabbit Q9Y4P1 23192 Product Usage Information 2. Ohsumi, Y. (2001) Nat Rev Mol Cell Biol 2, 211-6. 3. Kabeya, Y. et al. (2000) EMBO J 19, 5720-8. Application Dilution 4. Kabeya, Y. et al. (2004) J Cell Sci 117, 2805-12. 5. Mariño, G. et al. (2003) J Biol Chem 278, 3671-8. Western Blotting 1:1000 6. Sou, Y.S. et al. (2008) Mol Biol Cell 19, 4762-75. 7. Hemelaar, J. et al. (2003) J Biol Chem 278, 51841-50. Storage 8. Kabeya, Y. et al. (2004) J Cell Sci 117, 2805-12. 9. Tanida, I. et al. (2004) J Biol Chem 279, 36268-76. Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% 10. Fujita, N. et al. (2008) Mol Biol Cell 19, 4651-9. glycerol. Store at –20°C. Do not aliquot the antibody. 11. Fujita, N. et al. (2009) Autophagy 5, 88-9. Specificity / Sensitivity Atg4B Antibody detects endogenous levels of total Atg4B protein. This antibody detects a band at ~27 kDa of unknown origin. Species Reactivity: Human, Mouse, Rat Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Ser372 of human Atg4B protein. -
Phosphatidylethanolamine Positively Regulates Autophagy and Longevity
Cell Death and Differentiation (2015) 22, 499–508 OPEN & 2015 Macmillan Publishers Limited All rights reserved 1350-9047/15 www.nature.com/cdd Phosphatidylethanolamine positively regulates autophagy and longevity P Rockenfeller1, M Koska1, F Pietrocola2, N Minois3, O Knittelfelder1, V Sica2, J Franz1, D Carmona-Gutierrez1, G Kroemer*,2,4,5,6,7 and F Madeo*,1,8 Autophagy is a cellular recycling program that retards ageing by efficiently eliminating damaged and potentially harmful organelles and intracellular protein aggregates. Here, we show that the abundance of phosphatidylethanolamine (PE) positively regulates autophagy. Reduction of intracellular PE levels by knocking out either of the two yeast phosphatidylserine decarboxylases (PSD) accelerated chronological ageing-associated production of reactive oxygen species and death. Conversely, the artificial increase of intracellular PE levels, by provision of its precursor ethanolamine or by overexpression of the PE-generating enzyme Psd1, significantly increased autophagic flux, both in yeast and in mammalian cell culture. Importantly administration of ethanolamine was sufficient to extend the lifespan of yeast (Saccharomyces cerevisiae), mammalian cells (U2OS, H4) and flies (Drosophila melanogaster). We thus postulate that the availability of PE may constitute a bottleneck for functional autophagy and that organismal life or healthspan could be positively influenced by the consumption of ethanolamine-rich food. Cell Death and Differentiation (2015) 22, 499–508; doi:10.1038/cdd.2014.219; published online 9 January 2015 Phosphatidylethanolamine (PE) is a phospholipid found in all linked to ageing. Autophagy mainly differs from the proteaso- living organisms. Together with phosphatidylcholine (PC), mal pathway, the other major cellular degradation mechanism, phosphatidylserine (PS) and phosphatidylinositol (PI), PE in two aspects. -
Wnt/Β-Catenin Signaling Pathway Induces Autophagy
Yun et al. Cell Death and Disease (2020) 11:771 https://doi.org/10.1038/s41419-020-02988-8 Cell Death & Disease ARTICLE Open Access Wnt/β-catenin signaling pathway induces autophagy-mediated temozolomide-resistance in human glioblastoma Eun-Jin Yun 1,SangwooKim2,Jer-TsongHsieh3,4 and Seung Tae Baek 5,6 Abstract Temozolomide (TMZ) is widely used for treating glioblastoma multiforme (GBM), however, the treatment of such brain tumors remains a challenge due to the development of resistance. Increasing studies have found that TMZ treatment could induce autophagy that may link to therapeutic resistance in GBM, but, the precise mechanisms are not fully understood. Understanding the molecular mechanisms underlying the response of GBM to chemotherapy is paramount for developing improved cancer therapeutics. In this study, we demonstrated that the loss of DOC-2/DAB2 interacting protein (DAB2IP) is responsible for TMZ-resistance in GBM through ATG9B. DAB2IP sensitized GBM to TMZ and suppressed TMZ-induced autophagy by negatively regulating ATG9B expression. A higher level of ATG9B expression was associated with GBM compared to low-grade glioma. The knockdown of ATG9B expression in GBM cells suppressed TMZ-induced autophagy as well as TMZ-resistance. Furthermore, we showed that DAB2IP negatively regulated ATG9B expression by blocking the Wnt/β-catenin pathway. To enhance the benefit of TMZ and avoid therapeutic resistance, effective combination strategies were tested using a small molecule inhibitor blocking the Wnt/ β-catenin pathway in addition to TMZ. The combination treatment synergistically enhanced the efficacy of TMZ in GBM cells. In conclusion, the present study identified the mechanisms of TMZ-resistance of GBM mediated by DAB2IP 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; and ATG9B which provides insight into a potential strategy to overcome TMZ chemo-resistance. -
Cysteine Proteases in Protozoan Parasites
UC San Diego UC San Diego Previously Published Works Title Cysteine proteases in protozoan parasites. Permalink https://escholarship.org/uc/item/6sb6c27b Journal PLoS neglected tropical diseases, 12(8) ISSN 1935-2727 Authors Siqueira-Neto, Jair L Debnath, Anjan McCall, Laura-Isobel et al. Publication Date 2018-08-23 DOI 10.1371/journal.pntd.0006512 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REVIEW Cysteine proteases in protozoan parasites Jair L. Siqueira-Neto1*, Anjan Debnath1, Laura-Isobel McCall1¤, Jean A. Bernatchez1, Momar Ndao2,3, Sharon L. Reed4, Philip J. Rosenthal5 1 Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America, 2 National Reference Centre for Parasitology, The Research Institute of the McGill University Health Center, Montreal, Canada, 3 Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, 4 Departments of Pathology and Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America, 5 Department of Medicine, University of California, San Francisco, San Francisco, California, a1111111111 United States of America a1111111111 a1111111111 ¤ Current address: Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, a1111111111 United States of America a1111111111 * [email protected] Abstract OPEN ACCESS Cysteine proteases (CPs) play key roles in the pathogenesis of protozoan parasites, includ- Citation: Siqueira-Neto JL, Debnath A, McCall L-I, ing cell/tissue penetration, hydrolysis of host or parasite proteins, autophagy, and evasion Bernatchez JA, Ndao M, Reed SL, et al. -
ATG5 Antibody (N-Term) Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap1812a
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 ATG5 Antibody (N-term) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP1812a Specification ATG5 Antibody (N-term) - Product Information Application IF, WB, IHC-P-Leica,E Primary Accession Q9H1Y0 Other Accession Q3MQ06, Q3MQ04, Q99J83, Q3MQ24, Q6DEM4 Reactivity Human Predicted Zebrafish, Bovine, Mouse, Pig, Rat Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Antigen Region 1-30 ATG5 Antibody (N-term) - Additional Information Fluorescent image of U251 cells stained with Gene ID 9474 ATG5 (N-term) antibody. U251 cells were treated with Chloroquine (50 μM,16h), then Other Names fixed with 4% PFA (20 min), permeabilized Autophagy protein 5, APG5-like, with Triton X-100 (0.2%, 30 min). Cells were Apoptosis-specific protein, ATG5, APG5L, then incubated with AP1812a ATG5 (N-term) ASP primary antibody (1:200, 2 h at room temperature). For secondary antibody, Alexa Target/Specificity Fluor® 488 conjugated donkey anti-rabbit This ATG5 antibody is generated from antibody (green) was used (1:1000, 1h). rabbits immunized with a KLH conjugated Nuclei were counterstained with Hoechst synthetic peptide between 1-30 amino acids from the N-terminal region of human ATG5. 33342 (blue) (10 μg/ml, 5 min). ATG5 immunoreactivity is localized to autophagic Dilution vacuoles in the cytoplasm of U251 cells. IF~~1:200 WB~~1:1000 IHC-P-Leica~~1:500 Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. Storage Maintain refrigerated at 2-8°C for up to 2 weeks. -
Molecular Structure and Physiological Function of Chloride Channels
Physiol Rev 82: 503–568, 2002; 10.1152/physrev.00029.2001. Molecular Structure and Physiological Function of Chloride Channels THOMAS J. JENTSCH, VALENTIN STEIN, FRANK WEINREICH, AND ANSELM A. ZDEBIK Zentrum fu¨r Molekulare Neurobiologie Hamburg, Universita¨t Hamburg, Hamburg, Germany I. Introduction 504 II. Cellular Functions of Chloride Channels 506 A. Plasma membrane channels 506 B. Channels of intracellular organelles 507 III. The CLC Chloride Channel Family 508 A. General features of CLC channels 510 B. ClC-0: the Torpedo electric organ ClϪ channel 516 C. ClC-1: a muscle-specific ClϪ channel that stabilizes the membrane voltage 517 D. ClC-2: a broadly expressed channel activated by hyperpolarization, cell swelling, and acidic pH 519 Ϫ E. ClC-K/barttin channels: Cl channels involved in transepithelial transport in the kidney and the Downloaded from inner ear 523 F. ClC-3: an intracellular ClϪ channel that is present in endosomes and synaptic vesicles 525 G. ClC-4: a poorly characterized vesicular channel 527 H. ClC-5: an endosomal channel involved in renal endocytosis 527 I. ClC-6: an intracellular channel of unknown function 531 J. ClC-7: a lysosomal ClϪ channel whose disruption leads to osteopetrosis in mice and humans 531 K. CLC proteins in model organisms 532 on October 3, 2014 IV. Cystic Fibrosis Transmembrane Conductance Regulator: a cAMP-Activated Chloride Channel 533 A. Structure and function of the CFTR ClϪ channel 533 B. Cellular regulation of CFTR activity 534 C. CFTR as a regulator of other ion channels 534 V. Swelling-Activated Chloride Channels 535 A. Biophysical characteristics of swelling-activated ClϪ currents 536 B. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
Differential and Common DNA Repair Pathways for Topoisomerase I- and II-Targeted Drugs in a Genetic DT40 Repair Cell Screen Panel
Published OnlineFirst October 15, 2013; DOI: 10.1158/1535-7163.MCT-13-0551 Molecular Cancer Cancer Biology and Signal Transduction Therapeutics Differential and Common DNA Repair Pathways for Topoisomerase I- and II-Targeted Drugs in a Genetic DT40 Repair Cell Screen Panel Yuko Maede1, Hiroyasu Shimizu4, Toru Fukushima2, Toshiaki Kogame1, Terukazu Nakamura3, Tsuneharu Miki4, Shunichi Takeda1, Yves Pommier5, and Junko Murai1,5 Abstract Clinical topoisomerase I (Top1) and II (Top2) inhibitors trap topoisomerases on DNA, thereby inducing protein-linked DNA breaks. Cancer cells resist the drugs by removing topoisomerase-DNA complexes, and repairing the drug-induced DNA double-strand breaks (DSB) by homologous recombination and nonhomol- ogous end joining (NHEJ). Because numerous enzymes and cofactors are involved in the removal of the topoisomerase-DNA complexes and DSB repair, it has been challenging to comprehensively analyze the relative contribution of multiple genetic pathways in vertebrate cells. Comprehending the relative contribution of individual repair factors would give insights into the lesions induced by the inhibitors and genetic determinants of response. Ultimately, this information would be useful to target specific pathways to augment the therapeutic activity of topoisomerase inhibitors. To this end, we put together 48 isogenic DT40 mutant cells deficient in DNA repair and generated one cell line deficient in autophagy (ATG5). Sensitivity profiles were established for three clinically relevant Top1 inhibitors (camptothecin and the indenoisoquinolines LMP400 and LMP776) and three Top2 inhibitors (etoposide, doxorubicin, and ICRF-193). Highly significant correlations were found among Top1 inhibitors as well as Top2 inhibitors, whereas the profiles of Top1 inhibitors were different from those of Top2 inhibitors. -
Soy Isoflavones: Database Development, Estrogenic Activity of Glycitein and Hypocholesterolemic Effect of Daidzein Tongtong Song Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1998 Soy isoflavones: database development, estrogenic activity of glycitein and hypocholesterolemic effect of daidzein Tongtong Song Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Food Science Commons, and the Human and Clinical Nutrition Commons Recommended Citation Song, Tongtong, "Soy isoflavones: database development, estrogenic activity of glycitein and hypocholesterolemic effect of daidzein " (1998). Retrospective Theses and Dissertations. 12528. https://lib.dr.iastate.edu/rtd/12528 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fi-om the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.