RDG Guidance Note Delivering Good Schemes – ETCS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Objects from the National Railway Museum Collection
The Science Museum Group: Science Museum, London National Railway Museum, York Museum of Science and Industry, Manchester National Science and Media Museum, Bradford Locomotion, Shildon Objects Available for Transfer October-December 2018 The objects listed on the following pages have been approved for transfer and are currently available. The closing date for applications is Friday 14 December 2018. If you would like more information or are interested in acquiring an object from the Transfers list, please email us at [email protected] and include the following information: • The object number and description • A description of how you intend to use the object(s) and how this will benefit the public • An explanation of how you will ensure the long-term care of the object(s) • The organisation that you are representing, including the type of organisation (i.e. accredited museum, charitable trust) • Full contact details 1/66 The Science Museum Group: Science Museum, London National Railway Museum, York Museum of Science and Industry, Manchester National Science and Media Museum, Bradford Locomotion, Shildon Transfers from the Railway Museum Collection Object Description Image Number Visual display unit, British Rail, Total Operations Processing System, for use in control E2018.0514.1 office, Datapoint 8600, model number 97-3601-001 (9), serial number 10603, unknown provenance. Thyristor dimmer unit for lighting, high voltage, by Industrolite Ltd, Croydon Airport, serial number 686- E2018.0515.1 6057/8, with ‘DIAGRAM LIGHTING’ printed on Dymo tape label, unknown provenance. Teleprinter, Creed system, model no. 3D, serial no. 6028, by Creed & Co. Ltd., London, British patent numbers 228610, 228842 and others, E2018.0517.1 motor reference no. -
Approved Signalling Items for the ARTC Network ESA-00-01
Division / Business Unit: Corporate Services & Safety Function: Signalling Document Type: Catalogue Approved Signalling Items for the ARTC Network ESA-00-01 Applicability ARTC Network Wide SMS Publication Requirement Internal / External Primary Source Existing ARTC Type Approvals Document Status Version # Date Reviewed Prepared by Reviewed by Endorsed Approved 1.3 03 May 2021 Standards Stakeholders Manager General Manager Signalling Technical Standards Standards 03/05/2021 Amendment Record Amendment Date Reviewed Clause Description of Amendment Version # 1.0 23 Mar 20 First issue of catalogue that lists signalling items and communication items related to signalling systems approved for use on the ARTC network. 1.1 26 Jun 20 New approved items added based on type approval and compliance to ARTC specification 1.2 24 Nov 20 New approved items added based on type approval and compliance to ARTC specification © Australian Rail Track Corporation Limited (ARTC) Disclaimer This document has been prepared by ARTC for internal use and may not be relied on by any other party without ARTC’s prior written consent. Use of this document shall be subject to the terms of the relevant contract with ARTC. ARTC and its employees shall have no liability to unauthorised users of the information for any loss, damage, cost or expense incurred or arising by reason of an unauthorised user using or relying upon the information in this document, whether caused by error, negligence, omission or misrepresentation in this document. This document is uncontrolled when printed. Authorised users of this document should visit ARTC’s extranet (www.artc.com.au) to access the latest version of this document. -
System for Investigation of Railway Interfaces (SIRI)
6 System for Investigation of Railway Interfaces (SIRI) Sanjeev Kumar Appicharla 1Institution of Engineering and Technology 2The International Council on Systems Engineering, UK 1. Introduction This chapter presents an abstract system framework called ‘’System for Investigation of Railway Interfaces’’ (SIRI), to study potential or past railway accident(s). The aim of the study is to learn about the multiple causal factors (elements or conditions) which represented together can be called a cause leading to the undesired state called potential or accident situation. Safety studies like SIRI can be used in conjunction with the quantitative risk estimation method (PRA) to help highlight or uncover decisions leading to assumption of unreasonable risk or human error in engineering and management factors needs to be studied. Author accepts the viewpoint of George E.Apostolakis on the utility of quantitative risk analysis (QRA) or probability risk analysis ( PRA) techniques in general (E.Apostolakis 2004). The questions of human error and organisational learning are clarified later in the chapter in the context of acceptance of QRA method. The SIRI Framework uses synthetic mode of thinking as opposed to analytical mode of thinking. Analytical mode of thinking is like decomposing water which does no longer contains anything liquid and has taste. The SIRI Framework synthesises multiple study methods into a cohesive process represented as a system. The study methods used in stages to arrive at the decision of a potential accident situation in an unambiguous manner are Hazard identification method (HAZOP), Event Causal Factor Analysis (ECFA), Energy Barrier Trace Analysis (EBTA), accident investigation technique (MORT), and cognitive human factors framework (SRK) and systems thinking integrated into a cohesive system framework. -
Rail Transit Capacity
7UDQVLW&DSDFLW\DQG4XDOLW\RI6HUYLFH0DQXDO PART 3 RAIL TRANSIT CAPACITY CONTENTS 1. RAIL CAPACITY BASICS ..................................................................................... 3-1 Introduction................................................................................................................. 3-1 Grouping ..................................................................................................................... 3-1 The Basics................................................................................................................... 3-2 Design versus Achievable Capacity ............................................................................ 3-3 Service Headway..................................................................................................... 3-4 Line Capacity .......................................................................................................... 3-5 Train Control Throughput....................................................................................... 3-5 Commuter Rail Throughput .................................................................................... 3-6 Station Dwells ......................................................................................................... 3-6 Train/Car Capacity...................................................................................................... 3-7 Introduction............................................................................................................. 3-7 Car Capacity........................................................................................................... -
Grade Crossings - Handbook
GRADE CROSSINGS - HANDBOOK 2016-12-14 RDIMS # 12526323 This document is meant to be used in conjunction with the Grade Crossings Regulations as well as the Grade Crossings Standards. i TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................................................ II FORWARD ............................................................................................................................................ 1 PART A – PREFACE .................................................................................................................................... 2 BACKGROUND ..................................................................................................................................... 2 OBJECTIVES ........................................................................................................................................ 3 DESCRIPTION ...................................................................................................................................... 4 ARTICLE 1 – INTERPRETATION ......................................................................................................... 7 ARTICLE 1.1 – AREMA INTERPRETATIONS ................................................................................... 13 ARTICLE 2 – CITATIONS ................................................................................................................... 14 ARTICLE 3 – UNITS OF MEASUREMENT ....................................................................................... -
Download Railroad Signaling Free Ebook
RAILROAD SIGNALING DOWNLOAD FREE BOOK Brian Solomon | 160 pages | 26 Feb 2010 | Voyageur Press Inc | 9780760338810 | English | Stillwater, United States Mike Roque Axle counter Track circuit Track circuit interrupter Treadle. A Railroad Signaling permissive signal means stop and proceed. The amount of information found there is quite staggering; historical backgrounds of wheel arrangements, types used by virtually every railroad, preserved and operational examples, and even those used in other countries North America and beyond. Wayside signalling dates back as far asand used elevated flags or balls that could be seen from afar. However you should find what you learned here about the former NYC system to be of great value in helping you to understand these other systems. Today the most popular type of new signal in North America is a modular design manufactured by Safetran, as it is the cheapest, with all of the four major Class 1 railroads installing it almost exclusively. In time the costs of the significantly more expensive searchlight signal's Railroad Signaling began to outweigh the savings from its compact size and single bulb when compared with the simple multiple lensed color light signal. The most notable user of this type of signal was the Chesapeake and OhioRailroad Signaling units could be found on railroads all over the country. So the NYC used the second red head as a sort of signal marker. Over time, due to its low cost and versatility, the modular color light signal became Railroad Signaling standard in North America. Searchlight signal's use became widespread mostly due to their relatively low Railroad Signaling, high visibility, low power-consumption, and after using a compound lens with a 4 watt, 3 volt bulb, that worked quite well in territory with battery powered signaling. -
View / Open TM Railway Signals.Pdf
III••••••••••• ~ TRANSPORTATION MARKINGS: A STUDY IN COMMUNICATION MONOGRAPH SERIES VOLUME I FIRST STUDIES IN TRANSPORTATION MARKINGS: Parts A-D, First Edition [Foundations, A First Study in Transportation Markings: The U.S., International Transportation Markings: Floating & Fixed Marine] University Press of America, 1981 Part A, FOUNDATIONS, Second Edition, Revised & Enlarged Mount Angel Abbey 1991 Parts C & D, INTERNATIONAL MARINE AIDS TO NAVIGATION Second Edition, Revised, Mount Angel Abbey, 1988 VOLUME II FURTHER STUDIES IN TRANSPORTATION MARKINGS: Part E, INTERNATIONAL TRAFFIC CONTROL DEVICES, First Edition Mount Angel Abbey, 1984 Part F, INTERNATIONAL RAILwAY SIGNALS, First Edition, Mount Angel Abbey, 1991 Part G, INTERNATIONAL AERONAUTICAL AIDS TO NAVIGATION, In Preparation Part H, A COMPREHENSIVE CLASSIFICATION OF TRANSPORTATION MARKINGS Projected • • TRANSPORTATION MARKINGS: • A STUDY IN COMMUNICATION • • Volume II F International Railway Signals • • Brian Clearman • Mount Angel Abbey • 1991 • • • •,. Copyright (C) 1991 by Mount Angel Abbey At Saint Benedict, Oregon 97373. All Rights Reserved. Library of Congress Cataloging-in-Publication l?ata Clearman, Brian. International railway signals / Brian Clearman. p. cm. (Transportation markings a study in communication monograph series ; v. 2, pt. F) Includes bibliographical references and index. ISBN 0-918941-03-2 : $18.95 1. Railroads--Signaling. I. Title. II. Series: Clearman, Brian. Transportation markings i v. 2, pt. F. (TF615 ) 629.04'2 s--dc20 (625. 1'65) 91-67255 CIP ii \, -
Signalling Symbols 2011.Pdf
Ref: NR/L2/SIG/11201 – Mod A17 Issue: 5 Date: 03/09/2011 Compliance date: 03/09/2011 Level 2 Signalling Design: Module A17 - Symbols for Plans and Sketches used in Signalling Applications Endorsement and Authorisation For endorsement and authorisation, please refer to NR/L2/SIG/11201 This document is the property of Network Rail. It shall not be reproduced in whole or part nor disclosed to a third party without the written permission of Network Rail. Copyright 2011 Network Rail. Uncontrolled copy once printed from its electronic source. Published and Issued by Network Rail, Kings Place, 90 York Way, London. N1 9AG. [[[ Ref: NR/L2/SIG/11201 – Mod A17 Issue: 5 Date: 03/09/2011 Compliance date: 03/09/2011 Issue record Issue Date Comments 4 June 2011 NR/L3/SIG/11004 incorparated into NR/L2/SIG/11201 5 03/09/2011 Amended references due to withdrawal of NR/L3/SIG/30018 Compliance This Network Rail standard is mandatory and shall be complied with by Network Rail and its contractors if applicable from 03/09/2011. When this standard is implemented, it is permissible for all projects that have formally completed GRIP Stage 3 (Option Selection) to continue to comply with the Issue of any relevant Network Rail Standards current when GRIP Stage 3 was completed and not to comply with requirements contained herein, unless stipulated otherwise in the scope of this standard. Disclaimer In issuing this document for its stated purpose, Network Rail makes no warranties, express or implied, that compliance with all or any documents it issues is sufficient on its own to confirm safe systems of work or operation. -
Catalogue of Network Rail Standards NR/CAT/STP/001 ISSUE 111 02 March - 31 May 2019
Catalogue of Network Rail Standards NR/CAT/STP/001 ISSUE 111 02 March - 31 May 2019 Copyright © 2019 IHS Global Ltd Designed, Created and Published under licence from Network Rail Infrastructure Ltd. No part of this document may be reproduced or disclosed to a third party without the written permission of IHS Global Ltd Network Rail Infrastructure Ltd. is part of the Network Rail Group of Companies. i. Contacts Search Support Contacts Please note that it will help save time if you have available your System Number and Company Name. IHS Customer Care For search queries and all other enquiries Phone: 01344 328300 or email [email protected] Other Information Network Rail Standards Subscriptions IHS Global Ltd Phone: 01344 328000 Network Rail Standards Management Publications Manager Nicole Lockwood Phone: 01908 782 481 Network Rail Standards Hard Copy Document Centre IHS Retail Phone: 01344 328039 Fax: 01344 328005 or email: [email protected] Railway Group Standards Rail Safety & Standards Board Enquiry Desk Phone: 020 3142 5400 Website www.rssb.co.uk Network Rail Technical Drawings National Records Group Email: [email protected] Table of Contents i. Contacts ..........................................................................................1 ii. Guidance tor Completing the Standards Challenge Application Form ...........................................6 iii. Standards Challenge - Application Form .................................................................8 1. Guide to Network Rail Standards and Catalogue ........................................................ -
T Hr Sc 00006 St
T HR SC 00006 ST Standard Rolling Stock Signalling Interface Requirements Version 2.0 Issued date: 07 July 2017 © State of NSW through Transport for NSW 2017 T HR SC 00006 ST Rolling Stock Signalling Interface Requirements Version 2.0 Issued date: 07 July 2017 Important message This document is one of a set of standards developed solely and specifically for use on Transport Assets (as defined in the Asset Standards Authority Charter). It is not suitable for any other purpose. The copyright and any other intellectual property in this document will at all times remain the property of the State of New South Wales (Transport for NSW). You must not use or adapt this document or rely upon it in any way unless you are providing products or services to a NSW Government agency and that agency has expressly authorised you in writing to do so. If this document forms part of a contract with, or is a condition of approval by a NSW Government agency, use of the document is subject to the terms of the contract or approval. To be clear, the content of this document is not licensed under any Creative Commons Licence. This document may contain third party material. The inclusion of third party material is for illustrative purposes only and does not represent an endorsement by NSW Government of any third party product or service. If you use this document or rely upon it without authorisation under these terms, the State of New South Wales (including Transport for NSW) and its personnel does not accept any liability to you or any other person for any loss, damage, costs and expenses that you or anyone else may suffer or incur from your use and reliance on the content contained in this document. -
General Signalling Regulations
Uncontrolled when printed Supersedes GERT8000-TS1 Iss 12.1 with effect from 01/12/2018 GERT8000-TS1 Rule Book General signalling regulations Issue 13 Module TS1 September 2018 Comes into force 01 December 2018 Uncontrolled when printed Supersedes GERT8000-TS1 Iss 12.1 with effect from 01/12/2018 Conventions used in the Rule Book Example A black line in the margin indicates a change to that rule and is shown when published in the module for the first time. Green text in the margin indicates who is responsible for carrying out the rule. A white i in a blue box indicates that there is information provided at the bottom of the page. A rule printed inside a red box is considered to be critical and is therefore emphasised in this way. Published by: RSSB The authoritative version of this document is available at www.rssb.co.uk Contents approved by Traffic Operation and Management Standards Committee. For information regarding the Rule Book, contact: https://customer-portal.rssb.co.uk/ First issued June 2003 Issue 13, September 2018 Comes into force 01 December 2018 © Copyright 2018 Rail Safety and Standards Board Limited Uncontrolled when printed Supersedes GERT8000-TS1 Iss 12.1 with effect from 01/12/2018 You will need this module if you carry out the duties of a signaller. 09/18 1 Uncontrolled when printed Supersedes GERT8000-TS1 Iss 12.1 with effect from 01/12/2018 Contents GSR 1 Working at signal boxes 1.1 Recording in the Train Register 1.2 Recording times in the Train Register 1.3 Change of signaller 1.4 Signaller leaving the signal box -
Translating Train Management to Norway
Translating Train Management to Norway Lasse Gullvåg Sætre Master thesis at the Center for Technology, Innovation and Culture Supervised by: Tone Druglitrø and Helge Ryggvik University of Oslo Norway, May 2017 I, Lasse Gullvåg Sætre, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abstract This thesis explores the transition of Norwegian rail signaling from me- chanically to digitally based systems, delving into the translations of the European standard ERTMS to Norwegian railways. Through digital, tech- nical and bureaucratic informants, this study investigates the preparations and makings of what promises to be one of the biggest revolutions in the technology to date. The ERTMS is a railway signaling technology, an EU political technology, and a case of digitalized European information infrastructures, known by many names, such as smart cities or intelligent services. Studied through the Norwegian railway system’s digital integra- tion towards Europe during the last 20 years, this thesis inquires into the material semiotic production of rail governance in the Norwegian context, as well as what it means to be an EEA member. From expert informers from the Norwegian infrastructure manager Jernbaneverket and its partial successor Bane NOR, through documents and field studies/interventions, the ways in which key players of the Norwegian and European railway sectors change are explored, mapping out the issue of signaling, and how players prepare for a transition that was always part of larger ideas of mo- bility, machines and governance, extending far out from rail space.