***** ★ ★ ★. ★ *★*

New Solutions in Energy Utilisation

The guide to Sustainable energy technologies for

ENERGIE ENERGIE

This ENERGIE publication is one of a series highlighting the potential for innovative non-nuclear energy technologies to become widely applied and contribute superior services to the citizen. European Commission strategies aim at influencing the scientific and engineering communities, policy makers and key market actors to create, encourage, acguire and apply cleaner, more efficient and more sustainable energy solutions for their own benefit and that of our wider society.

Funded under the European Union's Fifth Framework Programme for Research, Technological Development and Demonstration (RTD), ENERGIES range of supports cover research, development, demonstration, dissemination, replication and market uptake - the full process of converting new ideas into practical solutions to real needs. Its publications, in print and electronic form, disseminate the results of actions carried out under this and previous Framework Programmes, including former JOULE-THERMIE actions. Jointly managed by Directorate-General Energy and Transport & Directorate-General Research, ENERGIE has a total budget of € 1042 million over the period 1999 to 2002.

Delivery is organised principally around two Key Actions, Cleaner Energy Systems, including Renewable Energies, and Economic and Efficient Energy for a Competitive Europe, within the theme "Energy, Environment and Sustainable Development", supplemented by coordination and cooperative activities of a sectoral and cross-sectoral nature. With targets guided by the Kyoto Protocol and associated policies, ENERGIES integrated activities are focussed on new solutions which yield direct economic and environmental benefits to the energy user, and strengthen European competitive advantage by helping to achieve a position of leadership in the energy technologies of tomorrow. The resulting balanced improvements in energy, environmental and economic performance will help to ensure a sustainable future for Europe's citizens.

Produced by

Energie-Cites 2, chemin de Palente FR-25000 Besangon Tel:+33 3 81 65 36 80 Fax:+33 3 81 50 73 51 E-mail: *@energie-cites.org

with the support of the EUROPEAN COMMISSION Directorate-General for Energy and Transport

The Guide to Sustainable Energy Technologies for Schoob is available in English, French and Portuguese.

LEGAL NOTICE Neither the European Commission, nor any person acting on behalf of the Commission, is responsible for the use which might be made of the information contained in this publication. ^European Communities, 2000 Reproduction is authorised provided the source is acknowledged.

Printed in France The guide to Sustainable energy technologies for schools

New solutions in energy utilisation

Energie-Cites

Resources Research Unit, School of Environment and Development, Sheffield Hallam University

Associagao Nacional de Municipios Portugueses

July 2000 Introduction

School buildings differ from other types of Energy Technologies for Schools. This guide is buildings because they are where our children a decision-making tool intended for European are educated and have the opportunity to learn municipalities and school managers. Its aim is how to become environmentally-aware citizens. to: - assist them in choosing between the energy It is therefore essential that schools set a technologies that will be used in school good example regarding efficient fossil energy building or retrofitting projects, utilisation, pollution control, environmentally- - provide them with a framework for friendly material selection, quality of life, measuring and comparing different aspects users' comfort, etc. These experiences can of energy performance that can be used to serve as teaching aids for educational convince decision-makers to select developments to raise awareness about sustainable energy technologies and different energy resources and their possible measures. sustainable use. The guide is composed of three parts: All European municipalities have some - An illustrative list of sustainable energy involvement in managing, retrofitting and/or technologies, building schools. They are also concerned - An introduction to energy performance about balancing the municipal budget. Some indicators, existing schools have very high energy - Fifteen case studies describing practical consumption due to poor design, operation or sustainable energy solutions applied to maintenance. Such schools would clearly schools in seven European countries. benefit from energy efficiency improvements. New schools, if properly designed and This guide was produced by Energie-Cites, constructed, can achieve extremely low energy Sheffield Hallam University and the National use. Hence, there are significant attractions Association of Portuguese Municipalities in for municipalities to opt for sustainable collaboration with a group of European local solutions which involve energy efficient authorities. During the course of its technologies and measures. preparation three Workshops were held to disseminate experience and good practice: in This is the challenging background which Grenoble (France), Newark-on-Trent (United led to the production the Guide to Sustainable Kingdom) and Coimbra (Portugal)).

The Guide to Sustainable Energy Technologies for Schools is available in English, French and Portuguese. Contents

Introduction ______page 2

Sustainable energy technologies

and measures ______page 4

Measuring and comparing

energy performance ______page s

Project location______pages

Demonstration projects ______page s

Sustainable energy technologies

for schools: Case studies ______page 11

ReSUme ______page 26 Sustainable energy technologies and measures

A list of sustainable energy technologies and measures is provided to stimulate building owners to consider integrating energy efficient technologies into their new school building and/or retrofitting projects. This illustrative list includes "hard" technologies (energy efficient materials, energy management systems, small-scale combined heat and power, etc.) as well as "soft" measures that are part of any project (appropriate financing and project accounting, environmentally-friendly supply chain decision, user involvement, etc.)

Each technology is symbolised by an icon that is repeated throughout the guide for ease at identification in the case studies.

Procurement Heating and domestic hot @ - terms of reference applied to water appliances new school buildings. - heat production autonomous or linked with a district Building design heating network - building orientation, - high performance or low bioclimatic factors , passive consumption heating and cooling - small-scale combined heat and - space planning, internal space power distribution - thermal solar collector Knowing one’s own urban - biomass boiler (built) heritage Distribution and emission - energy audit of heat - low temperature underfloor - building and insulation heating materials with high thermal - warm air heating performance - or / and environmentally- friendly/ sustainable materials - windows Air-conditioning Modes of function equipment of the equipment - methods for avoiding or - regulation limiting the use of air - programming conditioning - remote control - production, distribution and - load management/ supply of cooling optimisation - energy teams/ supervisors Equipment to produce and distribute electricity Other equipment - photovoltaics - kitchen appliances - wind energy - washing machines - green energy supply ©- pottery kiln - power limiting devices - other Ventilation equipment Financing - natural ventilation - contracting - mechanically controlled - third-party-financing ventilation ©- other - double flow Interaction with users - adjustable (to the needs of the - teachers and staff users) - students(curriculum aspects of Lighting equipment energy management or - daylight promotion of renewable - lamp, reflector energies) - lighting management - implementation of energy plans Rational use of water - water saving bathroom eguipment/ appliances - low water use toilets - use of rain water Measuring and comparing energy performance

Energy performance indicators are occupancy or use of the school. essential for effective energy management in There are a number of important variants of any building because they can be used to: energy performance indicators which are - measure energy consumption over a period distinguished by the aspect of energy use that of time to determine whether performance is they represent. For indicators which relate to improving, staying the same or energy consumption, in particular, there is a deteriorating, distinction between primary energy, which is a - evaluate energy performance in comparison measure of the energy available in natural with other users and with standard values so resources, and delivered energy, which eguals that relative efficiency can be established, the energy provided by fuels and electricity and purchased for use in the school. Because of - assess the prospective benefits of energy basic differences in the nature of different efficiency measures and new energy forms of delivered energy, it is sometimes technologies and monitor their successful divided into fossil fuels (coal, natural gas, oil, implementation and operation. etc.) and electricity. Other types of energy There are many different types of energy performance indicator refer to associated performance indicator and they are measured in carbon dioxide emissions, and financial costs, different ways in different countries. National in local currencies. guidelines are often available for specifying Each one of these indicators provides recommended methods of calculation, with valuable information on different aspects of adjustment procedures and standard values of energy performance. Primary energy indicators performance for comparative purposes. refer to the depletion of finite energy Fundamentally, energy performance resources. Indicators measured in terms of indicators for schools represent a given aspect delivered energy demonstrate relative energy of energy use per unit space within the school efficiency. Indicators based on carbon dioxide per unit time. Typically, energy consumption emissions measure environmental impact is measured in units of kilowatt-hours (kWh). through global warming. Financial indicators The space within the school either consists of provide a guide to cost-effectiveness. its floor area, in units of sguared metres (m2), Ideally, all these different types of indicator or its volume, in cubic metres (m3). The actual should be determined and guoted when the specification of these dimensions (gross or energy performance of a school is being net, external or internal, total or heated) is evaluated. This is particularly relevant for extremely important since misunderstandings demonstrating savings derived from the lead to significant errors in the comparison of implementation of energy efficiency measures indicators. The period of time referred to in and new energy technologies. No single the indicator is usually one year, although indicator can represent every type of savings some indicators are based on the period of The main energy performance the standard number used in NPI indicator recommended for use in the calculations and this is measured United Kingdom is referred to as the against a base temperature of 15.5°C. Normalised Performance Indicator Other countries may used different base (NPI). The calculation of the NPI temperatures and, in certain involves taking account of certain circumstances, space cooling degree factors which influence energy days may be a more important consumption so that buildings can be consideration. compared with each other and with NPI's can be calculated in terms of national benchmarks, known as delivered energy and associated carbon yardsticks. For schools, the factors A dioxide emissions. These can be which are incorporated are: compared with national yardstick. For - the type of delivered energy used primary and middle schools in the (gas, oil, other fossil fuels and United Kingdom, the yardsticks which electricity), represent medium performance are: - the breakdown between space

heating and other energy use, fossil fuels 137 - 189 kWh/m2/year

- the regional weather represented by electricity 20 - 27 kWh/m!/year degree days, carbon dioxide 41 - 57 kg CO/ m!/year - the exposure of the building Schools which have NPI's greater than (sheltered, normal or exposed), these yardstick have poor performance - the type of construction of the which could be improved considerably building (lightweight, normal or which can be achieved. For example, it is by simple energy efficiency measures. other), possible to reduce costs by switching between The majority of schools are likely to fall - the occupancy of the building, and within the range of these yardsticks. different fuels without actually saving energy. - the heated floor area of the building. However, all schools, regardless of their Furthermore, the use of renewable energy will In the context of space heating, NPI's , would benefit from energy decrease the demand for primary energy and, degree days are equal to the product of efficiency measures and new energy subseguently, associated carbon dioxide the number of days on which the technologies. outside temperature falls below a given emissions but may not affect delivered energy Source: "Building Energy Efficiency in Schools: A base temperature and the difference consumption and costs in the same way. Guide to a Whole SchoolApproach" ERESCU, between these temperatures. In the Building Research Establishment, Watford, United Hence, the full significance of savings can only United Kingdom, 2 462 degree days is Kingdom, 1996. be established by guoting all energy performance indicators. It is important to realise that energy Good data are necessary for the calculation performance indicators are not the same as of meaningful energy performance indicators. recommended or mandatory standards which Obviously, reliable measurements of school are applied when designing and commissioning floor area or volume are essential. Time new, refurbished or renovated schools. Such periods must also be specified carefully. standards usually consist of specific Access to meaningful fuel and electricity measurements representing various aspects of records is vital. These must consist of actual the internal environment of the school. This readings which represent energy consumption might include the minimum temperature in over relevant periods of time. If savings are winter and the maximum temperature in being calculated, then accurate records are summer (), minimum levels of needed before and after the energy efficiency illumination (visual comfort), and minimum measure or new energy technology has been rates of air changes (air quality). installed. It is especially important to obtain Such measurements are important, relevant records for periods of normal however, because they provide a means of operation and typical school use. assessing the internal environment of the Many factors influence the energy school. This determines whether the school performance of schools. These have to be taken provides a good working, teaching and learning into account so that indicators can be compared environment of its occupants. Ideally, such on a meaningful basis. This is particularly the information should be incorporated into the case when comparing indicators with national or further development of energy performance regional standard values of performance, or indicators. In the future, the measurement of benchmarks. Numerous methods of adjustment occupant comfort could be combined with the and types of benchmark are used in different primary energy consumption or associated countries across the European Union. An carbon dioxide emissions of a school, so that a example of the approach adopted in the United single indicator of sustainability could be Kingdom is presented in the separate box above. derived and applied in practice. Project location

• THERMIE projects A. Case studies (pll to 25) Demonstration projects

A number of the projects have been co-financed by the THERMIE programme for the development of energy efficient technologies in schools. A brief summary of the most prominent projects is presented below.

Regensburg © © Nantes [FR] RE 79/1997 © © © © The project is a study of the local economic impact of As part of a project called BEST 2000 specially designed energy investments. It demonstrated that these to optimise energetic behaviour in intermittently investments had led to a growth in regional energy occupied buildings, a new school, Lycee des Herbiers, production, while also having a favourable impact on with a floor area of 6 500 nr is to be built in the employment particularly through the secondary effects Vendee department. For all four buildings to be of reduced energy costs. One part of this study deals constructed, rationalisation, solar gains and with schools: the city of Schonwald carried out an daylighting, no mechanical , architectural competition in order to design a new performance targeting and advanced building control school. The proposition selected - in close co­ should lead to : operation with the ZREU, a cross border OPET network - 50 % energy savings, for Bavaria and Austria - was then analysed in terms of - less than a 10% increase in maintenance costs in energy optimisation and eventual modifications to the comparison with a conventional building, original plan. The project "Energy Optimisation of - enhanced users' comfort. Plans for a School Building" took particular account of Contact the building's function as a school. A number of Ingenierie Gaudin factors have an impact on the total energy efficiency, Fax: +33 2 40 73 20 71 E-mail: [email protected] including the design and creation of spaces, the division and orientation of rooms in the building or the materials utilised. However, it was agreed that any potential modifications to the initial plans were only justified if they did not involve any excessive increase in investment. Contact K. Grepmeier, Zweckverband Regionale Entwicklung und Umwelt (ZREU) Fax: +49 941 464 1910 E-mail: [email protected] 8U/0700696

MEDUCA (Model EDUCAtional buildings for Integrated Energy Efficiency Design) is a THERMIE Integrated Quality Demonstration Project which aims to create educational buildings that will stand out as exemplary models of optimised integrated energy efficient design for new or refurbished schools.

heating and cooling, advanced control system, Ballerup [dkj © © 0 © © optimised daylight and energy efficient lighting. The The project involved refurbishing a school, with a floor first year in operation was dedicated to optimise the area of 12 000 nr and built in the 1970's, with operation of the heating and ventilation system . improved insulation, low energy windows, -assisted Contact natural ventilation with pre-heating of air in earth Ake BLomsterberg ducts and solar wall collectors, passive solar heating, Fax: +46 40 108201 E-mail: [email protected] an advanced control system and energy efficient lighting. It was completed in the summer 1998 and two parts of the overall school building complex, with a Falkenberg [sej © © © © © floor area of 1 700 nf, are now renovated. A gualitative This project based on a school, with a floor area of evaluation of the air guality revealed a significant 9 350 nr, built at the end of the 1960's was planned improvement. First monitoring results show a 45% using low energy windows, heat recovery ventilation, reduction in space heating energy consumption. hybrid ventilation, passive solar heating and cooling, an advanced control system, optimised daylight and energy efficient lighting. Contact Grong [no] © © © Ake BLomsterberg A school complex from the 1960's had a new building, Fax: +46 40 108201 E-mail: [email protected] with a floor area of 1 000 nr, added and designed to use solar energy for space heating and pre-heating Neumunster og © © © © ventilation, optimised daylight and ventilation with heat recovery based on natural driving forces with fan This project took place in a school complex of 5 assistance. The construction was completed in summer buildings of different ages, from 1906 to 1980, and a 1998. total floor area of 5 275 nr. The project consisted of installing low energy windows and additional heat protection, advanced control systems, building energy management system, efficient lighting, solar hot water for the showers in the sport hall and changing energy Goteborg © © © 0 © supply from natural gas to Refurbishment of a . The 1960's school with a monitoring has been ongoing floor area of since October 1998. 2 350 nr was planned using an optimised envelope, low energy windows, heat recovery ventilation, passive solar 0 © © © © H w AgUOda [Portugal] Escola secundaria de Valongo do Vouga Sustainable Daylighting optimisation School details and passive solar design Type of school: Secondary

Floor area: 2 917 m2 energy Valongo do Vouga is located in the northern part of Number of students: 505 Portugal and has a temperate climate with mild winters Year of construction: 1993 technologies and moderate summers (1 496 degree days). The school Occupancy: is elongated along an east/west axis. It is a two storey 1 995 hours/year for schools: building consisting of 18 classrooms, several laboratories, a library, a kitchen and a canteen. Corridors and service Participants areas are located on the north side. The classrooms are in the project Case studies on both floors and occupy the whole of the south-facing Joao Mateus (Co-ordinator) elevation which has 224 nr of windows fitted with double Jorge Gouveia and Luis Cunha Direcnao Geral dos Equiparnentos glazing. This makes it possible to achieve significant Educativos The fifteen case studies direct solar gains in winter (52%). During the hottest Direcnao Regional de Educanao months of the year, the classrooms are protected against da Reciiao Centro presented here are intended as a Carnara Municipal de Aciueda excessive heat by concrete slats fitted onto an practical illustration of the innovative Laboratorio de Gestao de Enerciia independent frame that is fitted 50-60 cm away from the da Faculdade Ciencias e energy solutions that were adopted in facade. The north-facing side of the school has only 120 Tecnologia de Coimbra new school building or retrofitting nf of double glazed windows to provide daylighting and Energy performance projects in Denmark, France, ventilation. The glazed area to floor area ratio is 20%. The enerciy performance of the Germany, the Netherlands, Portugal, The windows in the classrooms are made of two school during! winter is 32 kVVh/nr/year compared to the Sweden and the United Kingdom. parts and are fitted on the inside with lightweight slats benchmark for a conventional that act as light reflectors preventing direct solar school in this area of 64 radiation. Most of the windows on the northern and kVVh/nr/year, suggesting a 50% enerciy saving] southern aspects as well as the classroom doors are fitted with vents that provide efficient cross-ventilation. Financial data Double casing walls insulated with expanded polystyrene Cost of construction including] foam are used and any thermal bridges have been electrical and mechanical installation: €1 600 000 carefully treated. One of the most significant features of Energiy management and control this building is daylight optimisation. This is achieved system € 196 000. by means of reflectors, lightducts and skylights that provide lighting in the darker parts of the classrooms. Energy efficient light fittings are used and an energy management system has been installed. Agueda City Council, which is legally responsible for work supervision and project completion, defined the specifications in collaboration with the Regional Board of the Ministry of Education in charge of the Central Region. This collaboration was detailed in a co­ operation protocol between the City Council and the

Ministry stipulating that the City Council was to provide 1. Skylights a large part of the funding. A team from the Energy 2. Light-ducts Management Laboratory of the Electro-Technical Engineering Department of the Coimbra Faculty of Sciences and Technology also participated as a consultant in the project. Source ; Contact 7S87V 972-676-763^8 Antonio Manuel Porte La " EoWTccs Sobres PassAcs Arrancada do Vouga 3750 Agueda Portugal em Aor&yga/" /AETMDER Tel: +351 23 4 64 5 3 3 7 Fax: +351 234 646 298 School details Alcacer do Sal [Portugal] Type of school: Primary

Floor area: 1 140 m2 Number of students: 183 Escola primaria Year of construction: 1965

Occupancy: 1 120 hours/year

Original use of local energy resources Participants in the project The cold season in Portugal has only one or two Camara Municipal de Alcacer do Sal really cold months and summer mainly coincides with CEEETTA - Centro de Estudos de school holidays. This is more so in the half of the Econcmia de Energia, Transposes country nearer to the sea, as is the case of Alcacer do e Ambiente Sal which is situated in the South region, 80 km from Energy performance Lisbon (1 283 degree days). The Municipality of The total energy savings for the 20 Alcacer do Sal decided to utilise pinecone scales, which schools In the programme are is an abundantly available waste product from the local 223 200 W/Vh/year with cost savhgs cf € 20 958/year. pine nut industry, for energy purposes in the 20 schools of the municipality. Alcacer do Sal Primary Financial data School N°1 is the biggest one. The total investment cost for the 20 schools was € 24 100, The school was provided with 12 pinecone scale- resulthg h a gross investment payback time of 1.2 years. fired heaters. In Portugal, these heaters are commonly called "salamanders" because they are made of iron coated with green enamel. They are specially designed to be automatically fed with pinecone scales. Each 10 kW heater consists of a silo with 10-15 hours storage capacity, a feed system by gravity, a pre- and an air/air . A "salamander heater" was installed in each classroom as a replacement for The complete improvement programme for electric radiators. The average energy needs for each the 20 primary schools in Alcacer do Sal consisted of classroom are 9 500 kWh/year. installing 49 salamander heaters, fitting to roofs, doors and windows, and removing The school has 4 buildings surrounded by a large existing electric radiators. The net calorific value of playground. Two of the buildings consist of classrooms the pinecone scales is 4 kWh/kg and the annual and the other two are for administrative services and consumption by all 20 schools in the programme is 200 the canteen. The classrooms have an average floor tonnes. The annual consumption for this individual area of 45 nr. They face south-east and are provided school is 49 tonnes. This is a good example of how to with large windows. The school has a masonry use a local energy resource economically while construction, typical of the type of buildings adopted protecting the environment. by the public administration between the 1940's and 1960's. They are spread all over the country and the construction characteristics are identical regardless of the region where they are located. Amersfoort Nieuwland [Netherlands] School details Type of school: Primary

Floor area: 1 070 m2 Basisschool De Wonderboom Number of students: 470 Year of construction: 1996

Occupancy: 1 400 hours/year

Solar panels for consumed and generated, compared with the target performance for the school. This enables both staff Participants generating electricity in the project and students to appreciate the efficient energy usage of the school. Sports, Recreation and Education From 1995 to 1997, three primary schools were built Service, Amersfoort City Council Bakker & Poden Architect in the Nieuwland development of Amersfoort in co­ The school has high-efficiency glazing which REMU Utrecht (Owner of the operation with REMU, the national energy company. photovoltaic system) provides improved thermal insulation in the rooms The main objective was to implement energy-saving NCWEM (Provider of the subsidy where it is fitted. The insulation value of high- for the photovoltaic system) measures and develop the use of sustainable energy. efficiency glass is twice that of ordinary double De Wonderboom primary school is part of the three Energy performance glazing. There is also extra insulation that ensures energy-saving school buildings. 196 solar photovoltaic that walls, floors and roofs have a higher thermal The annual consumption cf gas for (PV) panels have been fitted on the roof of the school heating pirposes amounts to 76 resistance. Three high-efficiency have been kWh/nf^ear. The PV installation and positioned so as to collect the maximum of installed, one per heating group. By recovering heat reduces electricity consumption by sunlight. Each classroom has 24 panels arranged in 6 seme 8 000 kWh/year. from the gases, these boilers achieve efficiencies rows of 4 panels each connected to primary and between 90 and 95% compared with only 75 to 80% for Financial data secondary electricity collection units. The PV panels of a conventional boiler. Emissions of each pair of classrooms are connected to an inverter Sports, Recreation and Education harmful pollutants, such as carbon dioxide and oxides Service cf Amersfoort City Council, which converts the voltage and feeds electricity into of nitrogen, are considerably reduced due to lower gas the owner cf the school, ganted REMU's low-voltage network. The PV system is the REMU a right of superfices. REMU consumption. Heat is recovered from stale ventilation property of REMU, as part of an agreement with installed the solar panels and air as it is extracted. The air is extracted and blown receives the electricity generated. Amersfoort City Council. Windows have been fitted in out through an aluminium cartridge which absorbs the Subsidies were ganted by the south-facing roofs in between the PV panels, so NOVEM for the installation of the heat. Fresh outside air is drawn in through another solar energy systems. sunlight shines directly into the building. In this way, cartridge. After 70 seconds a swivel valve is turned so NOVEM subsidy (60%): € 10 840 passive solar energy is utilised. Windows have also REMU integration PV: € 6 800 that the flows of air through the cartridge are reversed. been fitted on the north side of the roof to allow more REMU PV: € 76 370 The stored heat is transferred to the fresh air. With daylight into the classrooms. The school is eguipped this system some 85% of the heat in the stale with a display which shows how much energy is ventilation air can be recovered. High-freguency lighting in the school building ensures that the same amount of light is produced with about 20% less energy. This saving can be achieved because the losses in high freguency ballast are low compared with conventional ballast.

Contact Bernard Verheijen REMU, Marketing Department Postbox 8888 3503 SG Utrecht Netherlands Tel: +31 30 297 61 01 E-mail: [email protected] ©0 I Bouillot

School details Baigneux-les-Juifs [France] Type of school: Nursery and Primary Floor area: 505 m2 Groupe scolaire Les Capucines Number of students: 100

Year of construction: 1993

Occupancy: 1 480 hours/year Energy efficient building design Participants in the project Due to the harshness of local climate conditions Sivom (hterminicipal Organisation) (3 100 degree days), the objective of the architects of Baigneux les Juifs SARL F. Brandon et assocGs was to protect the classrooms against cold and position Jean Bouillot architect them so as to receive the maximum of solar heat and light. This is why intermittently occupied rooms or Energy performance closed rooms were placed at the north and north-east The space heating energy consumption for this school is 50 side. An atrium hall was added to this first heat buffer kWh/nf/year. zone. The roof slope is 15° on average, an incline that minimises wind pressure and prevents the snow from Financial data falling off the roof in winter, thus creating a thermal The cost of hstallrg the energy blanket. technologies in this school was these provisions, and due to the weakness of canvas € 148 per nf of heated area. The screens, the atrium is considered to be too hot and payback period is between 11 and Classrooms are south-west facing with a stepped much too bright when the sun is at its zenith towards 13 years. facade including a double row of windows. The top the end of the school year in June. Hence, it may be windows set back from the lower level to allow necessary to fit a physical filter on the outside of the maximum solar radiation into the back of the glazing of the atrium. classroom. Indirect lighting has been extensively used to minimise risk of dazzle. Sun breakers have been The building envelope is made of rendered installed to this effect and the top windows have been blockwork walls. Interior walls are 16 cm thick placed on a small terrace covered with a reflective concrete shuttered walls and offer good thermal inertia flooring which directs the sunlight toward the ceiling. for the whole building. The building floor is also massive and inert so that it has a high thermal inertia The atrium forms a longitudinal inside alley to assist space heating and cooling depending of the leading to four classrooms: the south-west facing time of the year. The intermittent and seasonal nursery room and the three primary rooms. These are occupation of the building, the differences in students' positioned in line with a slight indent so as to ages and the diversity of the activities performed make accommodate a south-east facing French window which managing the space relatively complex. catches the morning light while facilitating the This consists of oil heating with underfloor heat progressive and cumulative lay-out of the rooms. Solar distribution in the nursery room and the rest room and radiation enters the atrium through a glass roof. In through hot water radiators in the classrooms. Six order to filter and subdue excessive sunlight coming zones with different temperatures have been identified. through at the beginning and at the end of the school The management of the system for space heating year and to limit night losses in winter, an inside incorporates programmes for each zone with suitable canvas awning has been provided. Additionally, the occupation scenarios. walls of the atrium are light-coloured. Despite all

Contact Jean Bouillot (Architecte) 44, rue des bles 21700 Nuit Saint Georges France CcISSOP [United Kingdom} School details Type of school: Primary

Floor area: 1 223 m2 Primary school Number of students: 87 Year of construction: 1912

Occupancy: 1 480 hours/year

Grid-connected wind turbine The school's average electricity consumption of 40 000 kWh/year will be supplied by the wind turbine. Any Participants in the project excess electricity produced will be sold to Northern The school is a brick built Victorian building which Electric and Gas for use in their distribution system. Durham County Council has been substantially re-designed inside to give a Northern Electric and Gas The income generated will be put into a fund to pay for smaller number of large semi-open plan classrooms and Winsund (Hugh Jennings) Ltd maintenance of the wind turbine. It is expected that, National Engineering Laboratory shared practical areas. Ceilings have been lowered Alpha Communications (Display at the current rate of consumption by the school and throughout the school as an energy saving measure. Panel) the rate paid by Northern Electric and Gas for the The school is lit by energy efficient lights as a result of excess electricity, the wind turbine will pay for itself Energy performance an initiative by the Education Department of Durham within its lifetime. However, with increased energy Reductions h associated carbon County Council. At the moment the school is heated by efficiency at the school and possible higher levels of dioxide emissions for the school an oil boiler. Alternative energy sources for space amount to 25 tomes per year. return on such "green energy", the payback time could heating are being investigated. The school has a This can be compared with an be considerably reduced for similar future projects. The average benchmark of 60 tomes national reputation for environmental activities wind turbine also serves as an educational example for per year for a similar type of school especially in terms of educational activities related to resulting in savings of 41 %. the County's school students. An interactive display renewable energy technologies and promoting within the school demonstrates the way in which the Financial data recycling. An energy team, which includes the head turbine supplies electricity and relates this to how the The cost of installation was teacher, caretaker and a group of students, examines school uses energy. This has already aroused sufficient € 182 540. € 34 650 was the possibilities for saving energy and water. contributed by Northern Electric interest to result in many wind-related projects in and Gas, which also provided science, art and language. € 3 175 of the € 15 875 cost of Cassop School was identified as an ideal situation the interactive display panel. The with high wind energy potential as part of Durham rest was funded by Duham County Council Renewable Energy Strategy. The wind County Council. turbine chosen, which is the first grid-connected wind turbine generator to be installed at a school on mainland United Kingdom, is an Atlantic Orient Corporation 15/50 kW machine, producing 50 kW at a Contact wind speed of 12 metres per second. The wind turbine John Cook (Project Engineer) and Jeff Kirton (Energy Manager) Durham County Council started operation on May 1999. It is estimated that it Environment & Technical Services Department will produce 100 000 kWh/year in an average wind County Hall Durham DH1 5UQ United Kingdom speed of 6.7 metres per second for this location. Tel: +44 191 383 4195 Phom.' INET77

School details CratO [Portugal]

Type of school: Secondary

Floor area: 2 950 m2 Number of students: Escola secundaria 348 Year of construction: 1988

Occupancy: 1 995 hours/year

Air-based solar heating and cooling 40 m2 of air solar collectors are used in winter to Participants preheat fresh intake air blown through natural in the project Winter weather conditions in this region are not ventilation into the classrooms. In summer, they force Luk Cuiha; Rosa Bela Costa stale air out of the classrooms through cross­ (Architect) harsh (1 683 degree days)but in summer it is extremely Mriist6ho da Educagao : hot although this mainly coincides with the school ventilation. These collectors, integrated into the Drecgao-Geraldas Ccnstnjgdes holidays. The school was designed to be compatible south-facing elevation, act as a heat absorber. They Es co lares are made of a layer of glass with a heat absorbing Drecgao Regional deEducagao with the need for solar protection in summer and the do Alentejo accumulation of solar gains during winter. The surface but no storage capacity. During winter, the air classrooms are south-facing and provided with large from the outside is heated and blown into the room, Energy performance glazed areas (995 nr) to achieve 40% solar gains. The and air renewal is achieved without any losses. In The energy performance of the summer, the temperature differential provides for air school in writer is 33 WMVnf/year ratio between the glazed area and floor area is 27%. compared with a benchmark of 67 The building has two storeys and surrounds two extraction from the room. The vents are operated kVWVmVyear for conventional playgrounds. Two ponds with small fountains cool the manually by the users. The system performance was school in this region. This implies assessed in November 1994. The heated air reaches an energy saving of 51 %. atmosphere by means of evaporation during the hottest periods of the year. However, the playgrounds are also temperatures that exceed 40° C, whereas the Financial data designed to absorb solar radiation, in order to avoid temperature of the absorbing surface is about 70° C. The total investment cost was excessively moist atmospheric conditions in winter. €603 500. The building is well insulated and has a high thermal inertia. The walls have double masonry casings, each 15 cm thick insulated with 7 cm of black agglomerated cork. The roof is covered with tiles, the attic space is well ventilated and the floor is insulated with a 10 cm layer of lightweight concrete and a 7 cm layer of black agglomerated cork.

Contact Antonio Baptists Parreira Tapada da Camara 7430 Crato Portugal Tel: +351 245 990 010 Fax: +351 245 996 710

Source ; ASSN 972-676-7 63-8 " EbWkros SoAares Pasavos em Por&yga/" ANE77/DER fhom; Nods* Oouiy Owin'

Dickleburgh [United Kingdom] School details Type of school: Primary

Floor area: 520 m2 Primary school Number of students: 108 Year of construction: 1985

Occupancy: 1 710 hours/year

Low energy design Electrically-driven heat pumps, utilising ground water as the heat source, are used to provide for space Participants and ground water heat pumps in the project heating. Geological tests indicated that an extensive supply of ground water at a temperature of 10 - 12°C is Norfolk County Council The school was built incorporating passive solar available at the school site throughout the year. As Energy performance principles and a very high standard of thermal the school is in a rural area, there is no gas supply and insulation in the external walls and roof (U-value of An energy performance of the heat pumps, although run by electricity, enable 80kV\tVnf/year has been 0.25 W/rrf C). Cavity walls insulated with 5 cm of this form of energy to be used more efficiently for calculated for the school and this polystyrene are used. The roof contains 16 cm of can be compared with a space heating purposes. The heat extracted from the mineral fibre between the ceiling joists. benchmark of 180kV\tVhf/year ground water is upgraded to 45°C by the heat pumps which would be representative for and is used to heat the school via polypropylene this type of school. This implies The school was built in the form of a triangle, with energy savings of 56%. coils in the classrooms and the narrow north-facing elevation consisting of the activities hall and natural/fan-assisted convectors Financial data kitchen stores and the plant room acting as a buffer for elsewhere. The total electrical rating is only 11 kW The capital cost of the energy the shared accommodation at the centre of the school. including circulation pumps. The heat pumps operate efficiency measires and the new The classrooms are south-facing with lean-to energy technology h this school with a coefficient of performance of approximately 3.5 greenhouses, or solaria, added to maximise solar heat was € 9 450 h 1984 prices. which means that 3.5 kW of useful heat are produced gains and reduce heat losses in winter. Even on for every 1 kW of electrical input. sunless winter days the temperature within the solaria remains 3 - 5°C above the external ambient The high standard of thermal insulation reduces temperature. This is maintained at 15 - 20°C during space heating reguirements and enables the school to bright sunshine even when the outside air temperature be heated overnight so that cheaper remains close to freezing. To minimise overheating in "off-peak" electricity can be used. summer, the greenhouses are provided with opening This allows the heat pumps to run at roofs and side vents and the fixed glass in the roof night for 80% of the time. Domestic section is treated with solar reflective film. hot water is provided by means of off- peak electricity with on-peak top-up as The average glazing to wall ratio is 25%, reguired during the day. This is comprising 40% single glazing on the southern aspect supplemented by 35 nr of solar panels reducing to only 10% on the northern aspect where incorporated into the sloping south double glazing is fitted. Thermal shutters are provided face of the roof. The school is linked for the large south facing windows which can be closed Photo: Norfolk County Council to Norfolk County Council's Remote Energy Management overnight during the winter months to retain heat. The System and can be effectively monitored on a day-to- school also utilises two heat recovery ventilation day basis. systems which extract air from the central core of rooms, such as circulation spaces and toilets, and feed Contact pre-heated air to the activities hall. These combined Mr J E Cobb (Environmental Officer) energy efficiency measures reduced the maximum space Norfolk County Council County Hall Martineau Lane heating demand of the building from 75 kW for a Norwich Norfolk NR1 2SF United Kingdom Tel: +44 1603 222 674 conventionally- built school to just 35 kW.

Council

Kingdom school

Services

Borough United Street

Architect)

1011

1HH Regent Architectural

477 (Project

of

NE8 Metropolitan

191

Brown Centre

+44

David Department Gateshead Civic Gateshead Tel: Contact

Kingdom]

­

to

and a

in

of

(with rates

solar in the

the The are

is to

cross

output.

through with to air walls used

of

flow return

system and

efficiency

a fuel. utilise

are

total according comprehensive atrium

stale

efficiency [United to reguirements.

teaching

level

and high ventilation strategies kW extension ventilation degree reduce

temperatures. solid CLASP pressure

throughout external

The

all the a extension of compensated

stacks

zoned to

reguirements low by in air

900

new performance level. low the 60°C

exhaust at a heating

fitted links

building

of

provide

been major series being order The

at

space

high provide

outlets. and a

a using are heated

to

the

mechanical ventilation

in

maximise

has external at

space of thermal

is

by the which

zone insulation

and rise Ventilation

to

Swan and windows

to contribution

both 40°C and

School. allows operates

good a vents

natural upon louvered also each of

of

approximately wool

windows

temperature

a

atrium heated stacks

blocks building of

supply

school as High constructed

consisted is and

and

construction.

opening

level possible.

heating design internal is The

air The system

water

usage,

mineral mineral louvered via glazed to

roof Opening contribution

boilers

sizes

high a

Junior This gain depending of a

teaching

flow fresh where

guarantees

temperature project original

recovery) as extension

heating pipe

building space boilers. use

new

combination

"warm"

GateSliead heat new gas-fired design utilised satisfy summer. school Solar spaces. gain Joseph The water and anticipated according a all ventilation. ventilated automatic to The existing which The the the A through features The

,

2 of

been both

a

m

school

for an

2 Council. 108 1260

to

type has

m

Borough

works.

of

800

gas

177

the

with

similar 12 of included 600

ty

build 1963, - similar

1999 7 was

were

heating

a

cut data natural equivalent

other

students: Partners

energy

new

which for of

is sum

details

to performance r

costs Ivletropolitan of

compared

school school water school:

construction:

performance

project

High and

000 hours/year

benchmark area: carried This

of the

of

extension extension

and

saving 794

565 contract the

energy

Floor 9 Occupancy: Number 2 new Year Original new Original Type School Junior

Financial Energy Participants in projects comparable Overall, The € consumption. school. 40% alteration average kWh/nf/year kWh/nf/year space anticipated OveAiupand Gateshead Council An ifl.i KcirlSkrOUcl [Sweden ] School details Type of school: Secondary

Heated area: 4 415 m2 Jandelskolan Number of students: 419 Year of construction: 1960

Occupancy: 2 550 hours/year

Novel design of ventilation system maintenance and cleaning. Heating coils are placed in the main distribution . The fans are of an axial Participants in the project type with variable freguency speed control. The heat The Jandel school was built in 1960 in the form of exchanger is a double flat-plate heat exchanger with Municipality cf Karlskrona with the single-storey buildings with flat roofs. During 1994- school administration and technical bypass dampers for capacity control. It recovers at 1995, a major retrofitting scheme was undertaken. services least 85% of the energy (95% at night and during the NUTEK The school has now a pitched roof reducing the risk of Built by contractors and workers weekends). There are no air filters in the system. moisture damage and providing space for fan rooms from the Unemployment Office in Instead insect netting is fitted over the supply air and ventilation ducts. Both lighting and ventilation Karlskrona intakes. The school is located in a rural area, with systems have been designed for very high energy Energy performance little air pollution. However some of the larger dust efficiency. New windows with very low U-values have particles settle out in the distribution ducts, and The energy requred for space been installed. This has eliminated cold downdraughts heating has been reduced from vacuum cleaners can be used for cleaning each air- from the windows, so that radiators are no longer 210 kVWn/hf/year to about 94 handling unit and ductwork. KWh/nf^ear, resulting in savings needed below them. Instead any extra heat that is of 55%. Electricity for building needed is supplied via the ventilation air. In order to The air is supplied through two supply air vents systems has also decreased by prevent excessive temperatures in classrooms, the about 20% despite the increased mounted in the wall, blowing the air downwards at number of computers used, in windows have protective solar layer. high speed. Although air velocity at the supply vents addition to the energy cost is high, integral ejectors for the room air combined reduction, retrofitting works The heating system was integrated into the provided the Municipality with a with the fact that the high air velocities are limited to ventilation system. Any additional heat needed is new school for at least 30 years a space of only a few centimetres above the floor, with halved heating costs and supplied to the air in the building by the ventilation mean that no draught problems are experienced. The much better comfort for pupils and air. The ventilation system consists of four air employees. air is distributed across the floor and then rises to be treatment units, installed in the roof space. The main removed through exhaust air grills in the ceiling. Financial data distribution ducts are large enough to allow entry for The whole investment for the Measurements of both the indoor climate and retrofitting is about € 2 000 000. energy use were made during January 1995. The The payback period for extra costs results, complemented by a guestionnaire that was for investments in lighting systems is about 4 years. The space heat- carried out at the same time, show that the indoor and ventilation-system was actually climate is very good and that the overall energy cheaper than a traditional system. efficiency is good. The energy costs have been reduced by € 40 000.

Contact Rune Tjader AB Karlskronahem 0. Vittusgatan 9A 371 33 Karls krona Sweden Tel: +46 455 30 49 00 Fax: +46 455 30 49 29 E-mail: [email protected] 0 0 0 0 0

School details Mansfield [UnitedKingdom] Type of school: Primary

Floor area: 1 490 m2 (126 m2 for mobile Beech Hill special school classrooms)

Number of students: 70

Year of construction: 1960

Occupancy: 1 300 hours/year Low-cost electricity savings in heating and lighting Participants in the project

Nottinghamshire County Council Many schools throughout the County of Energy Savrg Trust Nottinghamshire have temporary "Portakabin" East Midland Electricity accommodation, often referred to as mobiles, for use as

Energy performance classrooms. Although intended as a short-term solution to problems of space, it is not unusual for Potential electricity savings due to lighting improvements are such mobiles to be used over an unexpectedly long estimated to be 7 535 kWh per period of time. Due to the originally intended purposes year, which is equivalent to a of such accommodation, these mobiles are usually reduction of 3% in comparison with the typical consimpticn of a similar heated by on-peak electric fan heaters. These are Additional electricity savings have been achieved type of school. This results in relatively cheap to install and simple to control, but as a result of a County-wide scheme to replace all 60 W predicted savings in associated carbon dioxide emissions of 5 are comparatively expensive to operate. Hence, and 100 W tungsten filament light bulbs in classrooms, tonnes per year, or a 6% reduction measures to reduce the electricity consumption of offices and corridors with more efficient fluorescent compared to typical emissions these heaters are attractive options. As part of a lights. The main purpose of this scheme was to from a similar school. programme of energy efficiency improvements in improve lighting conditions and save energy. Work on Financial data schools across the County of Nottinghamshire, simple, replacing less energy efficient light bulbs was carried

Cost savings total about € 795 relatively low-cost measures were selected and out at Beech Hill special school in 1998. In total 124 each year for lighting pirposes. implemented in relevant situations. Beech Hill special bulbs, each rated at 100 W, were replaced. The types Additional savings in electricity school provides an example of the measures applied in consimption, associated carbon of energy efficient lighting selected in specific areas dioxide emissions and costs are this programme of work. depended on the actual use of the space. 16 W expected from the space heating compact fluorescent lights were fitted in the corridors control equipment. The cost cf the space heating control system was At Beech Hill special school, a control system and slim-line 58 W fluorescent tubes were installed in €635. for the electric fan heaters in these temporary the classrooms and offices. This demonstrates the classrooms was installed in 1997. It consists of an importance of targeting appropriate, low-cost energy optimum start controller with a room sensor plus a efficiency measures. movement detector. The optimum start has ensured the space heating is brought on when reguired, the room sensor maintains the room at the correct Contact temperature and the movement detector sets back the Neil Norwood (Senior Energy Officer) heater when the room is empty with a temperature Environment Department reduction of 5°C. This effective control of space Nottinghamshire County Council County Hall, heating has reduced electricity consumption in these West Bridgeford Nottingham NG2 7QP United Kingdom Tel: +44 115 977 3548 temporary buildings Photo: INETTI

M6l*tOld [Portugal] School details

Type of school: Nursery

Floor area: 669 m2 Centro infant!I Number of students: 141 Year of construction: 1982

Occupancy: 2 580 hours/year

Design integrating The school has a floor area of 669 nr and a glazed area of 156 nr giving a glazing to floor area ratio of Participants thermal considerations in the project 23%. The Trombe walls account for roughly 75% of the whole building glazed area and are connected to the Santa Casa da Misericdrdia de The Mertola nursery school was built M6rtola - Private Social Solidarity rooms with the highest occupancy rate, such as the Organisation founded r 1554 incorporating good thermal design utilising solar classrooms and activity rooms. The walls have double (School Owner) energy to a maximum. Locally, the winter is mild CAmara Municipal de M&tola casings and the space in between is filled with shale, (1 356 degree days) and the summer is extremely hot, which is an abundantly available material in the area. Energy performance although this season partly coincides with school The walls in contact with the ground and the roof are holidays. The school was built on a gently sloping site, The energy performance of the insulated with between 4 and 5 cm of expanded school h winter is18 kWh/hf^ear, which made it possible to partly bury the northern polystyrene foam. The south-facing facade has a compared with a benchmark of 61 elevation. Internal space is distributed between two WMVrrA^ear for a conventional glazed area of 110 nr fitted with double glazing. school in this region. This main areas. The biggest area is well positioned with a Direct solar gains come through the windows and the indicates energy savings of 70%. south/south-east facing aspect. This face of the greenhouses, and indirect gains through the Trombe building integrates a series of passive solar systems, Financial data walls. In summer, most of the windows are provided including from be walls in the facade, greenhouses and Total cost cf this project was with solar shading devices. Slats protect the first large windows to capture and store solar energy in €69 000 storey and the protruding first floor acts as solar winter. The Trombe walls are made of concrete and are protection for the ground floor level. In summer, fitted with low level and high level vents. The exterior excessive heat is prevented by placing reed mats, as of the wall is painted black and protected by a layer of guite a common regional tradition, on skylights instead glass. Ambient air is extracted through the low level of insulating curtains. Further shading is provided by vent and passed trees which were planted as part of this project. Cross­ into the room ventilation, incorporated in the project, proved to be a through the high failure due to a mistake in the construction phase. level vent. At the end of the day and at night, the Contact ventilation system ManueLa Luz Martins Santa Casa da Misericordia da Mertola provided by the Av. AureLiano Mira Fernandes 7750 MertoLa Portugal makes TeL: +351 286 622 121 Fax: +351 286 622 121 it possible to release the heat stored in the wall during the day.

Source ; 7S87V 972-676-763^8 " EdWTces Sobres PassAcs em Pof&rga/" /AETMDER School details Redondo [Portugal] Type of school: Primary

Floor area: 1 520 m2 Number of students: 190 Escola pri maria Year of construction: 1948

Occupancy: 1 120 hours/year

Efficient and economic use Participants in the project of a local energy resource

Camara Municipal do Redondo Mhistario da Educagao Redondo is situated in Alentejo in the southern part of Portugal , 200 km from Lisbon. Winter in this region Energy performance only has two or three really cold months (1 431 degree Compared to the previous situation days). Redondo is a wine-producing area and each year where space heathg was provided by electric radiators ushg 114 550 510 tonnes of pruned vine twigs are available as a kWh/year, the new system gives waste product for potential use. The Municipality of annual energy savings valued at €1 900. Redondo, in order to solve the local school heating conditions, decided to eguip it with a centralised space Financial data: heating system designed to burn vine twig bundles. The total investment cost for the Vine twigs are collected in the vineyards using a special heating system amounted to hay bailing machine and are packed in bundles of 0.5 m € 31 517, of which 70% was supported by the Valcren diameter and 1 m in length. This activity is supported Progamme of the European by the municipality. One hectare of vineyard produces Commission. Thegoss approximately one tonne of vine twigs. Once dried, to investment payback time, without fhancial support, is 5.5 years. a of 15%, the net calorific value of the vine twigs is near 4 kWh/kg, which is eguivalent to about 400 litres of fuel oil. The heating system relies on water storage and, therefore, takes up the peak heating during the combustion of the vine twig bundles, thus means of a four-way valve which keeps the return enhancing its efficiency and autonomy. temperature to the boiler higher than 55°C, which is the dew temperature. Hot water is independently The school is of masonry construction, typical of piped to radiators in each building in accordance with public buildings erected between the 1940's and the outside temperature and occupancy rate. 1960's. It has 13 classrooms distributed between 3 buildings which are heated by the centralised space heating system. This consists of a 150 kW horizontal hot water boiler with reversed flame, fed with the vine Contact twig bundles or wood and three hot water distribution Enga Susana SobraL grids, one for each building. The total energy released Agenda Regional de Energia do Centro e Baixo ALentejo-ARECBA is stored in a water tank that can contain up to 5,000 Braga da Republica,12 7800 BEJA Portugal Tel: +351 28431 0160 litres. The water tank is connected to the boiler by © © © Photo: JW LUFTFOTO

SkiVe [Denmark ] School details Type of school: Primary Hojslev Skole Heated area: 6 721 m2 Number of students: 415 Year of construction: 1902, 1907, 1957, and 1963

Occupancy: 1 600 hours/year Zone controlling system - The system was designed to provide space heating, and solar heating systems primarily, and water heating, secondarily. Participants in the project

- A part of the installation tested new features Municipality cf Skive A zone controlling system, which controls the involving special reflectors , consisting of bright Danish Energy Agency heat supply to all rooms, was fitted to 9 primary Danish Technological Institute aluminium plates, mounted on half of the solar Soby-Hojslev Heat Utility schools in the municipality of Skive. One of these, collectors. The reflectors were positioned so that, Arcon Solar Heat he. Hojslev primary school, was originally heated by an oil- when the sun is higher than 30° above the horizon, fired system up to 1963, when it was converted to Energy performance sunlight is reflected onto the solar collectors. This district heating. Prior to installing the zone Before zone controlling was construction is intended to capture approximately controlling system, the school heat supply was divided installed, the yearly space heating 20% more energy than a conventional solar heating demand was 170-175 into 9 zones of 800 nr each. Installation took place in system . kWh/nf^ear. Afterwards, this 1989. It is now divided into 72 zones ranging from decreased to approximately 125 rooms for teaching, teachers' room, halls, toilets, etc. kWn/nf^ear. The specific - When a large solar heat system is installed in a demand for space heating h the school, which is closed during the summer, problems school since the installation of the Due to relatively cold winters (3 350 degree days), solar heating system h 1994 can arise with excessively high temperatures in the decreased by 25%. the schools in Skive have significant space heating installation. The intention was from the start to try demands. In 1994, the government instructed to convince the privately-owned heat district heating Financial data municipalities to find means of decreasing the demand utility in the city to buy this amount of heat in the The investment for the zone for energy in the buildings by 25%. The schools in controlling system was summer. The heat utility agreed to co-operate. The Skive had already made considerable progress with approximately € 47 000. With an solution was for the school pumps to deliver hot annual saving cf approximately energy efficiency improvements, so an additional water into the district heating network at a minimum 300 000 kWh, the simple pay solution to zone controlling was necessary. Thus, a back time is approximately 3.5 temperature of between 70 and 75°C. Security proposal involving the installation of a large solar years. The investment for the solar systems have been installed to ensure that, in case heat system was € 134 000, heating system was put forward for Hojslev primary of a system failure, the school is "cut-off" and any 30 % being covered by grants school. The result was a solar heating system with an from the Danish Energy Agency. risks to the network are avoided. The utility pays a area of 375 nr, which could supply approximately 450 price for the delivered heat from the school which kWh per nr. The system differs in four different ways eguals half of the price the school has to pay when it from conventional solar heat systems: buys heat from the utility.

- The circulation pumps are run with variable flow as a function of the reguired temperature in the school. This gives a high degree of efficiency for the solar heat system and low electricity costs for the pumps.

Contact Michael Petersen The Municipality of Skive Technical Department 0stergade 13 Box 509 7800 Skive Denmark Fax: +45 97 52 50 80 E-mail: [email protected] School details Stuttgart-Plieningen [Germany] Type of school: Primary and Secondary Floor area: 5 420 m2 Grund und Hauptschule Number of students: 500

Year of construction: 1930, 1950 and 1970

Occupancy: 1 400 hours/year Radical energy efficient changes had been undertaken. Before the project, two refurbishment low pressure boilers with 800 kW were used to heat the Participants school. The boiler had to be switched on and off in the project manually by the caretaker. The caretaker's apartment This school, which dates from the 1930's, has a Stuttgart City Environment was also heated by this boiler which meant that parts Protection Department facade which was regarded as worth protecting, of the school building were heated even during school Fraunhofer Institut fur Bauphysik therefore only internal insulation measures could be Institut fur Kernenergie unci holidays. Energiesysteme considered as appropriate in any refurbishment scheme. Stuttgart City Buildhg Department A second part of the building dates from the 1950's and As part of a major refurbishment of the school, a and specialised consultants a third part was built in the 1970's. The whole building Industrial project partners as well new with low NOx (oxides of as teachers, parents and students structure suffers from cold bridges due not only to the nitrogen) emissions was installed. Energy consumption age of the structure and the materials used but also to Energy performance at peak output can be reduced by 60% compared to the connections between different construction elements. previous boiler as the insulation measures lower the The space heathg requirements of The windows of all three buildings had wooden frames the school have been reduced space heating demand of the building considerably. that have been damaged. Lighting in the classrooms from between 200 and 220 Radiant panels with low water capacities were installed. kVWVmVyear to 58 kWh/frAtyear, was poor as there was much dazzling sunlight which In order to achieve radiative balance, these panels are resulting h an average saving cf meant that shading protection was closed during the 72%. The electricity conscription placed above the windows. In all parts of the building, is new 14 kVWn/hf/year compared whole day and artificial light was used. The heating the outer walls have been insulated, either on the with 11 to 20 kWh/frAtyear, system was located in the oldest part of the building. indicating an average saving of inside or outside, depending on preservation Since the installation of the boiler in 1969, no major 10%. reguirements. In the two older parts of the building, the bottom of the top floor has also been covered with Financial data insulation foam. The insulation measures on the top There are three sources of financing for the project: The floor have been applied under the roof by teachers and financing cf the maintenance and students so that costs have been reduced and refurbishment measures that would awareness on energy matters has been raised. During have been necessary anyway were paid by the City cf Stuttgart. Each the installation of all these measures, cold bridges were of the industrial partners eliminated whenever possible and as efficiently as contributed material, money or possible. Lighting needs in the classroom were reduced consulting/engineering services. The German Ministry for Education, by painting the classrooms walls in lighter colours. Research and Technology took However, the lighting installations have also been responsibility for the research component. The tefal investment changed. Lamps with electronic ballasts and daylight- costs were about € 3100 000. dependent lighting controls have been fitted.

Contact Dr. VoLker KienzLen Landeshauptstadt Stuttgart Amt fur UmweLtschutz Postfach 10 60 34 70049 Stuttgart Germany Tel: +49 711 216 2241 Fax: +49 711 216 2413 E-mail: [email protected] WGOblGy [ United Kingdom ] School details

Type of school: Primary school with adjacent Primary school High school Floor area: Primary school - 1 252m 2, High school - 3 392m2

Number of students: Primary school - 240, The building is well-insulated; floor, roof and Wood fuel as a sustainable High school - 600 alternative to fossil fuels outside walls are highly insulated. The concrete Year of construction: blockwork of the inside walls is designed to store heat Primary school - 1997, and release it gradually. The building is designed to High school - 1955-1970 Occupancy: utilise daylight as well as natural ventilation. By Primary school - opening high and low level windows, air can be drawn 1 368 hours/year. through the classrooms. The high level windows High school - 1 596 hours/year provide excellent lighting. Low energy light fittings are installed. Local building materials which are Participants recycled, natural or non-toxic have been used. This in the project The heating system in this new primary school is includes the use of local bricks, timber window frames, a demonstration of how wood fuel can be used European Regional Finding recycled newspaper insulation, damp proofing produced Ministry of Agriculture, Fisheries efficiently and economically as a sustainable from reprocessed plastics, recyclable clay roof tiles, and Food alternative to fossil fuels. A 350 kW wood-fired boiler Rural Development Commission aluminium glazing bars, guttering and roof sheeting, was installed in 1997 and was fully operational during Department of Trade and Industry rubber and timber flooring and water-based paints. A through the Energy Technology autumn 1998. It operates for about 600 hours per year building energy management system with occupancy Support Unit and provides base load space heating reguirements. As Hereford and Worcester County detectors in rooms is used to control energy use in the the primary school design heat load is only 115 kW, the Council school. rest of the heat is exported to the adjacent high Energy performance school. Wood chips from woodland thinning operations Estimated reductions of 78 tonnes are supplied by a co-operative of local farmers known Contact per year h associated carbon dioxide emissions are expected for as 7Y Machinery Ring. Willow and poplar short rotation Iain Paul (Chief Architect) the school. This can be compared Worcester County Council County Hall coppice will also be used to supply wood chips in the with an average benchmark of 228 Spetchley Road Worcester WR5 2NP United Kingdom future. All the wood will be grown within a 16 tonnes per year for a similar type cf Tel: +44 1905 763763 kilometre radius of Weobley. school, resulthg h savings cf 34%. Financial data

The funding for modifying the school building with high levels of hsulation and ether energy saving features was provided from the normal budget of Hereford and Worcester County Council. The heathg system, consisting of boiler house, fuel store, heating mans and pumps, cost € 261 200 in 1997. European Regional Funding, administered by the Ministry cf Agnculture, Fisheries & Food, provided € 125 400. Matching funding was contributed by the Department cf Trade and Industry through the Energy Technology Support Unit and from Hereford and Worcester County Council. p. 26

Resume

Energie-CiteS is an association of reducing energy consumption and increasing renewable municipalities whose first priority is to promote energy use in small and large communities with sustainable and integrated local energy policies. The funding from the Energy Technology Support Unit, in association has involved about 150 municipalities in its the United Kingdom, and the European Commission. projects and has more than 90 members from all This has involved collaboration with local authorities, countries of the European Union. including Newark and Sherwood District Council, Energie-Cites objectives include : Sheffield City Council and the Local Authorities' Energy - the strengthening of the role of municipalities in Partnership. energy efficiency, the promotion of renewable energy Contact and the protection of the environment Resources Research Unit - to promote debate on the policies and initiatives of School of Environment and Development Sheffield Hallam University the European Union in these fields and publish City Campus Sheffield SI 1WB United Kingdom opinions Tel: +44 114 225 3549 Fax: +44 114 225 4496 - develop municipal initiatives by exchange of E-mail: [email protected] Website: www.shu.ac.uk/schools/urs/resru experience, transfer of know how and setting up joint projects. Energie-Cites activities are : Associagao Nacional de - the dissemination of information on community Municfpios Portugueses (ANMP) policies and decisions, municipal best practice and The National Association of the Portuguese transfer of know how Municipalities (ANMP) is the representative structure of - monitoring innovative municipal practice and in the Portuguese municipalities (municipios) and sections particular gathering information on best practice, of municipalities (freguesias). It was set up on the 20 preparation of joint analyses and opinions, May 1984 during its first congress at Figueira da Foz. It - organisation of events and in particular an annual has the legal status of a 'collective body of private law1, European seminar. by the strict wish of its respective delegates. All the political parties and all the Regions of Portugal (305 Contact municipalities and 4,241 sections of municipalities of Secretariat Energie-Cites 2, chemin de Palente 25000 Besangon France Continental Portugal and the autonomous regions of the Tel +33 3 81 65 36 80 Fax +33 3 81 50 73 51 Azores and Madeira) are represented in a spirit of E-mail: *@energie-cites.org Website: www.energie-cites.org brotherhood that expresses the political maturity of its

Brussels office Energie-Cites representatives. It is based on dialogue and search for 29, rue Paul Emile Janson 1050 Bruxelles Belgium a consensus essential to obtaining the best solutions for Tel: +32 2 544 09 21 Fax: +32 2 544 15 81 the problems of the local population. The main E-mail: [email protected] objectives of the association are: - representing and defending the municipalities and The Resources Research Unit in sections of municipalities before the government the School of Environment and - carrying out studies and projects on guestions that Development at Sheffield Hallam are within the competence of local authorities University specialises in evaluating energy use in - creating and organising consultative services and buildings, assessing energy efficiency improvements technical legal assistance for its members and investigating renewable energy potential as - developing informative action for local councillors practical means of achieving sustainable development. and training of the local administrative personnel The Unit has undertaken over 800 energy surveys in - exchanging experiences and information of a non-domestic buildings, including 45 schools, for the technical administrative nature between its members Department of the Environment, Transport and the - representing its members in national and Regions and the Building Research Establishment Ltd., international organisations. in the United Kingdom. This work contributes to the development of a national database of energy use and ANMP carbon dioxide emissions which assist policy Av. Marnoco E Sousa, 52 3000 Coimbra Portugal formulation in connection with government Tel: +351 239 40 44 34 Fax: +351 239 701 760 commitments to the Climate Change Convention. E-mail: [email protected] | Website: www.anmp.pt Additionally, the Unit has prepared energy plans for OPET NETWORK: ORGANISATIONS FOR THE PROMOTION OF ENERGY TECHNOLOGIES

The network of Organisations for the Promotion of Energy Technologies (OPET), supported by the European Commission, helps to disseminate new, clean and efficient energy technology solutions emerging from the research, development and demonstration activities of ENERGIE and its predecessor programmes. The activities of OPET Members across all member states, and of OPET Associates covering key world regions, include conferences, seminars, workshops, exhibitions, publications and other information and promotional actions aimed at stimulating the transfer and exploitation of improved energy technologies.

OPET 1 ARCTIC Contact: Allan Mackie 9 SEED 15 BALKAN VENET Telephone: +44 141 2425842 ASTER Sofia Energy Centre Umestan Foretagspark, Hus 201 Facsimile: +44 141 2425691 Via Morgagni, 4 51, James Boucher Blvd. SW-903 47 Umeaa Emai I :AI Ian .Mackie@scot land .gov. IT-40122 Bologna 1407 Sofia, Bulgaria Contact: Ms. France Goulet uk Contact: Elisabetta Toschi Contact: Violetta Groseva Telephone: +46-90 718162 or 60 Telephone: +39-05 1236242 Telephone : +359-2 683541 Facsimile: +46-90 718161 5 ENEA-ISNOVA Facsimile: +39-05 1227803 9625158 E-mail: france.goulet@venet. se ISNOVA s.c.r.l. E-mail: [email protected] Facsimile: +359-2 681461 Via Flaminia, 441 E-mail: [email protected] CESEN Spa Merinova IT-00196 Rome Piazza della Vittoria 11 A/8 Oy Merinova Ab Technology Contact: Wen Guo IT-16121 Genova ISPE Center Telephone: +39-06 30484059 Contact: Salvatore Campana P.O. 30-33 Elbacken 4A, FIN-81 065101, Facsimile: +39-06 30484447 Telephone: +39-010 5769037 Lacul Tei Blvd. 1 Vaasa, Finland E-mail: Facsimile: +39-010 541054 72301 Bucharest, Romania Contact: Johan Wasberg [email protected] E-mail: [email protected] Contact: Anca Popescu Telephone: +358-6 2828261 ENEA Telephone: +40-1 2103481 Facsimile: +358-6 2828299 CESVIT Via Anguillarese 301 Facsimile. +40-1 2103481 E-mail: Via G. del Plan del Carpini S. Maria di Galeria E-mail: [email protected] [email protected] IT-50127 Firenze IT-2400 Roma Contact: Lorenzo Frattali Contact: Francesco Ciampa Sintef Telephone: +39-055 4294239 Telephone: +39-06 30484118 EXERG IA Sintef Energy Research Facsimile: +39-055 4294220 Facsimile: +39-06 30484447 64, Louise Riencourt Str. Sem Saelands vei 11 E-mail: [email protected] E-mail: GR-11523 Athens 7034 Trondheim, Norway [email protected] Contact: George Georgocostas Contact: Jens Hetland 10 NETHERLANDS Telephone: +30-1 6996185 NOVEM Telephone: +47-73 597764 6 ROMANIA Facsimile: +30-1 6996186 Swentiboldstraat 21 Facsimile: +47-73 592889 ENERO E-mail: [email protected] NL-6130 AASittard E-mail: Enegeticienilor 8 Contact: Theo Haanen [email protected] 74568 Bucharest, Romania Telephone: +31 -46 4202304 16 RES POLAND Contact: Alexandru Florescu Facsimile: +31 -46 4528260 EC BREC 2 IRELAND Telephone: +40-1 322 0917 E-mail: [email protected] Rakowiecka 32 Irish Energy Centre Facsimile: +40-1 322 27 90 02-532 Warsaw, Poland Glasnevin E-mail: 11 EUZKADI-CYMRU Contact: Krzysztof Gierulski Dublin 9, Ireland [email protected] EVE Contact: Rita Ward Telephone : +48-58 3016636 San Vicente, 8 Edificio Albia l-P 14, Telephone: +353-1 8369080 7 CRONOS Facsimile: +48-58 3015788 E-48001 Bilbao Facsimile: +353 1 8372848 FAST E-mail: [email protected] Contact: Juan Reig Giner E-mail: [email protected] Piazzale Rodolfo Morandi 2 Telephone: +34-94 4355600 IT-20121 Milano Facsimile: +34-94 4249733 17 SWEDEN 3 PORTUGAL Contact: Paola Gabaldi E-mail: [email protected] STEM - Swedish National Energy CCE Telephone: +39-02 76015672 Administration Estrada de Alfragide, Praceta 1 Facsimile: +39-02 782485 DU LAS 631 04 Eskilstuna, Sweden E-mail: [email protected] PO-2720-537 Amadora Unitl Dyfi Eco Parc Contact: Sonja Ewerstein Contact: Luis Silva UK-SY20 8 AX Machynlleth Telephone: +46-8 54520338 ICAEN Telephone: +351-21 4722818/00 Contact: Janet Sanders Facsimile: +46-16 5442270 Av. Diagonal 453 bis, Atic Telephone: +44-1654 795014 Facsimile: +351-21 4722898 E-mail: [email protected] E-mail: [email protected] E-08036 Barcelona Facsimile: +44-1654 703000 Contact: Joan Josep Escobar E-mail: [email protected] Institute Superior Tecnico Telephone: +34 93 6220500 18 CZECH REPUBLIC Av. Rovisco Pais Facsimile: +34 93 6220501 12 DOPET Technology Centre of the PC-1049-001 Lisboa E-mail: [email protected] Danish Technological Institute Academy of Sciences Contact: Maria da Graga Carvalho Gregersensvej Rozvojova 135 Multisassari Telephone: +351-21 8417372 DK-2630 Taastrup 16502 Prague, Czech Republic StradaProvinciale La Crucca 5 Facsimile: +351-21 8475545 Contact: Nils Daugaard Contact: Karel Klusacek IT-7100 Sassari Telephone: +45-43 504350 E-mail: [email protected] Telephone : +420-2 20390213 Contact: Antonio Giovanni Rassu Facsimile: +45-43 507222 Facsimile: +420-2 33321607 Telephone: +39-079 3026031 E-mail: INESC-Porto E-mail: [email protected] Facsimile: +39-079 3026212 [email protected] Largo Mompilher, 22 E-mail: [email protected] PO-4050-392 Porto 13 GERMANY EGU Praha Eng.Ltd Contact: Vladimiro Miranda ADEM E-Corse Forschungszentrum Julich GmbH Podnikatelska, 1 Telephone: +351-22 2094234 Rue St. Claire 8 DE-52425 Julich 19011 Prague, Czech Republic Facsimile: +351 -22 2084172 FR-20182 Ajaccio Contact: Gillian Glaze Contact: Jaromir Beran E-mail: [email protected] Contact: Toussaint Folacci Telephone: +49-2461 615928 Telephone: +420-2 67193436 Telephone: +33-49 5517700 Facsimile: +49-2461 612880 Facsimile: +420-2 6441268 4 SCOTLAND Facsimile: +33-49 5512623 E-mail: [email protected] E-mail: [email protected] NIFES Ltd 8 Woodside Terrace 8 SLOVAKIA 14 SPAIN UK-G3 7UY Glasgow Energy Centre Bratislava I DAE DEA Contact: Andrew Hannah Bajkalska 27 Paseo de la Castellana 95 Benesova 425 Telephone: +44 141 3322453 827 99 Bratislava 27 -Slovakia E-28046 Madrid 66442 Prague, Czech Republic Facsimile: +44 141 3330402 Contact : Vladimir Heel Contact: Virginia Vivanco Cohn Contact: Hana Kuklinkova E-mail: [email protected] Telephone: +421-7 58248472 Telephone: +34-91 4565024 Telephone: +420-2452 22602 Scottish Energy Efficiency Office Facsimile: +421-7 58248470 Facsimile: +34-91 5551389 Facsimile: +420-2452 22684 UK-G2 6AT Glasgow E-mail: [email protected] E-mail: [email protected] E-mail: deabox a sky.cz

These data are subject to possible change. For further information, please contact the above internet website address or Fax +32 2 2966016 19 BLACK SEA 22 FRANCE Energieagentur Sachsen-Anhalt SAARE MAAVALITSUS Black Sea Regional Energy Centre ADEME Universitaetsplatz 10 Saaremaa County Government Triaditza 8 27, Rue Louis Vicat DE-39104 Magdeburg 1 Loss! Str. 1040 Sofia, Bulgaria FR-75015 Paris Contact: Werner Zscherpe EE 3300 Kuressaare Estonia Contact: Ekateriana Kanatova Contact: Florence Clement Telephone: +49-391 73772-0 Contact: Tarmo Pikner Telephone: +359-2 9806854 Telephone: +33-1 47652331 Facsimile: +49-391 73772-23 Telephone: +372-4 533499 Facsimile: +359-2 9806854 Facsimile: +33-1 46455236 E-mail: Facsimile: +372-4 533448 E-mail: [email protected] E-mail: [email protected] [email protected] E-mail: [email protected]

20 CROSS-BORDER 28 GERMAN POLISH 23 UK 26 FINLAND Berliner Energieagentur BAVARIA AUSTRIA ETSU ZREU The National Technology Agency Rudolstr. 9 AEA Technology pic Kyllikinportti 2 DE-10245 Berlin WieshuberstraBe 3 Harwell, Did cot, FI-00101 Helsinki Contact: Ralf Goldmann DE-93059 Regensburg UK-OX11 ORA Oxfordshire Contact: Marjatta Aarniala Telephone: +49-30 29333031 Contact: Toni Lautenschlager Contact: Lorraine Watling Telephone: +358-10 5215736 Facsimile: +49-30 29333099 Telephone: +49-941 464190 Telephone: +44 1235 432014 Facsimile: +358-10 5215905 E-mail: goldmann@berliner-e- Facsimile: +49-941 4641910 Facsimile: +44 1235 433434 E-mail: [email protected] agentur.de E-mail: [email protected] E-mail: [email protected] The Polish National Energy ESV - O.O. Energiesparverband Finntech Finnish Technology WREAN Conservation Agency (KAPE) Landstrasse 45 Teknikantie 12 1 Newgents Entry Nowogrodzka 35/41 AT-4020 Linz FI-02151 Espoo UK-BT74 7DF Enniskillen PL-00-691 Warsaw, Poland Contact: Christiana Egger Contact: Leena Grandell Contact: Robert Gibson Contact: Marina Coey Telephone: +43-732 65844380 Telephone: +358-9 4566098 Telephone: +44-1365 328269 Telephone: +48-22 6224389 Facsimile: +43-732 65844383 Facsimile: +358-9 4567008 Facsimile: +44-1365 329771 Facsimile: +48-22 6222796 E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] KK Osterreichische Baltycka Poszanowania Energii Kommunalkredit AG Technical Research Centre of 24 GUANGZHOU (BAPE) Turkenstrasse 9 Finland Guangzhou Institute of Energy Podwale Przedmiejskie 30 AT-1092 Vienna Vuorimiehentie 5 Conversion PL-80-824 Gdansk, Poland Contact: Kathrin Kienel-Mayer PC Box 1000 The Chinese Academy of Sc. Contact: Edmund Wach Telephone: +43-1 31631440 FI-02044 Espoo 81 Xianlie Central Road Telephone: +48-58 3058436 Facsimile: +43-1 31631105 Contact: Eija Alakangas Guangzhou Facsimile: +48-58 3058436 E-mail: [email protected] Telephone: +358-14 672611 510070 Guangzhou, P.R.China E-mail: [email protected] Contact: Deng Yuanchang Facsimile: +358-14 672598 LEV-Landesenergieverein Telephone: +86-20 87606993 E-mail: [email protected] Niedersachsische Energieagentur Steiermark Facsimile: +86-20 87302770 Ruhmkorffstrasse 1 Burggasse 9 E-mail: [email protected] DE-30163 Hannover AT-8010 Graz, Austria 27 European ISLANDS Contact: Ann erase Horter Contact: Gerhard Ulz International Scientific Council Telephone: +49-511 9652917 Acta Energiae Sinica for Island Development Telephone: +43-316 8773389 Facsimile: +49-511 9652999 Facsimile: +43-316 8773391 China Solar Energy Society c/o UNESCO E-mail: [email protected] E-mail: [email protected] 3 Hua Yuan Lu, Haidian District 1, rue Miollis 100083 Beijing, China FR-75015 Paris 29 INDIA Contact: Li Jintang Contact: Pier Giovanni D’ayala 21 SOLID FUELS Tata Energy Research Institute Telephone: +86-10 62001037 Cl EM AT Telephone: +33-1 45684056 DARBARI SETH BLOCK Facsimile: +86-10 62012880 Avd. Complutense 22 Facsimile: +33-1 45685804 Habitat Place, Lodi Road E-mail: [email protected] E-28 040 Madrid E-mail: [email protected] 110 003 New Delhi, India Contact: Fernando Alegria Contact: Am it Kumar Telephone: +34-91 3466343 Committee of Biomass Energy, ITER Telephone: +91-11 4622246 Facsimile: +34-91 3466455 China Rural Energy Industrial Poligono Industrial de Granadilla - Facsimile: +91-11 4621770 E-mail: [email protected] Association Parque Eolico E-mail: [email protected] 16 Dong San Huan Bei Lu, ES-3861 1 San Isidro - Tenerife The Combustion Engineering 30 HUNGARY Chaoyang District Contact: Manuel Cendagorta Association National Technical Information 100026 Beijing, China Galarza Lopez 1a Clarke Street Centre and Library (OMIKK) Contact: Wang Mengjie Telephone: +34-922 391000 UK-CF5 SAL Cardiff Muzeum u 17 Telephone: +86-10 65076385 Facsimile: +34-922 391001 Contact: David Arnold H-1088 Budapest, Hungary Facsimile: +86-10 65076386 E-mail: [email protected] Telephone: +44-29 20400670 E-mail: [email protected] Contact: Gyula Daniel Nyerges Facsimile: +44-29 20400672 Telephone: +36-1 2663123 E-mail :info@cea. org.uk National Technical University of Facsimile: +36-1 3382702 25 CORA Athens E-mail: [email protected] Saarlandische Energie-Agentur CSFTA 9, Heroon Polytech niou Str. Altenkesselerstrasse 17 GR-15780 Zografu - Athens KTI Greece DE-66115 Saarbrucken Contact: Arthouros Zervos Institute for Transport Sciences Contact: Emmanuel Kakaras Contact: Nicola Sacca Telephone: +30-1 7721030 Than Karoyl u. 3-5 Pf 107 Telephone: +30-1 6546637 Telephone: +49-681 9762174 Facsimile: +30-1 7721047 H-1518 1119 Budapest, Hungary Facsimile: +30-1 6527539 Facsimile: +49-681 9762175 E-mail: [email protected] Contact: Imre Buki E-mail: [email protected] E-mail: [email protected] Telephone: +36-1 2055904 Facsimile: +36-1 2055927 ICRET Certcetare sa Brandenburgische Energiespar- AREAM E-mail: [email protected] VITAN, 236 Agentur Madeira Tecnopolo 74369 Bucharest, Romania Energy Centre Hungary FeuerbachstraBe 24/25 PO-9000-390 Funchal Contact: Catalin Flueraru Konyves Kalman Korut 76 DE-14471 Potsdam Contact: Jose Manuel Melim Telephone: +40-1 3229247 H-1087 Budapest, Hungary Contact: Georg Wagener-Lohse Mendes Facsimile: +40-1 3214170 Contact: Andreas Szaloki Telephone: +49-331 98251-0 Telephone: +351 -91 723300 E-mail: Telephone: +36-1 3331304 Facsimile: +49-331 98251-40 Facsimile: +351-91 720033 [email protected] Facsimile: +36-1 3039065 E-mail :[email protected] E-mail: [email protected] m i on ita@i cpetcerceta re.pcnet. ro E-mail: [email protected]

World Coal Institute Zentrum fur Innovation und Assoc.Nat. Comuni 31 PACTO ANDINO Oxford House, 182 Upper Technik in Nordrhein-Westfalen Isole Minor! Cenergia Richmond Road, Putney Dohne 54 Via dei Prefetti Derain n° 198 UK-London SW15 2SH DE-45468 Muelheim an der Ruhr IT-186 Roma Lima 41, Lima, Peru Contact: Charlotte Griffiths Contact: Herbert Rath Contact: Franco Cavallaro Contact: Jorge Aguinaga Diaz Telephone: +44-20 82466611 Telephone: +49-208 30004-23 Telephone: +39-090 361967 Telephone: +51-1 4759671 Facsimile: +44-20 82466622 Facsimile: +49-208 30004-29 Facsimile: +39-090 343828 Facsimile: +51-1 2249847 E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] E-mail: [email protected]. pe

These data are subject to possible change. For further information, please contact the above internet website address or Fax +32 2 2966016 Ministerio de Energia y Minas 34 SLOVENIA LDK 44 SOUTH SPAIN Direccion de Energies Alternatives Institute “Jozef Stefan ” Sp. Triantafyllou 7 SODEAN Paez 884 y Mercadillo Jamova 39 GR-11361 Athens Isaac Newton Isla de la Cartuja Edf. Interandina SI-1001 Ljubljana, Slovenia Contact: Christos Zacharias E-41092 Sevilla Quito, Ecuador Contact: Tomaz Fatur Telephone: +30-1 8629660 Contact: Maria Luisa Borra Marcos Contact: Balseca Granja Telephone: +386-61 1885210 Facsimile: +30-1 8617681 Telephone: +34-95 4460966 Telephone: +59-32 565474 Facsimile: +386-61 1612335 E-mail: [email protected] Facsimile: +34-95 4460628 Facsimile: +59-32 565474 E-mail: [email protected] E-mail :[email protected] E-mail: [email protected] 39 CAUCASUS Civil Engineering Institute ZRMK A.G.E. Energy Efficiency Centre Georgia 32 AUSTRIA Dimiceva 12 Castilla la Mancha D. Agmegshenebeli Ave. 61 EM A. SI-1000 Ljubljana, Slovenia Tesifonte Gal I ego 22 380002 Tbilisi, Georgia Linke Wienzeile 18 Contact: Marjana Sijanec Zavri E-2002 Albacete Contact: George Abu lashvili AT-1060 Vienna Telephone: +386-61 1888342 Contact: Agustin Aragon Mesa Telephone: +995-32 943076 Contact: Gunter Simader Facsimile: +386-61 1367451 Telephone: +34-925 269800 Facsimile: +995-32 921508 Telephone: +43-1 5861524 E-mail: [email protected] Facsimile: +34-925 267872 E-mail: [email protected] Facsimile: +43-1 5869488 E-mail: [email protected] E-mail: [email protected] University of Ljubljana, [email protected] Center for Energy and SOFIEX O.E.K.V. Environment Technologies Energy Strategy Centre Moreno de Vargas N° 6 MuseumstraBe 5 Askerceva 6 Amaranotsain str. 127 E-6800 Merida AT-1070 Wien SI-1000 Ljubljana, Slovenia 375047 Yerevan, Amenia Contact: Antonio Ruiz Romero Contact: Franz Urban Contact: Vincenc Butala Contact: Surev Shatvorian Telephone: +34-924 319159 Telephone: +43-1 5237511 Telephone: +386-61 1771421 Telephone: +374-2 654052 Facsimile: +34-924 319212 Facsimile: +43-1 5263609 Facsimile: +386-61 218567 Facsimile: +374-2 525783 E-mail: [email protected] E-mail: [email protected] E-mail: vinvenc [email protected] -Ij.si E-mail: [email protected] IMPIVA BIT 35 RUSSIA Plaza del Ayuntamiento, 6 Energy Center Azerbaijan Wiedner HauptstraBe 76 Intersol a reenter E-48002 Valencia Republic AT-1040 Wien 2, 1-st Veshyakovski Proezd Contact: Joaquin Ortola Pastor Zardabi Avenue 94 Contact: Manfred Horvat 109456 Moscow, Russia Telephone: +34-96 3986336 370016 Baku, Azerbaijan Telephone: +43-1 5811616-114 Contact: Akhsr Pinov Facsimile: +34-96 3986322 Contact: Marina Sosina Facsimile: +43-1 5811616-18 Telephone: +7-095 1719670 E-mail: Ximo.ortola@impiva. Telephone: +994-12 314208 or E-mail: [email protected] Facsimile: +7-095 17149670 m400.gva.es E-mail: [email protected] 931645 Energieinstitut Vorarlberg Facsimile: +994-12 312036 45 ISRAEL StadstraBe 33/CCD St. Petersburg Energy Centre E-mail: [email protected] AT-6850 Dornbim Polyustrovsky Prospect 15 Block 2 Tel-Aviv University Contact: Kurt Hammerle Kalininskiy Rayon 40 BELGIUM 69978 Tel Aviv, Israel Telephone: +43-5572 31202-0 195221 St. Pertersburg, Russia Vlaamse Thermie Coordinatie Contact: Yair Sharan Facsimile: +43-512 589913-30 Contact: Nikita Solovyov (VTC) Telephone: +972-3 6407573 E-mail: Telephone: +7-812 3271517 Boeretang 200 Facsimile: +972-3 6410193 haemmerle.energieinstitut@ccd. Facsimile: +7-812 3271518 BE-2400 Mol E-mail: [email protected] vol.at E-mail: [email protected] Contact: Greet Vanuytsel Telephone: +32-14 335822 Samuel Neaman Institute Energie Tirol 36 SOUTHERN AFRICA Facsimile: +32-14 321185 Technion City Adamgasse 4/III Minerals and Energy Policy Centre E-mail: [email protected] 32000 Haifa, Israel AT-6020 Innsbruck 76, Juta Street Contact: David Kohn Contact: Bruno Oberhuber 2050 Braamfontein Telephone: +972-4 8292158 Telephone: +43-512 589913 Johannesburg, South Africa Institut Wallon ASBL Facsimile: +972-4 8231889 Facsimile: +43-512 589913-30 Contact: Paul Mathaha Boulevard Frere Orban 4 E-mail: [email protected] E-mail: Telephone: +27-11 4038013 BE-5000 Namur [email protected] Facsimile: +27-11 4038023 Contact: Xavier Dubuisson Manufacturers Association of E-mail: [email protected] Telephone: +32-81 250480 Israel UBW - Salzburg Facsimile: +32-81 250490 Industry House Julius-Raab-Platz 1 Botswana Technology Centre E-mail: 29 Hamered St. AT-5027 Salzburg 10062 Machel Drive [email protected] Contact: Wolfgang Schorghuber Gaborone, Botswana 500022 - 68125 Tel-Aviv, Israel Telephone: +43-662 8888-339 Contact: Nick Ndaba Nikosanah Contact: Yechiel Assia Facsimile: +43-512 589913-30 Telephone: +267 314161 or 41 LITHUANIA Telephone: +972-3 5198830 E-mail: [email protected] 584092 Lithuanian Energy Institute Facsimile: +972-3 5103152 Facsimile: +267 374677 Breslaujos 3 E-mail: [email protected] AEE E-mail: [email protected] 3035 Kaunas, Lithuania Feldgasse 19 Contact: Vladislovas Katinas AT-8200 Gleisdorf 37 LATVIA Telephone: +370-7 454034 Contact: Werner Weiss EKODOMA Facsimile: +370-7 351271 Telephone: +43-3112 588617 Zen ten es Street 12-49 E-mail: [email protected] Facsimile: +43-3112 588618 1069 Riga, Latvia E-mail: [email protected] Contact : Andra Blumberga 42 CYPRUS Telephone: +371 7210597 Applied Energy Centre of the 33 ESTONIA Facsimile: +371 7210597 Ministry of Commerce, Industry Estonian Energy Research E-mail: [email protected] and Tourism Republic of Cyprus Institute Araouzos 6 1 Pa I diski Road RTU EED CY-1421 Nicosia 10137 Tallinn, Estonia Kronvalda boulv. 1 Contact: Solon Kassinis Contact: Inge Iroos LV-1010 Riga, Latvia Telephone: +357-2 867140 Telephone: +372-2 450303 Contact : Dagnija Blumberga Facsimile: +357-2 375120 Facsimile: +372-2 6311570 Telephone: +371 9419783 E-mail: [email protected] E-mail: [email protected] Facsimile: +371 7089923 E-mail: [email protected] Archimede - 43 ZHEIJIANG Estonian Foundation of EU 38 HECOPET Zheijiang Provincial Energy Education & Research CRES Research Institute Programmes 19th Km Marathonos Ave. 218 Wener Road Kompanii 2 GR-190 09 Pikermi 310012 Hangzhou, China 51007 Tartu, Estonia Contact: Maria Kontoni Contact: Ms Huang Dongfeng Contact: Rene Tonnisson Telephone: +30-1 6039900 Telephone: +86-571 8840792 Telephone: +372-7 300328 Facsimile: +30-1 6039911,904 Facsimile: +86-571 8823621 Facsimile: +372-7 300336 E-mail: [email protected] E-mail: [email protected]

These data are subject to possible change. For further information, please contact the above internet website address or Fax +32 2 2966016 NOTICE TO THE READER

Extensive information on the European Union is available through the EUROPA service at internet website address http://europa.eu.int

The overall objective of the European Union's energy policy is to help ensure a sustainable energy system for Europe's citizens and businesses, by supporting and promoting secure energy supplies of high service quality at competitive prices and in an environmentally compatible way. European Commission DG for Energy and Transport initiates, coordinates and manages energy policy actions at, transnational level in the fields of solid fuels, oil & gas, electricity, nuclear energy, renewable energy sources and the efficient use of energy. The most important actions concern maintaining and enhancing security of energy supply and international cooperation, strengthening the integrity of energy markets and promoting sustainable development in the energy field.

A central policy instrument is its support and promotion of energy research, technological development and demonstration (RTD), principally through the ENERGIE sub-programme (jointly managed with DG Research) within the theme "Energy, Environment & Sustainable Development" under the European Union's Fifth Framework Programme for RTD. This contributes to sustainable development by focusing on key activities crucial for social well-being and economic competitiveness in Europe.

Other DG for Energy and Transport managed programmes such as SAVE, ALTENER and SYNERGY focus on accelerating the market uptake of cleaner and more efficient energy systems through legal, administrative, promotional and structural change measures on a trans-regional basis. As part of the wider Energy Framework Programme, they logically complement and reinforce the impacts of ENERGIE.

The internet website address for the Fifth Framework Programme is http://www.cordis.lu/fp5/home.html

Further information on DG for Energy and Transport activities is available at the internet website address Council http://europa.eu.int/comm/commissioners/palacio/index_en.htm Borough The European Commission Directorate-General for Energy and Transport 200 Rue de la Loi Metropolitan

B-1049 Brussels Belgium Fax +32 2 2950577 Gateshead

mi, E-mail: [email protected] lam

Mai

Pirjo

Ijken,

van

Jan

:

c r e d its

P h o to

-

39

29

61

81

(0)3

+33

)

(Besangon

QUANTI

TUTTI

:

d e s ig n

G ra p h ic ***** ★ ★ ★ . ★ *★*

De nouvelles solutions pour I'utilisation de I'energie

Un guide pour Les technologies energetiques duraoles dans les ecoles ENERGIE

Cette publication ENERGIE est editee dans une collection presentant le potential des technologies energetiques non nucleates innovantes destinees a etre largement appliquees et qui offrent de meilleurs services au citoyen. Les strategies de la Commission europeenne ont pour objectif d'informer les communautes scientifiques et de I'ingenierie, les decideurs politiques et les acteurs commerciaux cles, afin qu'ils creent, encouragent, acquierent et mettent en oeuvre les solutions les plus efficaces et les plus "durables" pour eux-memes et la societe.

Financees par le Seme Programme-cadre de Recherche et Developpement de I'Union europeenne, les aides du sous programme ENERGIE couvrent la recherche, le developpement, la demonstration, la diffusion, ^application et ^introduction sur les marches, en d'autres mots le processus complet qui permet de convertir les idees nouvelles en solutions pratiques qui repondent aux besoins reels. Les publications ENERGIE, sous forme papier ou electronique, diffusent les resultats des actions engagees sous ce Programme-cadre et ses predecesseurs, incluant les actions JOULE- THERMIE precedentes. Gere conjointement par la Direction genera le Recherche et la Direction genera le Energie et Transport, le programme ENERGIE a un budget total de 1 042 millions d'euros qui couvre la periode allant de 1999 a 2002.

Le programme est principalement articule autour de deux actions cles "Une energie plus propre, y compris les sources d'energie renouvelables" et "Une energie economique efficace pour une Europe concurrentielle" au sein de Faction "Energie, environnement et developpement durable", auxquelles s'ajoutent des activites de coordination et de cooperation sectorielle et intersectorielle. Conformement aux objectifs enonces par le proto cole de Kyoto et les politiques associees, les activites integrees d'ENERGIE sont concentrees sur de nouvelles solutions qui apportent des a vantages directs, environnementaux et economiques aux consommateurs d'energie et renforcent I'avantage competitif de I'Europe en confirmant sa position de leader dans le domaine des technologies energetiques de demain. Les ameliorations qui en decoulent en termes energetiques, environnementaux et economiques aideront a garantir un avenir durable aux citoyens europeens.

Publie par

Energie-Cites 2, chemin de Palente FR-25000 Besangon Tel: +33 3 81 65 36 80 Fax: +33 3 81 50 73 51 E-mail: *@energie-cites.org

Avec le soutien de la COMMISSION EUROPEENNE Direction Generate Energie et Transport

Le «Guide pour les technologies energetiques durables dans les ecoles» est disponible en anglais, en frangais et en portugais.

MENTION LEGALE Ni la Commission europeenne, ni aucune personne agissant au nom de la Commission n'est responsable de I'utilisation qui serait faite des informations contenues dans cette publication. ® Communautes europeennes, 2000 Reproduction autorisee moyennant mention de la source.

Impn'me en France Un guide pour Les technologies energetiques durables dans les ecoles

De nouvelles solutions pour Vutilisation de I'energie

Energie-Cites

Resources Research Unit, School of Environment and Development, Sheffield Hallam University

Associagao Nacional de Municipios Portugueses

Juillet 2000 Introduction

line ecole n'est pas un batiment comma un "Guide pour les technologies energetiques autre car il abrite nos enfants qui y font durables dans les ecoles" a ete elabore. II a ete I'apprentissage de leur vie de citoyens, congu comme un outil d'aide a la decision responsables de leur environnement. destine aux autorites locales europeennes et aux gestionnaires d'ecoles a fin de : II est done important que ces batiments - les assister dans leurs choix de technologies soient exemplaires du point de vue de energetiques dans le cadre de projets de ['utilisation des ressources fossiles, des rejets constructions neuves ou de renovations de polluants, de la qualite des materiaux, sans batiments scolaires, oublier la qualite de vie et le niveau de contort. - leur donner un referential pour mesurer et I Is peuvent alors servir de support pedagogique evaluer la performance energetique dans ses a des actions educatives et contribuer ainsi a la differents aspects et les aider a convaincre connaissance des ressources energetiques et de les decideurs d'utiliser des technologies et leur utilisation durable. methodes energetiques durables.

Toutes les municipality Ce guide est compose de trois parties : europeennes ont des ecoles a gerer, a - une Liste des technologies energetiques renover et/ou a construire dans le souci d'un durables, equilibre des finances communales. Or - une presentation des indicateurs de certaines ecoles, mal congues ou mal performance energetique, entretenues, ont des consommations d'energie - quinze fiches de cas d'application de elevees qui pourraient etre reduites par solutions energetiques durables dans les ['application de mesures visant a ameliorer leur ecoles de sept pays europeens. efficacite energetique. Les nouvelles constructions, quant a elles, peuvent se II a ete elabore par Energie-Cites, la concevoir avec de tres faibles consommations Sheffield Hallam University et ['Association des energetiques. Les municipality ont done tout Municipality Portugaises en lien avec un interet a faire le choix de solutions durables groupe de collectivity locales europeennes qui faisant appel a des mesures et a des ont pu partager leurs experiences et bonnes technologies energetiques efficaces. pratiques lors de trois sessions de travail: a Grenoble (France), Newark-on-Trent (Royaume- C’est dans cette perspective que le Uni) et Coimbra (Portugal).

Le «Guide pour les technologies energetiques durables dans les ecoles» est disponible en anglais, en frangais et en portugais. Sommaire

Introduction ______page 2

Technologies et methodes

energetiques durables ______page 4

Mesure et comparaison

des performances energetiques ______page s

Localisation des projets ______pages

Projets de demonstration______page s

Solutions energetiques durables

dans les ecoles : etudes de cas______page 11

Les partenaires ______page26 Technologies et methodes energetigues durables

Afin de permettre aux maitres d'ouvrage d'evaluer les possibilites d'adopter des technologies energetigues performantes dans leurs projets de construction ou de rehabilitation d'ecoles, une liste des technologies energetigues durables a ete etablie. Elle est composee de technologies "hard" (materiaux a haute performance energetigue, gestion du batiment, petite cogeneration, etc.) et egalement d'elements plus "soft" qui font completement partie de I'environnement des projets (financement et montage de projet, moyens pour influencer I'approvisionnement du batiment, participation des utilisateurs, etc).

Les technologies sont symbolisees par des pictogrammes qui sont repris ulterieurement dans le guide pour illustrer les etudes de cas.

Achats publics Equipements de chauffage @ - cahier des charges pour la et d’eau chaude sanitaire construction d'ecoles - production de chaleur autonome ou raccordee Conception du batiment au reseau de chaleur - orientation du batiment, - chaudiere a haut rendement ou bioclimatisme, chauffage et basse consommation climatisation passifs, etc. - petite cogeneration - conception et disposition des - capteur solaire thermigue espaces - chaudiere biomasse Connaissance Distribution et emission de son patrimoine de chaleur - diagnostic energetigue - plancher chauffant basse Enveloppe du batiment temperature - materiaux de construction et - ventilo-convecteur d'isolation a haute performance energetigue - et/ou a faible contenu energetigue et environnemental - fenetre Equipement de Fonctionnement climatisation des equipements - conception evitant/limitant la - regulation climatisation - programmation - production, distribution et - telegestion emission de froid etc. - gestion de la puissance (delestage, optimisaton de Equipements de contrats) production electrique - equipe energie / surveillance (+ approvisionnement) - photovolta'ique Autres equipements - eolien - materiel de cuisine - approvisionnement en energie ©- materiel de lavage verte - four a poterie - delestage pour limiter la - autres puissance Financement Equipements de ventilation - contracting - ventilation naturelle ©- tiers-financement - ventilation mecanique - autres controlee Intervention - double flux des utilisateurs - modulable - enseignants et autres Equipements d’eclairage personnels - eclairage naturel - eleves (dimension pedagogique - lampe, reflecteur de la gestion de I'energie/ - temporisation d'eclairage promotion des energies renouvelables) Utilisation rationnelle - mise en place des plans de I’eau energetiques - robinetterie / douche econome - WC econome - recuperation des eaux pluviales Mesure et comparison des performances energetiques

Les indicateurs de performance periode d'occupation ou d'utilisation de L'ecoLe. energetique sont indispensables a une bonne II existe un grand nombre d'indicateurs de gestion de l'energie car its permettent de : performance energetique qui se differencient par - mesurer La consommation d'energie d'un I'utilisation energetique qu'ils sont senses batiment sur une periode donnee afin de traduire. Ainsi, pour Les indicateurs de determiner s'iLy a amelioration, stabilisation consommation d'energie par example, on ou degradation, distingue entre energie primaire, a savoir la - evaluer La performance energetique en La quantite d'energie presente dans Les ressources comparant a celle d'autres utilisateurs et a des naturelles, et energie livree, c'est-a-dire L'energie valeurs standards et definir ainsi une efficacite fournie par Les combustibles et I'electricite relative, achates par L'ecoLe. Etant donna qua L'energie - estimer les avantages potentials de la mise en Livree peut prendre des formes tres variees, elle oeuvre de mesures visant a ameliorer l'efficacite est parfois sous-divisee en deux categories : energetique ou de nouvelles technologies combustibles fossiles (charbon, gaz natural, fuel energetiques, en assurer Le suivi et le bon etc.) et electricite. D'autres indicateurs de fonctionnement. performance energetique concernent Les emissions de dioxyde de carbone associees et Les couts II existe pLusieurs sortes d'indicateurs de financiers, exprimes en devise locale. performance energetique et Les modes de calcul pour un meme indicateur variant d'un pays a Tous ces indicateurs fournissent de L'autre. II est par ailleurs frequent qua des precieuses informations sur Les differents aspects directives nationales preconisent L'empLoi de telle de La performance energetique. Les indicateurs ou telle methode, ainsi qua Les procedures de d'energie primaire nous renseignent sur La correction et Les valeurs standards a utiliser a des diminution des ressources non renouvelables et Les fins de comparison. indicateurs d'energie Livree sur L'efficacite energetique relative. Quant aux indicateurs definis Dans le cas des etablissements par rapport aux emissions de dioxyde de carbone, scolaires, Les indicateurs de performance ils mesurent L'impact sur L'environnement du energetique traduisent un aspect de La rechauffement de La planete. Les indicateurs consommation d'energie par unite d'espace et par financiers, eux, donnent des criteres de rentabilite. unite de temps. En regie generale, la consommation d'energie est mesuree en En principe, tous ces differents indicateurs kilowattheures (kWh). L'espace est defini soit en devraient etre definis et calcules au moment de terme de surface utile, exprimee en metres carres proceder au diagnostic de la performance (m2), soit en terme de volume, exprime en metres energetique de L'ecoLe, afin de pouvoir demontrer, cube (m3). II est essential qua ces dimensions notamment, Les economies realisees grace a La soient definies avec precision (brutes ou nettes, mise en oeuvre de mesures visant a ameliorer extern as ou internes, to tales ou chauffees) car L'efficacite energetique et I'utilisation de toute imprecision risque de conduire a des erreurs nouvelles technologies energetiques. Un seuL depreciation non negligeables au moment de indicateur ne peut traduire a lui seuL I'ensemble comparer Les indicateurs. L'unite de temps servant des economies possibles. En effet, une reduction de reference pour Le calcul de L'indicateur est en de la facture energetique peut s'expliquer par un general L'annee civile, bien qua certains changement dans Le combustible utilise et non indicateurs soient calcules sur La base de La forcement par des economies d'energie. Par Le principal indicateur de pour une temperature de base de performance energetigue utilise au 15,5 °C. D'autres pays utilisent une Royaume-Uni est appele Indicateur de temperature de base differente, et dans Performance Normalise (Normalised certains cas, le calcul de degres-jours de Performance Indicator, NPI). Pour climatisation peut se reveler un calculer le NPI, il convient de prendre en parametre encore plus important. compte un certain n ombre de facteurs Les NPI sont calcules en terme qui ont une influence sur la d'energie livree et d'emissions de dioxyde consommation energetigue, afin de de carbone et peuvent etre compares a pouvoir comparer les batiments entre des valeurs de reference nationales. Pour eux par rapportaux valeurs de reference les ecoles primaires et les colleges du etablies au niveau national. Pour les Royaume-Uni, les valeurs de reference ecoles, les facteurs a prendre en compte definissant les performances moyennes sont les suivants : sont les suivantes : - le type d'energie livree utilisee (gaz, fuel, autres combustibles fossiles et combustibles electricite), fossiles 137 - 189 kWh/m2par an - la repartition entre le chauffage et les electricite 20 - 27 kWh/m2 par an autres utilisations energetigues, dioxyde - les conditions climatiques locales, de carbone 41 - 57 kg COi/m2 par an exprimees en degres-jours, Les ecoles dont les NPI sont - ['exposition du batiment (abrite, superieurs a ces valeurs de reference ont normal ou expose), ailleurs, ['utilisation d'energies renouvelables, si des performances faibles qui pourraient - le type de construction du batiment elle permet de reduire les besoins en energie etre nettement ameliorees par (leger, normal ou autre), primaire et done, par consequent, les emissions de ['application de mesures d'efficacite - ['occupation du batiment, dioxyde de carbone associees, peut ne pas avoir energetigue simples. La plupart des - la surface utile chauffee du batiment. une incidence aussi importante sur La ecoles se situent probablement dans les Pour ce qui concerne le chauffage, les limites de ces valeurs de reference, mais consommation d'energie livree ni sur La facture degres-jours correspondent au produit toutes, quelque soit leur NPI, energetigue. SeuLe La determination de tous les du nombre de jours pendant lesquels la gagneraient a appliquer des mesures indicateurs de performance energetigue peut temperature exterieure descend en d'efficacite energetigue et a utiliser de donner un apergu de ['ensemble des economies dessous d'une temperature donnee nouvelles technologies energetigues. realisables. (temperature de base) et de I'ecart entre ces deux temperatures. Au Royaume-Uni, Source : "Building Energy Efficiency in Schools: A L’obtention de donnees correctes est Guide to a Whole School Approach" BRESCU, la valeur standard utilisee pour les Building Research Establishment, Watford, essentielle pour calculer des indicateurs de calculs de NPI est de 2 462 degres-jours Royaume-Uni, 1996. performance energetigue significatifs. Les mesures de surface utile ou de volume doivent, de toute II est important de prendre conscience du fait evidence, etre fiables et Les periodes de temps que Les indicateurs de performance energetigue ne definies avec precision. II est egalement vital sont pas des normes dont ['application serait d'obtenir des informations serieuses sur La recommandee ou obligatoire pour tous travaux de consommation de combustible ou d'electricite, construction, d'amelioration ou de renovation sous La forme de releves physigues de La d'ecoles. Les normes applicables impliquent en consommation energetigue etablis tout au Long general des mesures specifiques servant a des periodes de temps concemees. S'il s'agit de determiner certains aspects de I'environnement calculer Les economies realisees, des releves precis interne de L'ecoLe, comme La temperature doivent etre effectues avant et apres La mise en minimale en hiver et maxi male en ete (contort oeuvre des mesures d'efficacite energetigue ou thermique), Les niveaux minimum d'eclairement ['utilisation de nouvelles technologies (contort visuel) et La frequence minimum des energetiques. II est particulierement important de renouvellements d'air (qualite de L'air). veiller a effectuer ces releves en periode de fonctionnement normal a fin gu'ils correspondent a Ces mesures sont cependant importantes car ['utilisation habituelle de L'ecoLe. elles permettent d'evaluer I'environnement interne De nombreux facteurs ont une influence sur de L'ecoLe et done de determiner si ses occupants La performance energetigue des ecoles et doivent peuvent y travailler, enseigner et apprendre dans etre pris en compte a fin gue La comparaison des de bonnes conditions. En principe, ces indicateurs puisse se faire sur une base serieuse. informations devraient etre integrees dans Le Cette precaution est d'autant plus importante calcul des indicateurs de performance lorsgu'il s'agit de comparer des indicateurs avec energetigue. Le contort des occupants, par des valeurs de performance servant de reference exemple, pourrait a L'avenir etre associe au calcul au niveau national ou regional. Les methodes de de la consommation d'energie primaire ou des correction et le type de valeur de reference emissions de dioxyde de carbone d'une ecole pour varient d'un pays a L'autre de ['Union europeenne. constituer ainsi un indicateur unique de Le systeme utilise au Royaume-Uni est presente durability. ici (voir encadre). Localisation des projets

• Projets Thermie AEtudes de cas (pll a 25) Projets de demonstration

Par mi les projets co-finances par le programme THERMIE pour le developpement de technologies energetigues innovantes, on trouve des realisations dans les e coles. Les plus interessants font I'objet d'une courte presentation ci-dessous.

Regensburg [de] ten/38/94/de ® ® Nantes [FR] RE 79/1997 ® ® ® Ce projet consiste en une etude sur I'impact des Ce projet concerne la construction, en Vendee, du investissements en matiere d'energie sur I'economie nouveau lycee des Herbiers. Celui-ci comprendra a locale, laquelle a mis en relief une augmentation de la terme quatre batiments pour une superficie totale de production energetique regionale, ainsi qu'un effet 6 500 nr et s'inscrit dans le cadre du projet baptise positif sur I'emploi, induit notamment par la baisse des BEST 2000, destine tout particulierement a optimiser le routs de I'energie. Une partie de I'etude aborde le comportement energetique dans les batiments a theme des ecoles, la Vi lie de Schonwald ay ant lance un occupation intermittente. Le recours a la concours architectural pour la conception d'un nouveau rationalisation energetique, la mise a profit des apports batiment scolaire. La proposition retenue - en etroite solaires et de la lumiere naturelle, I'absence de systeme collaboration avec le ZREU, reseau OPET transfrontalier mecanique d'air conditionne, la definition d'objectifs entre la Baviere et I'Autriche - a ensuite fait I'objet chiffres et un systeme de regulation elabore devraient d'une optimisation energetique ainsi que d'eventuelles permettre de : modifications par rapport au plan d'origine. Le projet - economiser 50 % sur la facture energetique, intitule "Optimisation energetique des plans de - limiter a 10% le surcout en terme de frais d'entretien batiments scolaires" attache une importance par rapport a un batiment conventionnel, particuliere a la fonction educative du batiment. Un - ameliorer le contort des utilisateurs. certain nombre de facteurs ont en effet un impact sur Contact I'efficacite energetique globale du batiment, en Ingenierie Gaudin particular la conception et I'amenagement des espaces, Fax: +33 2 40 73 20 71 E-mail: [email protected] la disposition et I'odentation des pieces ou encore les materiaux utilises. II a ete cependant convenu que les modifications apportees aux plans d'origine ne seraient acceptees que dans la mesure ou elles ne representeraient pas un surcout trop important par rapport au rout initial de I'investissement. Contact K. Grepmeier, Zweckverband Regionale Entwicklung und Umwelt (ZREU) Fax: +49 941 464 1910 E-mail: [email protected] MEDUCA BU/0100696

MEDUCA (Model EDUCAtional buildings for Integrated Energy Efficiency Design) est un projet de demonstration THERMIE sur la Qualite Integree dont le but est de creer des batiments scolaires exemplaires dans le domaine de I'optimisation et de I'integration d'une conception a haut rendement energetique dans des projets de construction ou de renovation.

climatisation solaires passifs, systeme de regulation Ballerup [dkj © © 0 © © elabore, mise a profit optimale de la lumiere naturelle Le projet concerne la renovation d'une ecole de et eclairage econome en energie. La premiere annee de 12 000 nr, construite dans les annees 70, a I'aide des fonctionnement a ete consacree a I'optimisation du techniques suivantes : meilleure isolation, fenetres a systeme de chauffage et de ventilation. basse consommation d'energie, ventilation naturelle Contact assistee par ventilateur avec prechauffage de I'air dans Ake BLomsterberg des gaines souterraines et facades solaires, chauffage Fax: +46 40 108201 E-mail: [email protected] solaire passif, systeme de regulation elabore, eclairage econome en energie. Ce projet tut acheve au cours de I'ete 1998 et deux Falkenberg [sej © © © ® © sous-ensembles de 1 700 nr du complexe scolaire sont Ce projet a pour objet la maintenant completement removes. line evaluation renovation d'une ecole de qualitative de la qualite de I'air a demontre une nette 9 350 nf, construite a la fin amelioration. Les premiers resultats des mesures de des annees 1960, a I'aide suivi indiquent que la consommation energetique des techniques suivantes : destinee au chauffage a baisse de I'ordre de 45%. fenetres a basse consommation d'energie, ventilation avec recuperation de chaleur, ventilation hybride, chauffage et climatisation solaires passifs, systeme de regulation elabore, mise a profit optimale de la lumiere naturelle et eclairage econome en energie. Contact Grong [noj © © ® Ake BLomsterberg Un complexe scolaire datant des annees 60 a ete dote Fax: +46 40 108201 E-mail: [email protected] d'un nouveau batiment de 1 000 nf congu pour utiliser I'energie solaire pour le chauffage des locaux et b pre ­ Neumunster oo © © ® ® chauffage de I'air de ventilation et mettre a profit la lumiere naturelle. II a egabment ete equipe d'un systeme Ce projet concerne un complexe scolaire comprenant mixte de ventilation avec recuperation de chaleur, bs cinq batiments pour une surface utile totale de forces nature lies etant secondees par des ventilateurs. 5 275 nf construits a des epoques differentes (de 1906 Les travaux ont ete termines au cours de I'ete 1998. a 1980) et prevoit : I'installation de fenetres a basse consommation d'energie et de protection thermique supplementaire, le passage du gaz au chauffage urbain, des systemes de regulation elabores, une gestion technique du batiment, des system es d'eclairage economes en energie, une production d'eau chaude Goteborg © ® © ® © solaire pour les douches du gymnase. Le suivi est Ce projet a pour objet la renovation d'une ecole de assure depuis octobre 1998. 2 350 nf, construite dans les annees 1960, a I'aide des techniques suivantes : optimisation de I'enveloppe, fenetres a basse consommation d'energie, ventilation avec recuperation de chaleur, chauffage et 0 © © © © H w Agueda [Portugal] Escola secundaria de Valongo do Vouga Solutions Optimisation de I'eclairage Description de I’ecole naturel et bioclimatisme Type d'ecole : secondaire Surface utile : 2 917 m2 Valongo do Vouga, qui est situe au nord du Portugal, a energetiques Nombre d'eleves : 505 un climat tempere en hiver et doux en ete (1 496 degres- Date de construction : 1993 durables dans jours). Le batiment est oriente est-ouest. II comporte deux Occupation : etages et 18 salles de classe, des laboratoires, une 1 995 heures/an les ecoles : bibliotheque, une cuisine et une cantine. Les couloirs et les zones de service sont situes cote nord. Les classes occupent Participants les deux etages de toute la facade sud qui compte 224 nr de au projet etudes de cas fenetres, avec du simple vitrage, ce qui permet d'obtenir des Joao Mateus (coordinateur) Jorge gains solaires directs considerables en hiver (52%). Pendant Gouveia et Luis Ciunha Direccao Geral dos Equiparnentos les mois les plus chauds, les classes sont protegees par les Educativos Les quinze etudes de cas qui lattes horizontales en beton montees sur une structure Direccao Regional de Educacao autonome fixee a 50-60 cm de la facade. La facade nord n'a da Reciiao Centro sont presentees id permettent Carnara Municipal de Agueda que 120 m; de fenetres au vitrage double, dont la principale d'illustrer concretement les solutions LaboratOrio de Gestao de Enerciia fonction est de promouvoir I'eclairage et la ventilation. Le da Faculdade Ciiencias e energetiques innovantes qui ont ete rapport entre la surface vitree et la surface utile est de 20%. Tecnologia de Coimbra adoptees lors de la construction ou la A I’interieur des fenetres des classes, qui sont composees Performance rehabilitation d'ecoles en Allemagne, energetique de deux parties, sont installees des lattes tres legeres qui au Danemark, en France, aux Pays- fonctionnent comme reflecteurs de lumiere de fagon a La performance energetique de recole est de 32 kVVh/nr par an Bas, au Portugal, au Royaume-Uni et empecher I'entree de radiations directes. La majorite des en hiver, alors que la valeur de en Suede. fenetres des facades nord et sud ainsi que les portes des reference est de 64 kWh/rrr par classes ont des ouvertures qui permettent une ventilation an pour une ecole conventionnelle situee dans le rnerne secteur croisee tres efficace. Les murs sont a double paroi avec de la geographique, soil une economie mousse de polystyrene expanse et tous les ponts thermiques d energie de I’ordre de 50%. ont ete soigneusement traites. Une des caracteristiques les Donnees financieres plus significatives de ce batiment est I'optimisation de Gout de la construction, y cornpris I'eclairage naturel obtenue grace a des reflecteurs, des iinstallation electrique et lumiducs et des claires-voies qui permettent d'eclairer les rnecanique : 1 600 000 € zones moins favorisees des classes. L'equipement electrique Systeme de controle et gestion de I energie : 196 000 € est a haute efficacite energetique et un systeme de controle de gestion de lenergie a egalement ete installe. La Maine de Agueda, qui est le responsable legal de la construction (verification du travail et de I'accomplissement du projet), a redige le cahier des charges en collaboration 1 . avec les techniciens de la Direction Regionale du Ministere de I'Education de la Region Centre. Cette collaboration a ete etablie dans un protocole de cooperation entre la Mairie et le Ministere, qui prevoyait notamment une importante participation financiere de la Mairie. Une equipe du Laboratoire de Gestion de I'Energie du Departement d'Ingenierie Electrotechnique de la Faculte de Sciences et Technologie de I'Universite de Coimbra a egalement collabore au projet en tant que consultant.

SOURCE ; Contact G8N 972-676-7 63^8 Antonio Manuel Porte La "EoWkcs Sabres PassAos Arrancada do Vouga 3750 Agueda Portugal em Asf&fga/" /AE7M3ER T6k +351 23 4 64 5 3 3 7 Fax: +351 234 646 298 Description de I’ecole Alcacer do Sal [Portugal] Type d'ecole : primaire

Surface utile : 1 140 m2 Nombre d'eleves : 183 Escola primaria Date de construction : 1965

Occupation : 1 120 heures/an

Une exploitation originate des Participants au projet ressources energetiques locales

Camara Municipal de Alcacer do Sal Au Portugal, la saison froide ne comprend que un ou CEEETTA - Centro de Estudos de deux mois vraimerit tres froids et I'ete coincide en Econcmia de Energia, Transposes e Ambiente partie avec les vacances scolaires. Ces caracteristiques se trouvent accentuees dans la moitie ouest du pays la Performance plus proche de la mer. C'est le cas de Alcacer do Sal, energetique ville du sud situee a 80 km de Lisbonne (1 283 degres- L'application de ce programme a permis de rAdure de jours). La Municipalite de Alcacer do Sal a decide 223 200 KWh par an la d'utiliser les ecailies de pommes de pin - issues de consommabon d'6nergie dans les I'industrie du pignon de pin, tres repandue dans le 20 Acoles concemAes et d'Aconomiser 20 958 € sir la region - comme source d'energie dans les 20 ecoles que facture 6nerg6tique. comprend la commune. L'ecole primaire n°l de Alcacer do Sal est la plus importante d'entre elles. Donnees financieres

CoOt total de Fhvestissement pour L’ecole a ainsi ete equipee de 12 appareils de les 20 Acoles : 24 100 € Retour d’investissernent brut : chauffage, communement appeles "salamandres" au 1,2 ans. Portugal car ils sont en fer emaille de couleur verte. II s'agit de bruleurs specialement congus pour etre automatiquement alimentes en ecai lies de pommes de pin. Cheque appareil, d'une puissance de 10 kW, tres repandu dans le pays et presente les memes comprend un silo d'une capacite de stockage equivalent caracteristiques, quelque soit la region d'implantation. a 10-15 heures d'autonomie de fonctionnement, d'un systeme d'approvisionnement gravitationnel, d'une pre- L’ensemble des travaux d’amelioration chambre de combustion et d'un echangeur de chaleur realises dans les 20 ecoles primaires d'Alcacer do Sal air/air. Une 11 salamandre" a done ete installee dans comprend installation des 49 "salamandres", cheque piece en remplacement des anciens radiateurs isolation thermique des toits, portes et fenetres, ainsi electriques. Les besoins energetiques par piece que la depose des radiateurs electriques existants. Les s'elevent a 9 500 kWh par an. ecai lies de pommes de pin ont un pouvoir calorifique inferieur de 4 kWh/kg. 200 tonnes sont consommees L’ecole est composee de 4 batiments entoures d'une annuellement par les 20 ecoles participant au grande cour de recreation. Deux de ces batiments programme, dont 49 tonnes par la seule Ecole Primaire abritent les salles de cours, et les deux autres sont N°l. Ce projet est un bon exemple des a vantages destines aux services administratifs et a la cantine. Les economiques et ecologiques qu'offre la valorisation des salles de cours, d'une superficie moyenne de 45 nr, sources energetiques locales. sont orientees au sud-est et sont equipees de larges fenetres. Cette ecole est typique du style de batiments en magonnerie adoptes par I'administration publique dans les annees 40 a 60. Ce type de construction est Amersfoort Nieuwland Pays-Bas/ Description de l’ecole Type d'ecole : primaire

Surface utile : 1 070 m2 Basisschool De Wonderboom Nombre d'eleves : 470 Date de construction : 1996

Occupation : 1 400 heures/an

Des panneaux solaires des objectifs fixes. Le personnel et les eleves peuvent ainsi mieux se rendre compte du degre d'efficacite Participants pour generer de I'electricite au projet energetique atteint par leur ecole. Service des Sports, des Loisrs et Trois ecoles primal res ont ete construites de 1995 a de [Education, Maine d'Amersfoort Le vitrage haute performance permet d'ameliorer Bakker & Poolen, Architectes 1997 dans le quartier de Nieuwland, a Amersfoort, en ['isolation thermique des pieces ou il est installe. Sa Propriytare du syst6me collaboration avec REMU, la compagnie nationale photovoltaique : REMU Utrecht capacite d'isolation est deux fois superieure a celle d'un d'energie. L'objectif de ce projet etait de mettre en oeuvre Subvention par les panneaux double vitrage traditionnel. L'ecole dispose d'une isolation phdovoitaques : NOVEM de mesures d'economies d'energie et promouvoir complementaire qui augmente la resistance thermique des ['utilisation des energies renouvetables. L'ecole primaire Performance murs, planchers et toits. Trois chaudieres a haut De Wonderboom fait partie de ces trois ecoles economes energetique rendement energetique ont ete installees, une par groupe en energie. 196 panneaux photovoltaiques (PV) ont ete La consommation amuelle de gaz de chauffe. Grace au principe de recuperation de la par le chauffage s'6!6ve 6 installes sur le toit de l'ecole de sorte a recevoir le chaleur contenue dans les gaz brules, ces chaudieres 76 kWh/nf par an. maximum de lumiere du soleil. Cheque classe comprend 24 L'hstallaticn photovoltaque permet peuvent atteindre des rendements energetiques de I'ordre panneaux disposes en 6 rangees de 4 panneaux chacune d'Aconcmiser quelques de 90 a 95%, alors qu'une chaudiere conventionnelle de 8 000 kWh par an (fdedricitA. et reliees a deux armoires electriques, une primaire et une chauffage central n'atteint que 75 a 80%. Le deuxieme secondaire. Les panneaux photovoltaiques, par groupe de Donnees financieres a vantage de ces chaudieres a haut rendement est qu'elles deux classes, sont connectes a un onduleur qui transforme rejettent moins de substances nocives, comme le dioxyde Le Service des Sports, des Loisrs le courant, lequel peut ensuite etre injecte sur le reseau et de [Education de la Municipality de carbone et les oxydes d'azote, en raison de leur plus basse tension REMU. Le systeme photovoltaique reste la de Amersfoort, propriAtare de faible consommation de gaz. La chaleur contenue dans fycole, a accadA in droit de propriety de REMU, conformement a I'accord conclu avec I'air de ventilation vide est recuperee au moment de son superficie & REMU. Cette demise la Municipality de Amersfoot. Les toits orientes au sud ont a hstaliy les panneaux solares et extraction par passage des flux d'air au travers de regoit I’electricite produite. Des ete perces de fenetres entre les panneaux photovoltaiques cartouches d'aluminium. La chaleur contenue dans I'air subventions ont yty accadyes par afin de permettre a la lumiere du soleil de penetrer NOVEM pour I’installation des extrait est ainsi absorbee par ['aluminium d'une premiere directement dans le bailment. L'energie solaire est done systymes solares. cartouche, et I'air frais de I'exterieur est insuffle au travers Subvention NOVEM (60%): egalement utilisee sous forme passive. Des fenetres ont d'une autre cartouche. Toutes les 70 secondes, les flux 10840€ par ailleurs ete installees sur le cote nord du toit afin installation des panneaux REMU : d'air dans les cartouches sont inverses au moyen d'une d'ameliorer leclairage naturel dans les salles de classe. Un 6800€ valve tournante. La chaleur stockee dans la cartouche est Panneaux REMU : 76 370 € ecran installe dans l'ecole permet de visual!ser les alors transferee a I'air frais insuffle. Ce systeme permet de quantites d'energie consommees et produites au regard recuperer 85% de la chaleur contenue dans I'air de ventilation vide. Leclairage haute frequence (HE) de l'ecole permet de produire la meme intensity d'eclairage tout en economisant 20% d'energie. Ceci s'explique par le fait que les pertes au niveau des ballasts HE sont plus faibles qu'avec des ballasts conventionnels.

Contact Bernard Verheijen REMU, Marketing Department Postbox 8888 3503 SG Utrecht Netherlands Tel: +31 30 297 61 01 E-mail: [email protected] ©0 I BouiSot

Description de I’ecole Baigneux-les-Juifs [France] Type d'ecole : maternelle et primaire Surface utile : 505 m2 Groupe scolaire Les Capucines Nombre d'eleves : 100

Date de construction : 1993 Occupation : 1 480 heures/an Un batiment Participants au projet energetiquement performant

Sivom (Syndic# ntercomminal 6 vocation multiple) de Baigieux lee Compte tenu des rigueurs climatiques locales (3 100 Juifs degres-jours), I'objectif des architectes etait de SARL F. Brandon et aseociAs protegee les classes du froid et de les orienter de Jean Bouillct, architecte maniere a ce qu'elles resolvent un maximum de chaleur Performance et de lumiere solaires. A cet effet, les locaux a usage energetique intermittent ou fermes sont regroupes au nord et au Consommation d'6nergie poif le nord-est. Ce premier tampon thermique est complete chauffage : 50 kWh/m* par an par un hall atrium. La pente moyenne de la toiture est Donnees financieres de I'ordre de 15°, une valeur qui permet de limiter la

CoOts dee technologies prise au vent et de maintenir la neige sur le toit en textiles, I'atrium est cependant juge trop chaud et 6nerg6tiques hstalGes : 148 €/hf hiver afin qu'elle forme un mate las isolant. excessivement lumineux quand le soleil monte vers le habitable Retour cl’investissernent : entre 11 zenith en fin d'annee scolaire (juin). Un filtre physique et 13 ans Les salles elles-memes sont orientees vers le sud- a I'exterieur des vitrages peut etre envisage. ouest avec une facade en gradins superposant deux niveaux de vitrages. Les bales superieures sont Les murs d’enveloppe sont en magonnerie de implantees en retrait de maniere a conduire le parpaing enduite. Les magonneries interieures en beton rayonnement solaire jusqu'au fond de la classe. Pour banche de 16 cm sont lourdes et assurent une grande reduire I'eblouissement, I'eclairage indirect a ete inertie de I'ensemble du batiment. Le plancher de privilegie par brise-soleil et positionnement des I'edifice est egalement massif et inerte de fagon a fenetres du haut en retrait sur une petite terrasse dont pouvoir accumuler un maximum de calories ou de le revetement reflechissant renvoie la lumiere en frigories selon les moments. L'utilisation intermittente direction du plafond. et saisonniere de I'ecole, les differences d'age entre les eleves et la diversity de leurs activites compliquent la L’atrium, sorte de rue interieure longitudinale, gestion des installations (chauffage fioul avec dessert les quatre salles de classe : la maternelle au distribution par radiateurs a eau chaude dans les sud-est et les trois primaires alignees avec un leger classes et par le sol dans la maternelle et la salle de decalage qui a permis de placer une porte-fenetre repos). Six zones de temperatures differentes ont ete orientee sud-est pour capter la lumiere naturelle identifies. A chacune d'elles correspond un scenario matinale tout en favorisant une distribution progressive d'occupation pour definir la programmation du et cumulative des classes. Le rayonnement solaire chauffage. inonde I'atrium via une verriere. Pour filtrer et ponderer I'ensoleillement excessif de debut et fin d'annee scolaire et limiter les deperditions nocturnes d'hiver, une occupation interieure de toile a ete prevue. Les Contact parois de I'atrium sont de couleur claire. Malgre ces Jean Bouillot (Architecte) 44, rue des bl.es 21700 Nuit Saint Georges France dispositions, et en raison des faiblesses des ecrans CcISSOP Royaume-Uni Description de I’ecole Type d'ecole : primaire

Surface utile : 1 223 m2 Primary school Nombre d'eleves : 87 Date de construction : 1912

Occupation : 1 480 heures/an

Eolienne raccordee au reseau une vitesse moyenne du vent de 6,7 metres par seconde pour ce site. Participants au projet L’ecole est un bailment en brique de I'epoque La consommation annuelle de I'ecole en Durham County Council Victorienne dont I'interieur a ete largement reamenage Northern Electric and Gas electricite, soit 40 000 kWh par an en moyenne, sera afin de decloisonner en partie les salles de cours, Winsund (Hugh Jennings Ltd) entierement couverte par l'eolienne, le surplus etant National Engheerrg Laboratory devenues moins nombreuses mais plus spacieuses, et Alpha Communications (Acran revendu a la Northern Electric and Gas pour etre creer des zones d'activite communes. Les plafonds ont d'affichage) distribue sur leur reseau de distribution. Les revenus ete abaisses dans toute I'ecole par mesure d'economie ainsi constitues seront provisionnes et serviront a faire Performance d'energie. Les ampoules electriques ont ete remplacees energetique face aux frais d'entretien de la turbine. Si I'on par des ampoules a haute performance energetique, a considere la consommation actuelle de I'ecole et le prix Les Amissions de dioxyde de I'initiative du Service Education du Comte de Durham, carbone rejetAes par fAcole ont d'achat verse par la Northern Electric and Gas pour line chaudiere au fuel assure actuellement le chauffage baissA de 25 tonnes par an, soit I'excedent de production, l'eolienne devrait pouvoir ine amAlioraticn de fordre de 41 % de I'ecole, mais d'autres sources d'energie sont etre amortie avant la fin de sa duree de vie. Ce pendant, compte tenu du fait que la valetr actuellement a I'etude. L'ecole s'est forgee une de rAfArence est de 60 tomes en un taux d'efficacite energetique plus eleve et une reputation nationale pour son action en faveur de mcyeme par an pour ce type augmentation des revenus issus de la vente de cette d'Atablissement. I'environnement, notamment par le biais de ses actions "energie verte" pourraient conduire a I'avenir a un pedagogiques pour la promotion des energies Donnees financieres temps de retour sur investissement nettement plus renouvelables et le recyclage. Une equipe "energie", Gout de I’installation : 182 540 €. court pour des projets similaires. L'eolienne remplit composee du directeur, du gardien et d'un groupe 34 650 € ont AtA apportAs par la egalement une fonction pedagogique aupres des Northern Electric and Gas, laquelle d'eleves, etudie les moyens d'economiser I'energie et enfants du Comte. Un ecran d'affichage interactif a a Agalement subventicnnA A I'eau. hauteif de 3 175 € I'Acran d'ailleurs ete installe au sein de I'ecole afin de montrer hteractif, dont le coCt total comment I'electricite est produite par l'eolienne et reprAsente 15 875 €. Le reste a Le site de I’ecole de Cassop a ete classe site a fort quelles en sont les utilisations energetiques dans AtA fhancA par le ComtA de potentiel eolien lors de I'elaboration de la Durham Durham. I'ecole. L'eolienne suscite beaucoup d'interet et de County Council Renewable Energy Strategy (Strategic nombreux projets, avec pour theme le vent, ont deja vu Energies Renouvelables du Comte de Durham). le jour en cours de sciences, arts et langues. L'eolienne retenue, la premiere eolienne raccordee au reseau electrique a etre installee dans une ecole au Royaume-Uni (lies non comprises), est une Atlantic Contact Orient Corporation de 15/50 kW capable de produire John Cook (Ingenieur projet) and Jeff Kirton (ResponsabLe energie) Durham County Council 50 kW sous une vitesse de vent de 12 metres par Environment & Technical Services Department seconde. Mise en service en mai 1999, l'eolienne County Hall Durham DH1 5UQ United Kingdom devrait generer 100 000 kWh par an si I'on se base sur Tel: +44 191 383 4195 Phom.' INET77

Description de I’ecole CratO [Portugal] Type d'ecole : secondaire

Surface utile : 2 950 m2 Nombre d'eleves : 348 Escola secundaria Date de construction : 1988

Occupation : 1 995 heures/an

Chauffage et climatisation solaires a air radiation solaire en hiver pour parer a Lexces Participants d'humidite. au projet Le climat de cette region en hiver n'est pas Luis Cuiha; Rosa Bela Costa 40 m2 de capteurs solaires a air permettent, pendant (architecte) rigoureux (1 683 degres-jours). L'ete est tres chaud Mhist6ho da Educagao : mais la plupart de cette saison coincide en partie avec I'hiver, le prechauffage de Lair frais insuffle de fagon Drecgao-Geraldas Construgdes les vacances. La conception du batiment essaie de naturelle dans les classes et en ete forcent Lextraction Es co lares de Lair a Linterieur par ventilation croisee. Ces Drecgao Regional deEducagao rendre compatible la protection solaire pendant la do Alentejo saison chaude avec le gain d'energie solaire pendant la collecteurs fonctionnent comme siphon thermigue, il saison froide. ^organisation de I'espace prevoit des sont integres dans la facade sud. I Is sont composes Performance energetique classes du cote sud avec de larges surfaces vitrees d'une surface en verre et d'une surface d'absorption sans aucune capacite de stockage. Pendant I'hiver, Lair La performance 6nerg6tique de (995 m;) gui permettent des gains solaires de 40%. Le I'Acole est de 33 kVMn/hf par an rapport entre la surface utile et la surface vitree est de exterieur est chauffe et insuffle dans la salle, et le en hiver, alors que la valeif de 27%. Le batiment a deux niveaux et se deploie autour renouvellement de Lair se fait sans pertes. En ete, r6f6rence est en moyeme de Lextraction de Lair de la salle se fait grace a un 67 kWh/hf par an pour ine 6cole de deux cours avec deux petits plans d'eau eguipes de conventionnelle situAe dans le fontaines gui refroidissent I'espace par evaporation differentiel de temperatures. Les trappes sont ouvertes m6me secteif gAographique, soit pendant la saison chaude. Neanmoins ces cours sont manuellement par les utilisateurs. La performance du ine Aconomie d'6nergie de fordre systeme a ete evaluee au mois de novembre 1994. Les de 51%. dimensionnees de fagon a permettre I'entree de la temperatures de Lair chauffe vont au-dela de 40° C, Donnees financieres tandis gue la temperature de la surface d'absorption Invesbssement total : 603 500 € atteint environ 70° C.

L’immeuble, gui est tres bien isole, a une inertie thermigue elevee. Les murs sont a double paroi de magonnerie (15+15 cm) avec 7 cm de materiau isolant (agglomerat noir de liege). La toiture est de tuiles, le grenier est bien ventile et le plancher du grenier est isole par 10 cm de beton leger et 7 cm d'agglomerat noir de liege.

Contact Antonio Baptists Parreira Tapada da Camara 7430 Crato Portugal Tel: +351 245 990 010 Fax: +351 245 996 710

Source; ASSN 972-676-7 63-8 "EoWTccs SoAares PassAcs em Aorfuga/" ANE77/DER fhom; Nods* Oouiy Owin'

Dickleburgh [Royaume-Uni] Description de l’ecole Type d'ecole : primaire

Surface utile : 520 m2 Primary school Nombre d'eleves : 108 Date de construction : 1985

Occupation : 1 710 heures/an

Conception basse energie Des pompes a chaleur electriques utilisant Lenergie thermique de la nappe phreatique servent a Participants et pompe a chaleur geothermale au projet chauffer bs locaux. Des tests geologiques ont en effet permis de determiner Lexistence, dans le sous-sol de Norfolk County Council L’ecole a ete construite selon les principes du l'ecole, d'une nappe d'eau a 10 - 12 0 C disponible toute Performance bioclimatisme avec une isolation thermique renforcee au Lannee. L'ecole se trouvant en zone rurale, il n'y a pas de energetique niveau des murs exterieurs et du toit (value U = reseau de gaz, et les pompes a chaleur, bien que La performance 6nerg6tique de 0,25 W/m; K). Les murs sont creux avec une isolation fonctionnant a Lelectricite, sont le moyen b plus FAcole est estimAe 6 80 kVWVrrf constitute de 5 cm de polystyrene et une couche de 16 par an, alors que la valeir de efficace de transformer cette source d'energie en chaleur cm de fibre minerale a ete placee entre les so lives du r6f6rence est en moyenne de pour chauffer l'ecole. La chabur extraite de la nappe 180 kWh/hf par an pour ce type plafond au niveau du toit. phreatique est portee a 45 0 C par les pompes a chaleur. d'Acole, solt ine Aconomie d'6nergie de Fords de 56%. L’ecole occupe un espace triangulaire dont le cote le Son passage dans des serpentins de chauffage en plus etroit, au nord, abrite Larriere-cuisine et la salle polypropylene places sous b plancher des salles de Donnees financieres technique, lesquelles font office de tampon thermique classe et du grand hall, et dans des radiateurs a Le coOt de Fhvestissement dans pour la zone commune situee au centre de l'ecole. Les avec ou sans ventilateurs dans les autres les mesuss d efficacitA 6nerg6tique et la nouvelle pieces assurent b chauffage de l'ecole. La puissance salles de cours occupent la facade sud, laquelle techndogle s'6!6ve 6 9 450 €, prix comprend des verrieres en appends, ou solariums, afin electrique nominale, pompes de circubtion incluses, 1984. de maximiser les apports solaires et reduire les pertes de n'est que de 11 kW. Les pompes a chaleur ont un chaleur en hiver. En hiver, la temperature dans les coefficient de performance d'environ 3,5, ce qui signifie solariums est de 3 a 5 °C superieure a la temperature qu'elles permettent de produire 3,5 kW de chabur utile exterieure les jours ou le soleil ne brille pas, et se par kW electrique consomme. maintient a 15 - 20 °C par temps ensoleilie, meme Le haul niveau d'isolation lorsque la temperature exterieure est proche de zero. thermique permet non seulement de Afin d'eviter une trop forte chaleur en ete, les verrieres reduire les besoins en chauffage, mais sont equipees de toits ouvrants et de trappes late rales. egalement de chauffer l'ecole la nuit La surface vitree fixe des toits des verrieres est afin de profiter des tarifs electriques egalement recouverte d'un film qui reflechit la lumiere "heures creuses", plus avantageux. Les du soleil. pompes a chaleur fonctionnent ainsi a Le rapport parois vitrees/parois opaques est de 25% 80% la nuit. L'eau chaude sanitaire est en moyenne, la facade sud comportant 40% de surface egalement chauffee en periode creuse, vitree et la facade nord 10% seulement, mais en double avec possibility de remise en marche en Photo: Norfolk County Council vitrage. Les fenetres de la facade sud sont equipees de cours de journee, done en "heures pleines", en cas de volets isolants que Lon peut termer la nuit afin de besoin. 35 nr de panneaux sobires installes sur b pente retenir la chaleur en hiver. L'ecole utilise egalement deux sud de b toiture viennent completer le dispositif. L'ecole systemes de ventilation a recuperation de chaleur qui est connectee au systeme de telegestion de Lenergie du extraient Lair des pieces situees au centre du batiment Comte de Norfolk et fait Lobjet d'un suivi journalier tres (couloirs, toilettes etc.) et insufflent de Lair prechauffe precis. dans le grand hall. L'ensemble de ces mesures, destinees Contact a ameliorer Lefficacite energetique du batiment, a permis Mr J E Cobb (ResponsabLe environnement) de reduire les besoins en chauffage des locaux a tout Norfolk County Council County Hall Martineau Lane juste 35 kW, alors qu'ils sont en moyenne de 75 kW pour Norwich Norfolk NR1 2SF United Kingdom T6L +44 1603 222 674 une ecole batie selon les methodes conventionnelles.

Council

Kingdom school

Services

projet) Borough

United Street

1011

1HH Regent Architectural

(Architecte 477 of

NE8 Metropolitan

191

Brown Centre

+44

]

David Department Contact Gateshead Civic Gateshead Tel:

de de

du est

et

vicie a

le un les

une la au

ainsi

pour pour

ete les

murs

cours des est

fonction retour a

frais

fair

plus d'isolation avec

mecanigue de etant selon les par "chaude". de I'eau et L'atrium

en air

toutes par

cheminees fournir Royaume-Uni et

comprehensive une de sur etant un

[ combustible

dite comprend serie

chauffage

des utilisation, niveau zones pedagogigues

has

hauteur.

batirnent

croisee. au chauffage

pour

degages I'agrandissement et de zone debit complement hauteur.

une les

en

echappe Le

en

possible, temperature construite naturelle, de

leur bon pouvant

fournir ventilation

le

exterieures

fonctionner

de

toiture

en

minerale

par

et du en de ainsi un de

de

ete s'en une espaces

de

extension chauffe

a chague pour toutes

et et

systeme

les

laine

ouvrants, ventilation ouvrants

autour est reduire

systeme

°C placees a du a Swan mesure

de

permet

garanti dans rendement dans solaires Le chaleur) de chauffage

canalisations,

prevu chaudieres.

fonction une tous

60 L'ecole extension la

systemes

nouvelle automatigues

de

temperatures sont solaires en

lie kW.

de est des de conception de des haut La articule

re cheminees leguel d'origine les a Dans

et

I'emploi fenetres permet

apports

Her

900

une claire-voie a

gui

locaux. presentes ces chauffage s'est assurent zones l'ecole par nouvelle

les

gaz

a

complement

les par ete.

et concernees,

Ceci

la de claire-voie en les de CLASP,

en existart. par efficacite en a vitre dans

dimension

et °C.

apports pression

recuperation

eux,

environ

systeme la zones batirnent projet

40

association ’ Des Gateshead (avec I'extension, Le solide chaudieres basse de gue grande decoupe guantite determinee college L des monte ouvertures du Le utilises chauffer systeme Joseph interieures. exterieurs ventile ventilation, ventile events atrium entre total temperature thermigue fenetres

et

, 2 aux 6t6 de de de

du

m alors

est

a

an m8me

est

:

ine € 260 ecole

Borough ’ 800 batirnent

de 1 I'ordre par l de moyeme 2

soit nouvelle m : 12 1963

000

de

chaude,

en

: :

la Mmicipalita. de college chauffage [ensemble,

coOt

: la

an 600 : ancien le

794 r6f6rence 6nerg6tique ’

de

travaux

I

: in

financieres Feau kV\h/m* 1999 7

Partners

9

scolaires

par d'6cde, de par : : dans

les de

de Metropolitan d'eleves pour construction utile

de

Soit

d'Gnergie 108

et existante existante heures/an

6 type

de d'ecole

pour

projets

valeif

menGs ce projet

kV\h/m* la 565 natuel

contrat

construction performance

Date

Occupation Nombre Description 2 Surface partie extension partie extension Type 177 Donnees bailment Performance Participants Un poif que La gaz energetique au autres ordre de extension. comparable, conclu modification Aconomie 40%. estimAe OveArupand Gateshead Council ifl.i Karlskrona suede Description de l’ecole Type d'ecole : secondaire

Surface utile : 4 415 m2 Jandelskolan Nombre d'eleves : 419 Date de construction : 1960

Occupation : 2 550 heures/an

Un systeme de ventilation original contiennent les batteries de chauffage. Les ventilateurs sont de type axial et sont eguipes d'un controleur de Participants au projet vitesses a freguence variable. L'echangeur de chaleur L’ecole Jandel date de 1960 et se composait a est un echangeur a double plague plate avec des Municipality de Karlskrona, les I'origine d'un ensemble de bailments a un etage a toil services administrate et registres en derivation permettant de moduler la plat. Suite a une vaste operation de renovation techniques de racole capacite. 85% de Lenergie est ainsi restituee (95% la NUTEK entreprise en 1994-1995, Lecole possede desormais un Construction par des nuit et les week-ends). toit en pente. Celui-ci permet de reduire les risgues de entrepreneurs et des persemes II n'y a pas de flitre mais des grillages anti-insectes ont dommages causes par I'humidite et de degager un de I'agence pour femploi de ete installes sur les bouches d'entree d'air. L'ecole se Karlskrona. espace pour y installer des eguipements et des trouve dans une zone rurale et Lindice de pollution de conduites de ventilation. Les systemes d'eclairage et Performance Lair est peu eleve. II arrive cependant gue des energetigue de ventilation ont une efficacite energetigue elevee. particules de poussiere, parmi les plus grosses, se L'installation de nouvelles fenetres a tres faible La consommabon d'anergie deposent dans les gaines de distribution. Des desthae au chauffage est passae conductivity thermigue a permis d'eliminer le probleme aspirateurs ont done ete prevus pour le nettoyage des de 210 kWh/hf par an a envron des courants d'air froid descendants des fenetres et il 94 kWh/hf par an, soit une baisse conditionneurs d'air et des gaines. n'est plus necessaire d'installer des radiateurs en de I'crdre de 55%. La consornrnation d’electricite dans le dessous. C'est Lair de ventilation gui apporte a la piece batiment a agalement baissa de L air provient de deux orifices encasires dans les murs la chaleur dont elle a besoin. Les vitres ont ete 20%, et ce malga une ublisation par lesguels il est souffle a grande vitesse vers le has. recouvertes d'une protection solaire afin d'eviter une plus intensive des matahels Bien gue la vitesse de Lair a la sortie de ces orifices hformabques. temperature excessive dans les classes. Outre une raduetkn du coOt de soient elevee, cela n'est perceptible gue sur un espace fanergie, I'oparaticn de ranovaticn restreint a guelgues centimetres au-dessus du sol. De a permis de deter la Municipality Le systeme de chauffage est integre au systeme plus, des ejecteurs repartissent Lair dans toute la piece, d'une acole neuve pour 30 ans au de ventilation et c'est Lair du systeme de ventilation mohs, avec des dapenses de si bien gu'il n'y a pas de sensation de courant d'air. gui est chauffe pour repondre aux besoins du bailment. chauffage raduites de moiba et un fair est ainsi reparti au sol puis remonte pour etre rneilleur contort pour les eleves et Le systeme de ventilation comprend guatre extrait par des bouches d'extraction situees au plafond. les persomes qui y travaillent. conditionneurs d'air installes sous le toit. Les gaines sont assez larges pour permettre le passage d'un Donnees financieres Des mesures portant sur le climat interieur et individu a des fins de maintenance et de nettoyage et L'ensemble des travaux de Lutilisation energetigue ont ete realisees en Janvier ranovabon a nacessita un 1995. Les resultats de ces mesures, completes par un investissernent d’environ 2 millions d'euros. Le temps de retour sur guestionnaire administre en meme temps, montrent gue hvesbssement est de 4 ans pour le climat interieur est tres bon et gue Lefficacite le systame d'Aclaiage. Quant au energetigue est globalement satisfaisante. systame de chauffage et de venblatkn, il s'est avara mohs cher qu ’un systeme traditionnel et 40 000 € ont ata aconomisas sur les dapenses anergabques. Contact Rune Tjader AB Karlskronahem 0. Vittusgatan 9A 371 33 Karlskrona Sweden Tel: +46 455 30 49 00 Fax: +46 455 30 49 29 E-mail: [email protected] 0 0 0 0 0

Description de I’ecole Mansfield [Royaume-Uni] Type d'ecole : primaire

Surface utile : 1 490 m2 (dont 126 m2 de classes Beech Hill special school mobiles)

Nombre d'eleves : 70

Date de construction : 1960

Occupation : 1 300 heures/an Economies de chauffage et d'eclairage a moindre cout Participants au projet

Nottinghamshire County Council De nombreuses ecoles du Comte de Energy Saving Trust Nottinghamshire utilisent a titre temporaire des East Midland Electricity constructions modulaires prefabriquees mobiles comme

Performance salles de cLasse. Bien que destinees a I'origine a un energetique usage temporaire pour pallier un manque de place, ces

Les Economies d'6nergie I8es 6 constructions sont souvent utilisees sur des periodes I'amAlioration des syst6mes plus longues que prevues. Mais leur fonction initiate d'Aclaiage sont estimAes a explique que ces constructions soient souvent permis de reduire la consommation d'eiectricite de ces 7 535 kWh par an poir ce qui est de la consommation d'6lectricit6, chauffees par des radiateurs electriques a air pulse batiments temporaires. soil ire Aconomie de 3% par fonctionnant en heures pleines. La pose de ces rapport 6 la consommation moyerme observes pour ce type appareils, par ailleurs faciles a reguler, est en effet peu Les autres economies realisees sur la d'Acole. 5 tonnes par an de onereuse. Cependant, leur cout de fonctionnement est consommation electrique sont le resultat d'un plan mis dloxyde de carbone seront ansi relativement eleve et toute mesure visant a reduire la en place au niveau du Comte et visant a remplacer 6vlt6es, solt ine amelioration de 6% par rapport aux quantitAs consommation electrique de ces radiateurs presente un toutes les ampoules a incandescence de 60 W et 100 W moyemes rejetGes par ce type interet certain. Des mesures simples et relativement installees dans les classes, bureaux et couloirs par des d'Atablissement. peu couteuses ont ainsi ete retenues et mises en oeuvre ampoules fluorescentes plus performantes. L'objectif de Donnees financieres dans le cadre d'un programme d'amelioration de ce plan etait double : ameliorer les conditions I'efficacite energetique des ecoles du Comte de Les economies amuelles liees e la d'eclairage tout en economisant I'energie. Au total, 124 baisse de la consommation Nottinghamshire. L'etablissement specialise Beech Hill ampoules de 100 W ont ete ainsi remplacees en 1998 d'eiectricite desthee e reclaiage est un exemple concret du type de mesures qui furent dans l'etablissement par des ampoules plus performantes s'eievent e 795 €. installation du dispositif de regulation du systeme appliquees. dont les caracteristiques dependent de ['utilisation des de chauffage devrait en outre locaux ou elles sont installees : ampoules compactes permettre des economies Un systeme de regulation des radiateurs electriques fluorescentes de 16 W dans les couloirs et minces tubes suppiementares, que ce soit en terme d’eiectricite non a air pulse avait deja ete installe en 1997 dans fluorescents de 58 W dans les salles de cours et les consommee, de coOts, ou de l'etablissement specialise de Beech Hill. Ce systeme est bureaux. II est en effet important que des mesures rejets de dioxyde de carbone base sur un programmateur "optimiseur" comprenant visant a ameliorer I'efficacite energetique soient ciblees, evites. Le dispositif de regulation du un detecteur de temperature et un detecteur de adaptees au contexte et qu'elles n'entrainent pas un systeme de chauffage a coOte au mouvement. L'optimiseur declenche en temps voulu le cout de mise en oeuvre trop eleve. total 635 €. systeme de chauffage pour la remise en temperature de la piece, le detecteur de temperature maintient la Contact temperature au niveau souhaite et le detecteur de Neil Norwood (Senior Energy Officer) Environment Department presence ralentit le fonctionnement des radiateurs pour Nottinghamshire County Council County Hall, abaisser la temperature de la piece de 5°C lorsque West Bridgeford Nottingham NG2 7QP United Kingdom celle-ci est inoccupee. Ce dispositif, tres efficace, a Tel: +44 115 977 3548 Photo: INETTI

M6l*tOld [Portugal] Description de I’ecole Type d'ecole : maternelle

Surface utile : 669 m2 Centro infant!I Nombre d'eleves : 141 Date de construction : 1982

Occupation : 2 580 heures/an

Une conception qui integre etablie par le mur de Trombe. Participants les preoccupations thermiques au projet La surface utile a chauffer est de 669 nr et la surface vitree est de 156 rrf, ce qui donne un rapport Santa Casa da Misehcdrdia de L’ecole maternelle de Mertola est un batiment dont la M&tola - Oganisme priva de surface vitree / surface utile de 23%. Les murs de solidarity sociale fonda en 1554 conception integre les preoccupations thermiques en Trombe represented environ 75% de toute la surface (prophatare de racde) essayant d'utiliser au mieux I'energie solaire. L'hiver Camara Municipal de M&tola vitree du batiment et sont relies aux zones de plus nest pas rigoureux (1 356 degres-jours). Par contre grande occupation, a savoir les classes et les salles Performance Pete est tres chaud, mais cette saison coincide en d'activites. Les murs sont a double paroi et I'espace energetique partie avec les vacances scolaires. Le batiment est entre les parois est rempli avec du schiste, tres La performance anergatique de implante sur une legere pente, ce qui a permis abondant dans la region. Les murs en contact avec le racde est de 18 kV\tVhf par an Penfoncement partiel de la facade nord. Son en hiver, alors que la valeur de sol et la couverture sont isoles avec 4 a 5 cm de ratarence est de 61 kVMn/hf par organisation spatiale est en deux volumes. Le volume mousse de polystyrene expanse. La facade sud possede an pour une acde conventiomelle principal a une orientation favorable avec une facade situae dans le mame secteur 110 rrf de surface vitree avec du double vitrage. Les sud/sud-ouest qui comprend un ensemble de systemes gaographique, soit me aconomie gains directs proviennent des fenetres et des verrieres d'anergie de Forde de 70%. solaires passifs, notamment des murs de Trombe et les gains in directs des murs de Trombe. Pendant I'ete integres en facade, des verrieres et une grande surface Donnees financieres la plupart des surfaces vitrees disposed de protections vitree permettant de capter et de stocker I'energie solaires. Des lattes p rote gent le premier etage et le CoOt total de Fhvestissement pour solaire pendant l'hiver. Le mur de Trombe est constitue le projet : 69 000 € decalage entre les deux etages protege le rez-de- par une paroi en beton avec des trappes en has et en chaussee. En ete, on evite la surchauffe en p la (ant des haut. Le cote exterieur est peint en noir et protege par roseaux (tradition regionale tres repandue) sur les une vitre. fair de claires-voies en remplacement des rideaux isolants et la piece est aspire en profitant de Lombrage des arbres plantes dans le par la trappe cadre du projet. La ventilation croisee, prevue dans le inferieure puis projet, a ete un echec suite a une erreur de retourne dans la construction. piece par la trappe superieure. En fin Contact de journee et ManueLa Luz Martins pendant la nuit, la Santa Casa da Misericordia da Mertola chaleur stockee Av. Aureliano Mira Fernandes 7750 Mertola Portugal T6L: +351 286 622 121 Fax: +351 286 622 121 dans la paroi est restituee dans la salle grace a la circulation d'air

Source ; /S8N 972-676-7 63^8 "EdWkibs Soares PassAos em Aor&yga/" /AETMDER Description de I’ecole RedOlidO [ Portugal] Type d'ecole : primaire

Surface utile : 1 520 m2 Nombre d'eleves : 190 Escola pri maria Date de construction : 1948

Occupation : 1 120 heures/an

Un bon exemple de valorisation Participants au projet d'une energie locale a moindre cout

Camara Municipal do Redondo Mhist&io da Educagao Redondo est situee au sud de Portugal, a 200 km de Lisbonne, dans une region appelee Alentejo gui ne Performance energetique connait gue deux a trois mois vraiment froids en hiver (1 431 degres-jours). Le ville se trouve dans une region Comparativement au pr&c6dent systeme de radiateife Glectriques viticole gui produit chague annee 510 tonnes de qui coneommait 114 500 kWh par dechets issus de la tailie des vignes, utilisables a des an, le nouveau diepoeitifde chauffage permet d'Aconomieer fins energetigues. La Municipality de Redondo a done 1 900 € par an sir la facture decide d'eguiper I'ecole municipale, dont les conditions anergatique. de chauffage n'etaient pas satisfaisantes, d'un systeme

Donnees financieres: de chauffage central congu pour bruler ces sarments de vigne. Ceux-ci sont ramasses a I'aide d'une botteleuse Le cout total de I’installation du systame de chauffage s'aiave a specialement congue a cet effet gui rassemble les 31 517 €, dont 70% ont ata sarments en fagots de 0,5 m de diametre et de 1 m de fhancas par le Progamme Vakren long. Cette activity est financee par la Municipality. de la Commission europaeme. Le temps de retour sir Un hectare de vigne produit environ une tonne de hvestissement, hors aides sarments. Apres sechage jusgu'a obtention d'un taux fhanciares, est de 5,5 ans. d'humidite de 15%, la puissance calorifigue inferieure des sarments de vigne est d'environ 4 kWh/kg, soit I'eguivalent de 400 litres de fuel. Le systeme de un par batiment. L'energie ainsi produite est stockee chauffage fonctionne a partir d'une reserve d'eau, ce dans un reservoir d'eau d'une capacity de 5 000 litres gui permet d'absorber I'excedent de chaleur lors de la re lie a la chaudiere par une vanne a guatre voies gui combustion des sarments de vigne et d'ameliorer ainsi maintient la temperature de retour vers la chaudiere a I'efficacite et I'autonomie du systeme de chauffage. plus de 55 °C (temperature au point de rosee). L'amenee d'eau chaude vers les radiateurs se fait de Cette ecole est typigue du style de batiments en maniere independante, en fonction de la temperature magonnerie construits dans les annees 40 a 60. Elle exterieure et de I'occupation des locaux. comprend 13 salles de cours reparties sur 3 batiments chauffes par le systeme de chauffage central. Ce Contact systeme est compose d'une chaudiere a eau chaude Enga Susana SobraL horizontale de 150 kW avec retour de flamme, Agenda Regional de Energia do Centro e Baixo ALentejo-ARECBA alimentee par les fagots de sarments de vigne ou de Rraga da Republica,12 7800 BEJA Portugal T6k +351 28431 0160 hois, et de trois reseaux de distribution d'eau chaude, © © © Photo: JW LUFTFOTO

SkiVe [Danemark ] Description de I’ecole Type d'ecole : primaire Hcjslev Skole Surface utile : 6 721 m2 Nombre d'eleves : 415 Date de construction : 1902, 1907, 1957 et 1963 Occupation : 1 600 heures/an Systeme de contrdle - Le systeme a ete congu a I'origine pour chauffer les par zone et chauffage solaire locaux, I'eau chaude sanitaire n'etant qu'une Participants utilisation secondaire. au projet - Une partie de I'installation servit a tester une Municipality de Skive A I’instar des neufs autres ecoles primaires que compte nouvelle technologie, a savoir des reflecteurs 4gence Danoise de FEnergie la municipalite, un systeme de contrdle du chauffage par Institut Danois de Technologie speciaux faits de plaques d'aluminium brillant. Ces zone a ete installe a I'ecole Hojslev. Ce systeme permet Compagnie de distribution de reflecteurs, montes sur la moitie des panneaux chaleur Soby-Hqslev de controler I'approvisionnement en chaleur de cheque Arcon Solar Heat he. solaires, reflechissent vers ces derniers les rayons du piece. Jusqu'en 1963, une chaudiere au fuel assurait le soleil lorsque celui-ci s'eleve a plus de 30° au-dessus Performance chauffage de I'ecole, date de sa conversion au chauffage de I'horizon. Ce systeme devrait permettre de capter energetique urbain. Auparavant, I'ecole etait divisee en neuf zones de environ 20% de plus d'energie solaire qu'un systeme Q-ace a FhstaHaticn du systame 800 m; chacune. Le systeme de contrdle par zone, mis en conventionnel. de contrdle par zone, les besoins service en 1989, definit 72 zones de chauffage, dont des en chauffage sont passes de 170- - La mise en service d'un systeme de chauffage solaire salles de classes, la salle des professeurs, les halls, les 175 kV\h/hf par an a envron sur le site d'une ecole pose le probleme de la montee 125 kWh/hf par an. Les besohs toilettes etc. en temperature de I'installation lorsque I'ecole est spdcifiques en chauffage de Fdcole depuis I'hstallation du fermee en ete. C'est pourquoi la compagnie de systame de chauffage solaire en Les besoins en chauffage des ecoles a Skive sont chauffage urbain, une compagnie privee, a des le 1994 ont par ailleurs baissA de relativement eleves en raison de conditions climatiques debut ete sollicitee pour acheter la production de 25%. hivernales rigoureuses (3 350 degres-jours). En 1994, chaleur estiva le. La compagnie de Skive a accepte de Donnees financieres le gouvernement demanda aux municipalites de cooperer. II fut done decide que les pompes de reflechir a un moyen de faire baisser de 25% les Le systame de contrdle par zone a I'ecole alimenteraient le reseau de chauffage urbain ndcessitd un hvestissement besoins energetiques des bati merits. Les ecoles de Skive en eau chaude a une temperature minimum comprise d'envron 47 000 €. Avec ayant deja fait des efforts dans ce domaine, il fallut 300 000 kWh dconomisds par an, entre 70 et 75 °C. Des system es de securite furent trouver un autre systeme que le contrdle par zone. C'est le temps de retour sur egalement installes afin de s'assurer qu'en cas hvestissement est d'environ 3,5 ainsi que pour I'ecole Hojslev fut proposee I'installation d'incident I'ecole serait immediatement "consignee", ans. Le systame de chauffage d'un systeme de chauffage solaire a grande echelle. La solare reprdsente un eliminant ainsi les risques de perturbation sur le hvestissement total de proposition se traduisit dans les faits par un systeme de reseau. La compagnie achete la chaleur produite par 134 000 €, dont 30 % ont dtd chauffage solaire occupant une superficie de 375 nr et I'ecole a la moitie du prix d'achat que doit verser fhaneds par des subventions de pouvant fournir 450 kWh/nf. Ce systeme differe des FAgence Danoise de FEnergie. I'ecole lorsque celle-ci achete de la chaleur sur le systemes conventionnels sur quatre points : reseau. - Les pompes de circulation sont a debit variable afin de s'adapter aux besoins thermiques de I'ecole. Ceci permet d'augmenter I'efficacite du systeme de chauffage solaire et de reduire la consommation electrique des pompes. Contact Michael Petersen The Municipality of Skive Technical Department 0stergade 13 Box 509 7800 Skive Denmark Fax: +45 97 52 50 80 E-mail: [email protected] Description de l’ecole Stuttgart-Plieningen Auemagne Type d'ecole : primaire et secondaire Surface utile : 5 420 m2 Grund und Hauptschule Nombre d'eleves : 500

Date de construction : 1930, 1950 et 1970 Occupation : 1 400 heures/an Une renovation radicale pour une plus ancienne du batiment. Depuis la mise en service plus grande efficacite energetique de la chaudiere en 1969, aucuns travaux significatifs Participants n'ont ete entrepris. Avant la realisation du projet, au projet l'ecole etait chauffee par deux chaudieres basse Le batiment, erige dans les annees 30, possede une Service Protection de pression de 800 kW gui devaient etre arretees et I’Environnernent de laVille de facade dont la preservation a etejugee indispensable. remises en service manuellement par le gardien. Stuttgart Seuls des travaux d'isolation interne etaient done Fraunhofer Institut fur Bauphysik L'appartement de ce dernier etait egalement chauffe sur Institut fur Kernenergie und envisageables dans le cadre de ce projet de renovation. le systeme de l'ecole, ce gui impliguait gu'une partie Energiesysteme La seconde partie du batiment date des annees 50 et la des batiments devait etre chauffee, meme en periode Service Construction de la Ville de troisieme des annees 70. L'ensemble du batiment Stuttgart et consultants specialises de vacances scolaires. Partenares hdustriels, presente des points faibles thermigues gui s'expliguent enseigiants, parents et eieves par I'age de la structure, les materiaux employes, mais Une nouvelle chaudiere a condensation a faible egalement par la juxtaposition de differents elements Performance emission de NOx (oxydes d'azote) a ete installee dans energetique de construction. Les huisseries en bois des fenetres des le cadre de ce projet. Les travaux d'isolation ayant trois sous-ensembles etaient endommagees. L'eclairage Les besohs en chauffage de permis de reduire de maniere significative les besoins recole sont passes de 200 - des salles de cours etait inadeguat en raison d'une en chauffage du batiment, le nouveau systeme de 220 kWh/hf e 58 kWh/hf par an, lumiere nature lie trop eblouissante gui obligeait a soit ine economie moyeme de chauffage a une consommation energetigue en maintenir les stores fermes toute la journee et a I'ordre de 72%. L'ecole consomme puissance de pointe de 60% inferieure au precedent. aujourd ’hui 14 kVVh/rn2 d’electricite s'eclairer a la lumiere artificielle. Des panneaux rayonnants a faible cubage d'eau ont ete par an, contre 11 e 20 kWh/hf L'installation de chauffage se trouve dans la partie la precedemment, soit me economie installes au-dessus des fenetres afin d'atteindre un moyeme de Fordre de 10%. eguilibre radiatif. Tous les murs exterieurs ont ete Donnees financieres isoles, soit par I'interieur, soit par I'exterieur, en

Le projet a beneficie de trois fonction des imperatifs de conservation architecturale. sources de fhancement : Dans les deux parties les plus anciennes, le plancher du - Lesmesires de maintenance et dernier etage, sous les toits, a ete recouvert de mousse de renovation, qui de toute fagon etaient incontoimables, isolante. Ces travaux d'isolation ont ete effectues par ont ete financees par la Ville de les enseignants et les eieves afin de reduire les couts et Stuttgart. les sensibiliser aux guestions energetigues. Grace a - Chacm des partenares hdustriels a apporte sa tous ces travaux, un maximum de points faibles contribution en fournissant des thermigues ont pu etre elimines de maniere matehaux, de I'argent ou encore des services de relativement efficace. Les besoins en eclairage dans les conseil/hg6nierie. classes ont ete reduits en recouvrant les murs d'une - Le Ministere allernand de peinture plus claire. Les installations d'eclairage ont FEducation, de la Recherche et de la Tednologie a, quant 6 hi, egalement ete changees. Des lampes a ballast fhancA la phase (f etudes. electronigue ainsi gue des dispositifs de regulation de L'hvestissement s'eieve en tout 6 l'eclairage en fonction de la lumiere du jour ont 3,1 millions d’euros. egalement ete installes. Contact Dr. VoLker KienzLen Landeshauptstadt Stuttgart Amt fur UmweLtschutz Postfach 10 60 34 70049 Stuttgart Germany Tel: +49 711 216 2241 Fax: +49 711 216 2413 E-mail: [email protected] WGOblGy [ Royaume-Uni] Description de I’ecole Type d'ecole : primaire avec Lycee attenant Primary school Surface utile : ecole primaire - 1 252m 2, Lycee - 3 392m2

Nombre d'eleves : ecole primaire - 240, Lycee - 600 Le bailment est bien isole, notamment au niveau Le bois energie, une alternative Date de construction : durable aux combustibles fossiles des sols, toitures et murs exterieurs. Les magonneries ecole primaire - 1997, en beton des murs interieurs sont congues pour stocker Lycee - 1955-1970 la chaleur et la restituer progressivement. La lumiere du Occupation : ecole primaire - jour est egalement mise a profit, ainsi que la 1 368 heures/an, ventilation naturelle. L'ouverture des fenetres Lycee - 1 596 heures/an inferieures et superieures permet a Lair de circuler dans les classes, tandis que les fenetres superieures Participants fournissent un excellent niveau d'eclairage. Les au projet

ampoules electriques sont a faible consommation Fond Regional EuropAen Le systems de chauffage de la nouvelle ecole d'energie et les materiaux utilises pour la construction IvIhistAre de I'Agicultue, de la primaire demontre que I'utilisation du bois en tant que sont des materiaux recycles, naturels et non toxiques : PAche et de I'Ago-alimentare combustible peut constituer une alternative durable, Commission de DAveloppement briques de fabrication locale, dormants des fenetres en Rural efficace et economique aux combustibles fossiles. Une bois, isolation a base de papier journal recycle, IvIhistAre du Commerce et de chaudiere a bois de 350 kW a en effet ete installee en Fhdustrie par le biais de FUnitA de plastiques recycles utilises comme materiaux 1997, avec mise en service definitive a I'automne 1998. Souben aux Technologies d'etancheite, tuiles en terre cuite recyclables, barre de EnergAbques Elle fonctionne environ 600 heures par an et assure le fenetre en aluminium, gouttieres et toit en Idle, Hereford and Worcester County chauffage en base de I'ecole. Etant donne que les Council revetements de sol bois et caoutchouc et peintures a besoins de I'ecole primaire ne sont que de 115 kW, le I'eau. Un systeme de gestion technique du bailment, Performance reste de la chaleur est exporte vers le lycee adjacent. avec detecteurs de presence dans les pieces, permet de energetique Les plaquettes forestieres provenant des travaux controler la consommation energetique de I'ecole. Les Amissions de dicxyde de d'eclaircissage des zones boisees sont fournies par une carbone rejetAes par FAcole cooperative d'agriculteurs de la region, 7Y Machinery devraient baisser de 78 tonnes par an, soit ure amAlicration de I'crdre Ring. II est egalement prevu que des taillis a courte Contact de 34% compte tenu du fait que la revolution de saules et de peupliers soient utilises a Iain Paul (Architecte en chef) valetr de rAfArence est en I'avenir pour fournir ces plaquettes. L'ensemble du bois Worcester County Council County Hall mcyeme de 228 tomes par an pour ce type d'Atablissement. utilise devrait provenir de cultures situees dans un Spetchley Road Worcester WR5 2NP United Kingdom Tel: +44 1905 763763 rayon de 16 km autour de Weobley. Donnees financieres

Les travaux d'amAnagement du bAtiment pour en amAlicrer Fisolaticn thermique et les autres mesues d'Aconcmie d'Anergie cnt AtA fhancAs A partr du budget normal de fonctionnernent du ComtA de Hereford and Worcester. Le chauffage central, y compels la chaufferie, le silo de stockage, les canalisaticns de chauffage et les pompes, a coOtA 261 200 €en 1997. LeFond RAgicnal Eu-opAen, gArA par le IvIhistAre britamique de FAgicultue, de la PAche et de FAgo-alimentare, a apportA 125 400 €. Le reste provient du IvIhistAre du Commerce et de rhdustne, par le biais de FUnitA de Souben aux Technologies EnergAbques, etdu ComtA de Hereford and Worcester, p. 26

Les partenaires

Energie-CiteS est une association de sur les Changements Climatiques. L'Unite a egalement municipalites dont le but est de promouvoir une elabore des plans energetiques visant a reduire la politique energetique locale integree et durable. consommation d'energie et promouvoir I'utilisation des Environ 150 municipalites participent ou ont participe energies renouvelables au sein de petites et moyennes a des projets de I'association, laquelle compte plus de collectivites. Ces plans, etablis en collaboration avec 90 membres originaires de tous les pays de I'Union des collectivity locales, dont le District de Newak and europeenne. Sherwood, la Municipality de Sheffield et le Local Energie-Cites poursuit trois objectifs : Authorities' Energy Partnership (Partenariat energetique - renforcer le role des municipalites dans les domaines regroupant des collectivity locales), ont beneficie de I'efficacite energetique, la promotion des energies dairies de la Energy Technology Support Unit (Unite de renouvelables et la protection de I'environnement, Soutien aux Technologies Energetiques) et de la - engager un debat sur les politiques et initiatives de Commission Europeenne. I'Union europeenne dans ces domaines et formuler Contact

des opinions, Resources Research Unit - developper les initiatives municipals par I'echange School of Environment and Development d'experiences, le transfert de savoir-faire et le Sheffield Hallam University City Campus Sheffield SI 1WB United Kingdom montage de projets commons. Tel: +44 114 225 3549 Fax: +44 114 225 4496 Energie-Cites a pour principals activites : E-mail: [email protected] - la dissemination d'informations sur les politiques et Site web: www.shu.ac.uk/schools/urs/resru decisions communautaires, les pratiques municipals et le transfert de savoir-faire, Associagao Nacional de - la veilie sur les pratiques municipals innovantes, et Municipios Portugueses (ANMP) notamment la collecte d'informations sur les bonnes L'Association Nationale des Municipalites Portugaises pratiques et Elaboration d'analyses et d'avis (ANMP) est I'organe representatif des "municipios" commons, (municipalites) et des "freguesias" (sous-division de - I'organisation d'evenements, dont un seminaire municipality). L'association, creee le 20 mai 1984 a europeen annuel. I'occasion de son premier congres constituent a Figueira da Foz, a pour statut legal celui d' "organisme collectif Contact de droit prive 11 par decision expresse de ses delegues. Secretariat Energie-Cites 2, chemin de Palente 25000 Besangon France Tous les partis politiques et toutes les regions du Tel: +33 3 81 65 36 80 Fax: +33 3 81 50 73 51 Portugal (soit 305 "municipios" et 4 241 "freguesias" E-mail: *@energie-cites.org Site web: www.energie-cites.org pour le Portugal continental, plus les regions autonomes

Bureau de Bruxelles Energie-Cites des Azores et de Madere) y sont representes dans un 29, rue Paul Emile Janson 1050 Bruxelles Belgique esprit de fraternity qui temoigne de la maturity Tel: +32 2 544 09 21 Fax: +32 2 544 15 81 politique de ses representants. C'est par le dialogue et la E-mail: [email protected] recherche du consensus que I'association s'efforce de trouver les meilleures solutions aux problemes The Resources Research Unit in rencontres par la population au niveau local. Les the School of Environment and principaux objectifs de I'association sont les suivants : Development at Sheffield Hallam - representer et defendre les "municipios" et University (Unite de Recherche sur les Ressources "freguesias" aupres du gouvernement, du departement Environnement et Developpement de - realiser des etudes et des projets sur des points I'Universite de Sheffield Hallam) est specialisee dans le relevant de la competence des collectivites locales, diagnostic des utilisations energetiques dans les - creer et organiser des services consultatifs et fournir batiments, revaluation des possibility d'amelioration une assistance technique et juridique a ses membres, en terme d'efficacite energetique et la recherche de - mener des actions ({'information destinees aux elus solutions pratiques faisant intervenir les energies locaux et former le personnel administratif renouvelables dans un souci de developpement durable. municipal, L'Unite a deja a son actif plus de 800 etudes - encourager les echanges ({'experiences et energetiques realisees au Royaume-Uni sur des d'informations de nature technique ou administrative batiments du secteur non residentiel, dont 45 entre les membres, etablissements scolaires, pour le compte du Ministere - representer les membres au sein des organisations de I'Environnement, des Transports et des Regions, nationales et internationales. ainsi que pour le Building Research Establishment Ltd. Ce travail contribue a enrichir la base de donnees nationale sur les utilisations energetiques et les ANMP Av. Marnoco E Sousa, 52 3000 Coimbra Portugal emissions de dioxyde de carbone etablie dans le cadre Tel: +351 239 40 44 34 Fax: +351 239 701 760 de la politique de mise en oeuvre des engagements pris E-mail: [email protected] | Site web: www.anmp.pt par le gouvernement britannique lors de la Convention Reseau Opel ORGANISATIONS POUR LA PROMOTION DES TECHNOLOGIES ENERGETIQUES

Le reseau des organisations pour la promotion des technologies energetiques (OPET), soutenus par la Commission europeenne, aide a la dissemination de solutions novatrice, propre et efficace de technologies d’energie issues des activities de recherche, de developpement et de la demonstration d’ENERGIE et des programmes precedents. Les activities des membres de I’OPET dans les Etats Membres, et des associes de I’OPET, representant toutes les regions clefs du monde, se concentrent sur I’organisation de conference, reunions de travail, expositions, publications et autres actions d’informations et de promotions pour stimuler le transfert et [’exploitation de meilleures technologies d’energie.

OPET 1 ARCTIC Contact: Allan Mackie 9 SEED 15 BALKAN VENET Telephone: +44 141 2425842 ASTER Sofia Energy Centre Umestan Foretagspark, Hus 201 Facsimile: +44 141 2425691 Via Morgagni, 4 51, James Boucher Blvd. SW-903 47 Umeaa Emai I :AI Ian .Mackie@scot land .gov. IT-40122 Bologna 1407 Sofia, Bulgaria Contact: Ms. France Goulet uk Contact: Elisabetta Toschi Contact: Violetta Groseva Telephone: +46-90 718162 or 60 Telephone: +39-05 1236242 Telephone : +359-2 683541 Facsimile: +46-90 718161 5 ENEA-ISNOVA Facsimile: +39-05 1227803 9625158 E-mail: france.goulet@venet. se ISNOVA s.c.r.l. E-mail: [email protected] Facsimile: +359-2 681461 Via Flaminia, 441 E-mail: [email protected] CESEN Spa Merinova IT-00196 Rome Piazza della Vittoria 11 A/8 Oy Merinova Ab Technology Contact: Wen Guo IT-16121 Genova ISPE Center Telephone: +39-06 30484059 Contact: Salvatore Campana P.O. 30-33 Elbacken 4A, FIN-81 065101, Facsimile: +39-06 30484447 Telephone: +39-010 5769037 Lacul Tei Blvd. 1 Vaasa, Finland E-mail: Facsimile: +39-010 541054 72301 Bucharest, Romania Contact: Johan Wasberg [email protected] E-mail: [email protected] Contact: Anca Popescu Telephone: +358-6 2828261 ENEA Telephone: +40-1 2103481 Facsimile: +358-6 2828299 CESVIT Via Anguillarese 301 Facsimile. +40-1 2103481 E-mail: Via G. del Plan del Carpini S. Maria di Galeria E-mail: [email protected] [email protected] IT-50127 Firenze IT-2400 Roma Contact: Lorenzo Frattali Contact: Francesco Ciampa Sintef Telephone: +39-055 4294239 Telephone: +39-06 30484118 EXERG IA Sintef Energy Research Facsimile: +39-055 4294220 Facsimile: +39-06 30484447 64, Louise Riencourt Str. Sem Saelands vei 11 E-mail: [email protected] E-mail: GR-11523 Athens 7034 Trondheim, Norway [email protected] Contact: George Georgocostas Contact: Jens Hetland 10 NETHERLANDS Telephone: +30-1 6996185 NOVEM Telephone: +47-73 597764 6 ROMANIA Facsimile: +30-1 6996186 Swentiboldstraat 21 Facsimile: +47-73 592889 ENERO E-mail: [email protected] NL-6130 AASittard E-mail: Enegeticienilor 8 Contact: Theo Haanen [email protected] 74568 Bucharest, Romania Telephone: +31 -46 4202304 16 RES POLAND Contact: Alexandru Florescu Facsimile: +31 -46 4528260 EC BREC 2 IRELAND Telephone: +40-1 322 0917 E-mail: [email protected] Rakowiecka 32 Irish Energy Centre Facsimile: +40-1 322 27 90 02-532 Warsaw, Poland Glasnevin E-mail: 11 EUZKADI-CYMRU Contact: Krzysztof Gierulski Dublin 9, Ireland [email protected] EVE Contact: Rita Ward Telephone : +48-58 3016636 San Vicente, 8 Edificio Albia l-P 14, Telephone: +353-1 8369080 7 CRONOS Facsimile: +48-58 3015788 E-48001 Bilbao Facsimile: +353 1 8372848 FAST E-mail: [email protected] Contact: Juan Reig Giner E-mail: [email protected] Piazzale Rodolfo Morandi 2 Telephone: +34-94 4355600 IT-20121 Milano Facsimile: +34-94 4249733 17 SWEDEN 3 PORTUGAL Contact: Paola Gabaldi E-mail: [email protected] STEM - Swedish National Energy CCE Telephone: +39-02 76015672 Administration Estrada de Alfragide, Praceta 1 Facsimile: +39-02 782485 DU LAS 631 04 Eskilstuna, Sweden E-mail: [email protected] PO-2720-537 Amadora Unitl Dyfi Eco Parc Contact: Sonja Ewerstein Contact: Luis Silva UK-SY20 8 AX Machynlleth Telephone: +46-8 54520338 ICAEN Telephone: +351-21 4722818/00 Contact: Janet Sanders Facsimile: +46-16 5442270 Av. Diagonal 453 bis, Atic Telephone: +44-1654 795014 Facsimile: +351-21 4722898 E-mail: [email protected] E-mail: [email protected] E-08036 Barcelona Facsimile: +44-1654 703000 Contact: Joan Josep Escobar E-mail: [email protected] Institute Superior Tecnico Telephone: +34 93 6220500 18 CZECH REPUBLIC Av. Rovisco Pais Facsimile: +34 93 6220501 12 DOPET Technology Centre of the PC-1049-001 Lisboa E-mail: [email protected] Danish Technological Institute Academy of Sciences Contact: Maria da Graga Carvalho Gregersensvej Rozvojova 135 Multisassari Telephone: +351-21 8417372 DK-2630 Taastrup 16502 Prague, Czech Republic StradaProvinciale La Crucca 5 Facsimile: +351-21 8475545 Contact: Nils Daugaard Contact: Karel Klusacek IT-7100 Sassari Telephone: +45-43 504350 E-mail: [email protected] Telephone : +420-2 20390213 Contact: Antonio Giovanni Rassu Facsimile: +45-43 507222 Facsimile: +420-2 33321607 Telephone: +39-079 3026031 E-mail: INESC-Porto E-mail: [email protected] Facsimile: +39-079 3026212 [email protected] Largo Mompilher, 22 E-mail: [email protected] PO-4050-392 Porto 13 GERMANY EGU Praha Eng.Ltd Contact: Vladimiro Miranda ADEM E-Corse Forschungszentrum Julich GmbH Podnikatelska, 1 Telephone: +351-22 2094234 Rue St. Claire 8 DE-52425 Julich 19011 Prague, Czech Republic Facsimile: +351 -22 2084172 FR-20182 Ajaccio Contact: Gillian Glaze Contact: Jaromir Beran E-mail: [email protected] Contact: Toussaint Folacci Telephone: +49-2461 615928 Telephone: +420-2 67193436 Telephone: +33-49 5517700 Facsimile: +49-2461 612880 Facsimile: +420-2 6441268 4 SCOTLAND Facsimile: +33-49 5512623 E-mail: [email protected] E-mail: [email protected] NIFES Ltd 8 Woodside Terrace 8 SLOVAKIA 14 SPAIN UK-G3 7UY Glasgow Energy Centre Bratislava I DAE DEA Contact: Andrew Hannah Bajkalska 27 Paseo de la Castellana 95 Benesova 425 Telephone: +44 141 3322453 827 99 Bratislava 27 -Slovakia E-28046 Madrid 66442 Prague, Czech Republic Facsimile: +44 141 3330402 Contact : Vladimir Heel Contact: Virginia Vivanco Cohn Contact: Hana Kuklinkova E-mail: [email protected] Telephone: +421-7 58248472 Telephone: +34-91 4565024 Telephone: +420-2452 22602 Scottish Energy Efficiency Office Facsimile: +421-7 58248470 Facsimile: +34-91 5551389 Facsimile: +420-2452 22684 UK-G2 6AT Glasgow E-mail: [email protected] E-mail: [email protected] E-mail: deabox a sky.cz

These data are subject to possible change. For further information, please contact the above internet website address or Fax +32 2 2966016 19 BLACK SEA 22 FRANCE Energieagentur Sachsen-Anhalt SAARE MAAVALITSUS Black Sea Regional Energy Centre ADEME Universitaetsplatz 10 Saaremaa County Government Triaditza 8 27, Rue Louis Vicat DE-39104 Magdeburg 1 Loss! Str. 1040 Sofia, Bulgaria FR-75015 Paris Contact: Werner Zscherpe EE 3300 Kuressaare Estonia Contact: Ekateriana Kanatova Contact: Florence Clement Telephone: +49-391 73772-0 Contact: Tarmo Pikner Telephone: +359-2 9806854 Telephone: +33-1 47652331 Facsimile: +49-391 73772-23 Telephone: +372-4 533499 Facsimile: +359-2 9806854 Facsimile: +33-1 46455236 E-mail: Facsimile: +372-4 533448 E-mail: [email protected] E-mail: [email protected] [email protected] E-mail: [email protected]

20 CROSS-BORDER 28 GERMAN POLISH 23 UK 26 FINLAND Berliner Energieagentur BAVARIA AUSTRIA ETSU ZREU The National Technology Agency Rudolstr. 9 AEA Technology pic Kyllikinportti 2 DE-10245 Berlin WieshuberstraBe 3 Harwell, Did cot, FI-00101 Helsinki Contact: Ralf Goldmann DE-93059 Regensburg UK-OX11 ORA Oxfordshire Contact: Marjatta Aarniala Telephone: +49-30 29333031 Contact: Toni Lautenschlager Contact: Lorraine Watling Telephone: +358-10 5215736 Facsimile: +49-30 29333099 Telephone: +49-941 464190 Telephone: +44 1235 432014 Facsimile: +358-10 5215905 E-mail: goldmann@berliner-e- Facsimile: +49-941 4641910 Facsimile: +44 1235 433434 E-mail: [email protected] agentur.de E-mail: [email protected] E-mail: [email protected] The Polish National Energy ESV - O.O. Energiesparverband Finntech Finnish Technology WREAN Conservation Agency (KAPE) Landstrasse 45 Teknikantie 12 1 Newgents Entry Nowogrodzka 35/41 AT-4020 Linz FI-02151 Espoo UK-BT74 7DF Enniskillen PL-00-691 Warsaw, Poland Contact: Christiana Egger Contact: Leena Grandell Contact: Robert Gibson Contact: Marina Coey Telephone: +43-732 65844380 Telephone: +358-9 4566098 Telephone: +44-1365 328269 Telephone: +48-22 6224389 Facsimile: +43-732 65844383 Facsimile: +358-9 4567008 Facsimile: +44-1365 329771 Facsimile: +48-22 6222796 E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] KK Osterreichische Baltycka Poszanowania Energii Kommunalkredit AG Technical Research Centre of 24 GUANGZHOU (BAPE) Turkenstrasse 9 Finland Guangzhou Institute of Energy Podwale Przedmiejskie 30 AT-1092 Vienna Vuorimiehentie 5 Conversion PL-80-824 Gdansk, Poland Contact: Kathrin Kienel-Mayer PC Box 1000 The Chinese Academy of Sc. Contact: Edmund Wach Telephone: +43-1 31631440 FI-02044 Espoo 81 Xianlie Central Road Telephone: +48-58 3058436 Facsimile: +43-1 31631105 Contact: Eija Alakangas Guangzhou Facsimile: +48-58 3058436 E-mail: [email protected] Telephone: +358-14 672611 510070 Guangzhou, P.R.China E-mail: [email protected] Contact: Deng Yuanchang Facsimile: +358-14 672598 LEV-Landesenergieverein Telephone: +86-20 87606993 E-mail: [email protected] Niedersachsische Energieagentur Steiermark Facsimile: +86-20 87302770 Ruhmkorffstrasse 1 Burggasse 9 E-mail: [email protected] DE-30163 Hannover AT-8010 Graz, Austria 27 European ISLANDS Contact: Ann erase Horter Contact: Gerhard Ulz International Scientific Council Telephone: +49-511 9652917 Acta Energiae Sinica for Island Development Telephone: +43-316 8773389 Facsimile: +49-511 9652999 Facsimile: +43-316 8773391 China Solar Energy Society c/o UNESCO E-mail: [email protected] E-mail: [email protected] 3 Hua Yuan Lu, Haidian District 1, rue Miollis 100083 Beijing, China FR-75015 Paris 29 INDIA Contact: Li Jintang Contact: Pier Giovanni D’ayala 21 SOLID FUELS Tata Energy Research Institute Telephone: +86-10 62001037 Cl EM AT Telephone: +33-1 45684056 DARBARI SETH BLOCK Facsimile: +86-10 62012880 Avd. Complutense 22 Facsimile: +33-1 45685804 Habitat Place, Lodi Road E-mail: [email protected] E-28 040 Madrid E-mail: [email protected] 110 003 New Delhi, India Contact: Fernando Alegria Contact: Am it Kumar Telephone: +34-91 3466343 Committee of Biomass Energy, ITER Telephone: +91-11 4622246 Facsimile: +34-91 3466455 China Rural Energy Industrial Poligono Industrial de Granadilla - Facsimile: +91-11 4621770 E-mail: [email protected] Association Parque Eolico E-mail: [email protected] 16 Dong San Huan Bei Lu, ES-3861 1 San Isidro - Tenerife The Combustion Engineering 30 HUNGARY Chaoyang District Contact: Manuel Cendagorta Association National Technical Information 100026 Beijing, China Galarza Lopez 1a Clarke Street Centre and Library (OMIKK) Contact: Wang Mengjie Telephone: +34-922 391000 UK-CF5 SAL Cardiff Muzeum u 17 Telephone: +86-10 65076385 Facsimile: +34-922 391001 Contact: David Arnold H-1088 Budapest, Hungary Facsimile: +86-10 65076386 E-mail: [email protected] Telephone: +44-29 20400670 E-mail: [email protected] Contact: Gyula Daniel Nyerges Facsimile: +44-29 20400672 Telephone: +36-1 2663123 E-mail :info@cea. org.uk National Technical University of Facsimile: +36-1 3382702 25 CORA Athens E-mail: [email protected] Saarlandische Energie-Agentur CSFTA 9, Heroon Polytech niou Str. Altenkesselerstrasse 17 GR-15780 Zografu - Athens KTI Greece DE-66115 Saarbrucken Contact: Arthouros Zervos Institute for Transport Sciences Contact: Emmanuel Kakaras Contact: Nicola Sacca Telephone: +30-1 7721030 Than Karoyl u. 3-5 Pf 107 Telephone: +30-1 6546637 Telephone: +49-681 9762174 Facsimile: +30-1 7721047 H-1518 1119 Budapest, Hungary Facsimile: +30-1 6527539 Facsimile: +49-681 9762175 E-mail: [email protected] Contact: Imre Buki E-mail: [email protected] E-mail: [email protected] Telephone: +36-1 2055904 Facsimile: +36-1 2055927 ICRET Certcetare sa Brandenburgische Energiespar- AREAM E-mail: [email protected] VITAN, 236 Agentur Madeira Tecnopolo 74369 Bucharest, Romania Energy Centre Hungary FeuerbachstraBe 24/25 PO-9000-390 Funchal Contact: Catalin Flueraru Konyves Kalman Korut 76 DE-14471 Potsdam Contact: Jose Manuel Melim Telephone: +40-1 3229247 H-1087 Budapest, Hungary Contact: Georg Wagener-Lohse Mendes Facsimile: +40-1 3214170 Contact: Andreas Szaloki Telephone: +49-331 98251-0 Telephone: +351 -91 723300 E-mail: Telephone: +36-1 3331304 Facsimile: +49-331 98251-40 Facsimile: +351-91 720033 [email protected] Facsimile: +36-1 3039065 E-mail :[email protected] E-mail: [email protected] m i on ita@i cpetcerceta re.pcnet. ro E-mail: [email protected]

World Coal Institute Zentrum fur Innovation und Assoc.Nat. Comuni 31 PACTO ANDINO Oxford House, 182 Upper Technik in Nordrhein-Westfalen Isole Minor! Cenergia Richmond Road, Putney Dohne 54 Via dei Prefetti Derain n° 198 UK-London SW15 2SH DE-45468 Muelheim an der Ruhr IT-186 Roma Lima 41, Lima, Peru Contact: Charlotte Griffiths Contact: Herbert Rath Contact: Franco Cavallaro Contact: Jorge Aguinaga Diaz Telephone: +44-20 82466611 Telephone: +49-208 30004-23 Telephone: +39-090 361967 Telephone: +51-1 4759671 Facsimile: +44-20 82466622 Facsimile: +49-208 30004-29 Facsimile: +39-090 343828 Facsimile: +51-1 2249847 E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] E-mail: [email protected]. pe

These data are subject to possible change. For further information, please contact the above internet website address or Fax +32 2 2966016 Ministerio de Energia y Minas 34 SLOVENIA LDK 44 SOUTH SPAIN Direccion de Energies Alternatives Institute “Jozef Stefan ” Sp. Triantafyllou 7 SODEAN Paez 884 y Mercadillo Jamova 39 GR-11361 Athens Isaac Newton Isla de la Cartuja Edf. Interandina SI-1001 Ljubljana, Slovenia Contact: Christos Zacharias E-41092 Sevilla Quito, Ecuador Contact: Tomaz Fatur Telephone: +30-1 8629660 Contact: Maria Luisa Borra Marcos Contact: Balseca Granja Telephone: +386-61 1885210 Facsimile: +30-1 8617681 Telephone: +34-95 4460966 Telephone: +59-32 565474 Facsimile: +386-61 1612335 E-mail: [email protected] Facsimile: +34-95 4460628 Facsimile: +59-32 565474 E-mail: [email protected] E-mail :[email protected] E-mail: [email protected] 39 CAUCASUS Civil Engineering Institute ZRMK A.G.E. Energy Efficiency Centre Georgia 32 AUSTRIA Dimiceva 12 Castilla la Mancha D. Agmegshenebeli Ave. 61 EM A. SI-1000 Ljubljana, Slovenia Tesifonte Gal I ego 22 380002 Tbilisi, Georgia Linke Wienzeile 18 Contact: Marjana Sijanec Zavri E-2002 Albacete Contact: George Abu lashvili AT-1060 Vienna Telephone: +386-61 1888342 Contact: Agustin Aragon Mesa Telephone: +995-32 943076 Contact: Gunter Simader Facsimile: +386-61 1367451 Telephone: +34-925 269800 Facsimile: +995-32 921508 Telephone: +43-1 5861524 E-mail: [email protected] Facsimile: +34-925 267872 E-mail: [email protected] Facsimile: +43-1 5869488 E-mail: [email protected] E-mail: [email protected] University of Ljubljana, [email protected] Center for Energy and SOFIEX O.E.K.V. Environment Technologies Energy Strategy Centre Moreno de Vargas N° 6 MuseumstraBe 5 Askerceva 6 Amaranotsain str. 127 E-6800 Merida AT-1070 Wien SI-1000 Ljubljana, Slovenia 375047 Yerevan, Amenia Contact: Antonio Ruiz Romero Contact: Franz Urban Contact: Vincenc Butala Contact: Surev Shatvorian Telephone: +34-924 319159 Telephone: +43-1 5237511 Telephone: +386-61 1771421 Telephone: +374-2 654052 Facsimile: +34-924 319212 Facsimile: +43-1 5263609 Facsimile: +386-61 218567 Facsimile: +374-2 525783 E-mail: [email protected] E-mail: [email protected] E-mail: vinvenc [email protected] -Ij.si E-mail: [email protected] IMPIVA BIT 35 RUSSIA Plaza del Ayuntamiento, 6 Energy Center Azerbaijan Wiedner HauptstraBe 76 Intersol a reenter E-48002 Valencia Republic AT-1040 Wien 2, 1-st Veshyakovski Proezd Contact: Joaquin Ortola Pastor Zardabi Avenue 94 Contact: Manfred Horvat 109456 Moscow, Russia Telephone: +34-96 3986336 370016 Baku, Azerbaijan Telephone: +43-1 5811616-114 Contact: Akhsr Pinov Facsimile: +34-96 3986322 Contact: Marina Sosina Facsimile: +43-1 5811616-18 Telephone: +7-095 1719670 E-mail: Ximo.ortola@impiva. Telephone: +994-12 314208 or E-mail: [email protected] Facsimile: +7-095 17149670 m400.gva.es E-mail: [email protected] 931645 Energieinstitut Vorarlberg Facsimile: +994-12 312036 45 ISRAEL StadstraBe 33/CCD St. Petersburg Energy Centre E-mail: [email protected] AT-6850 Dornbim Polyustrovsky Prospect 15 Block 2 Tel-Aviv University Contact: Kurt Hammerle Kalininskiy Rayon 40 BELGIUM 69978 Tel Aviv, Israel Telephone: +43-5572 31202-0 195221 St. Pertersburg, Russia Vlaamse Thermie Coordinatie Contact: Yair Sharan Facsimile: +43-512 589913-30 Contact: Nikita Solovyov (VTC) Telephone: +972-3 6407573 E-mail: Telephone: +7-812 3271517 Boeretang 200 Facsimile: +972-3 6410193 haemmerle.energieinstitut@ccd. Facsimile: +7-812 3271518 BE-2400 Mol E-mail: [email protected] vol.at E-mail: [email protected] Contact: Greet Vanuytsel Telephone: +32-14 335822 Samuel Neaman Institute Energie Tirol 36 SOUTHERN AFRICA Facsimile: +32-14 321185 Technion City Adamgasse 4/III Minerals and Energy Policy Centre E-mail: [email protected] 32000 Haifa, Israel AT-6020 Innsbruck 76, Juta Street Contact: David Kohn Contact: Bruno Oberhuber 2050 Braamfontein Telephone: +972-4 8292158 Telephone: +43-512 589913 Johannesburg, South Africa Institut Wallon ASBL Facsimile: +972-4 8231889 Facsimile: +43-512 589913-30 Contact: Paul Mathaha Boulevard Frere Orban 4 E-mail: [email protected] E-mail: Telephone: +27-11 4038013 BE-5000 Namur [email protected] Facsimile: +27-11 4038023 Contact: Xavier Dubuisson Manufacturers Association of E-mail: [email protected] Telephone: +32-81 250480 Israel UBW - Salzburg Facsimile: +32-81 250490 Industry House Julius-Raab-Platz 1 Botswana Technology Centre E-mail: 29 Hamered St. AT-5027 Salzburg 10062 Machel Drive [email protected] Contact: Wolfgang Schorghuber Gaborone, Botswana 500022 - 68125 Tel-Aviv, Israel Telephone: +43-662 8888-339 Contact: Nick Ndaba Nikosanah Contact: Yechiel Assia Facsimile: +43-512 589913-30 Telephone: +267 314161 or 41 LITHUANIA Telephone: +972-3 5198830 E-mail: [email protected] 584092 Lithuanian Energy Institute Facsimile: +972-3 5103152 Facsimile: +267 374677 Breslaujos 3 E-mail: [email protected] AEE E-mail: [email protected] 3035 Kaunas, Lithuania Feldgasse 19 Contact: Vladislovas Katinas AT-8200 Gleisdorf 37 LATVIA Telephone: +370-7 454034 Contact: Werner Weiss EKODOMA Facsimile: +370-7 351271 Telephone: +43-3112 588617 Zen ten es Street 12-49 E-mail: [email protected] Facsimile: +43-3112 588618 1069 Riga, Latvia E-mail: [email protected] Contact : Andra Blumberga 42 CYPRUS Telephone: +371 7210597 Applied Energy Centre of the 33 ESTONIA Facsimile: +371 7210597 Ministry of Commerce, Industry Estonian Energy Research E-mail: [email protected] and Tourism Republic of Cyprus Institute Araouzos 6 1 Pa I diski Road RTU EED CY-1421 Nicosia 10137 Tallinn, Estonia Kronvalda boulv. 1 Contact: Solon Kassinis Contact: Inge Iroos LV-1010 Riga, Latvia Telephone: +357-2 867140 Telephone: +372-2 450303 Contact : Dagnija Blumberga Facsimile: +357-2 375120 Facsimile: +372-2 6311570 Telephone: +371 9419783 E-mail: [email protected] E-mail: [email protected] Facsimile: +371 7089923 E-mail: [email protected] Archimede - 43 ZHEIJIANG Estonian Foundation of EU 38 HECOPET Zheijiang Provincial Energy Education & Research CRES Research Institute Programmes 19th Km Marathonos Ave. 218 Wener Road Kompanii 2 GR-190 09 Pikermi 310012 Hangzhou, China 51007 Tartu, Estonia Contact: Maria Kontoni Contact: Ms Huang Dongfeng Contact: Rene Tonnisson Telephone: +30-1 6039900 Telephone: +86-571 8840792 Telephone: +372-7 300328 Facsimile: +30-1 6039911,904 Facsimile: +86-571 8823621 Facsimile: +372-7 300336 E-mail: [email protected] E-mail: [email protected]

These data are subject to possible change. For further information, please contact the above internet website address or Fax +32 2 2966016 NOTE AU LECTEUR

Les informations detaillees sur I'Union europeenne sont disponibles sur le site EUROPA a I'adresse suivante : http://europa.eu.int/

L'objectif global de la politique energetique de I'Union europeenne est d'aider a la mise en place d'un systeme energetique "durable" pour les citoyens europeens et les entreprises en aidant et promouvant une production energetique securisee, de haute qualite, a des prix competitifs et compatibles avec I'environnement. La Direction Generale Energie de la Commission europeenne (DG Energie et Transport) initie, coordonne et gere les actions de politique energetique a un niveau transnational dans les domaines suivants : combustibles solides, petrole et gaz, electricite, energie nucleaire, sources d'energies renouvelables et efficacite energetique. Les actions les plus importantes concernent le maintien et I'accroissement de la securite des installations de production ainsi que la cooperation Internationale, notamment en consolidant les marches energetiques et en favorisant le developpement durable dans le domaine de I'energie. Un instrument central de cette politique est le soutien et la promotion de la recherche energetique, le developpement technologique et la demonstration, principalement grace au programme ENERGIE (gere conjointement avec la DG Recherche) inclut dans le programme thematique "Energie, environnement et developpement durable" du 56me Programme Cadre Recherche et Developpement technologique ( Seme PCRDT) de la I'Union Europeenne. Ceci contribue au developpement "durable" grace aux activites cles determinantes pour le bien-etre social et la competitivite economique de I'Europe. Les autres programmes non technologiques de la DG Energie et Transport tels que SAVE, ALTENER et SYNERGY interviennent dans le domaine des systemes propres et efficaces en energie par le soutien a des mesures legales, administratives, promotionnelles et structure lies sur une base inter-regionale. Parties integrantes du 'Programme Cadre Energie', a ne pas confondre avec le Seme PCRDT, ces mesures completent et renforcent I'impact du programme RDT ENERGIE. Council Site Internet du 56me Programme Cadre : http://www.cordis.lu/fp5/home.html Borough

Pour plus d'information sur les activites de la DG Energie et Transport : Metropolitan

http://europa.eu.int/comm/commissioners/palacio/index_en.htm

Commission europeenne Gateshead

mi, Direction Generale de I'Energie et des Transports lam 200, rue de la Loi Mai

B-1049 Bruxelles Pirjo

Fax. : 00 32 2 295 05 77 Ijken,

van

E-mail: [email protected] Jan

:

c r e d its

P h o to

-

39

29

61

81

(0)3

+33

)

(Besangon

QUANTI

TUTTI

:

d e s ig n

G ra p h ic