UCLA Planets 2013

Total Page:16

File Type:pdf, Size:1020Kb

UCLA Planets 2013 Institute for Planets and Exoplanets Planets2013 - 2014 Edition iPLEX A Note from the Director UCLA’s Institute for Planets and Exoplanets (iPLEX) was founded in late 2011 with seed funding provided by Dean of Physical Sciences Joseph Rudnick and Vice Chancellor for Research James Economou. Our main goal is to establish UCLA as the best place in the world to study planets in all their diversity. We target both our planetary neighbors in the solar system and exoplanets found in orbit around other stars. Studies of planets and exoplanets are complementary. Examining exoplanets gives the context needed to properly interpret the content and layout of our solar system, while observing the near- by solar system provides the detailed knowledge we need to understand distant planets of other stars. As you will see from this booklet, iPLEX brings togeth- er experts from a wide range of backgrounds, studying a staggering variety of topics. This intellectual breadth distinguishes planetary science from most other endeav- ors. We use techniques ranging from laboratory studies of isotopes and meteorites to theoretical calculations, and collect data from the world’s largest ground-based telescopes and from spacecraft spread across the solar system. Planetary science captures the imagination and enthusiasm of UCLA students, some of whom are fea- tured in these pages. We are keen to develop untapped opportunities for expansion of planetary science in un- dergraduate and graduate programs, and to reach out to Cover: the wider world. Thermal model of the north polar region of Mercury. Recently discov- This booklet showcases only a small fraction of the ered permanently shadowed regions planet-related science underway at UCLA. within impact craters (blue) remain at temperatures low enough to har- bor ice deposits. Read more on Page 4 David Jewitt iPLEX Director Centrifugal Science Scientists at UCLA’s SPINLab simulate planetary interiors with laboratory experiments Page 6 INSIDE Exploring Asteroids Life on Mars? Dawn researchers get a detailed look at the asteroid Researchers discuss water ac- Vesta tivity on Mars and if microbes Page 10 could survive there Page 30 Planet Snapshots The Gemini Planet Imager will allow astronomers to directly image planets around other stars Page 14 Stormy Titan Outreach Prof. Jonathan Mitchell at- Visitors participate in hands- tempts to predict weather on on science activities at the an- Saturn’s largest moon, Titan nual “Explore Your Universe” Page 18 event at UCLA Page 33 Planetary Geology Prof. An Yin applies his Earth Production Team geology background to other Ivy S. Curren planets Kim DeRose Page 22 Icy Mercury Surface temperatures on Mercury reveal extensive ice deposits in polar regions A map of surface temperatures at Mer- cury’s north pole. Purple and blue areas indicate locations where ice can exist on or below the surface. n a tour of water ice deposits in the solar and preserve water for billions of years. These “natural system, the planet Mercury would seem an freezers” exist within the shadowed areas of polar-crater unlikely stop. Twice as close to the Sun as rims, never experiencing direct sunlight due to the low Earth,O Mercury is constantly roasting at oven-like tem- angle of the Sun near the poles, Paige said. peratures. Nevertheless, scientists analyzing data from Paige, a self-described “professional ice finder,” has NASA’s MESSENGER spacecraft have confirmed earli- studied the poles of planetary bodies in the solar system er work showing that small areas in the polar regions of from Mercury all the way to Pluto. His most recent Mercury are able to escape the scorching sunlight and research, presented on NASA TV in November 2012, remain downright frigid. Using topographic data from sheds light on the long-standing issue of ice on Mercu- NASA’s MESSENGER mission, UCLA Professor David ry. In the early 1990s, scientists were surprised to find Paige and his team have crafted the first accurate com- areas near Mercury’s poles that were unusually bright puter model of temperatures at the poles of Mercury. when observed with radar from Earth, an indication They have successfully pinpointed extremely cold places that ice might be present on the scalding world. Paige’s near Mercury’s north pole where frozen water can be thermal model identified cold spots on Mercury, almost found on or below the surface. perfectly matching the locations where ice was inferred “Mercury is the innermost planet in the solar sys- from radar and MESSENGER observations. tem, and, arguably, it’s among the least explored,” said But ice was not the only substance MESSENGER Paige. “The surface exhibits the most extreme range scientists found on Mercury. Scientists were surprised of temperatures of any body we know of in the solar to find unusually dark deposits above polar ice within system.” Within a single polar crater on Mercury, there permanently shadowed craters. Paige believes these are spots that reach temperatures above 500 degrees newly discovered black deposits are a thin crust of Fahrenheit within sight of areas cold enough to freeze lingering organic material brought to the planet over 4 | UCLA Planets the past several million years by the impact of water-rich asteroids and comets. “The stuff we find covering the ice is darker than the rest of Mercury, which is already a really dark planet. That’s amazing,” Paige said. “At the very least, it means there is something out of the ordi- nary going on inside these perma- nently shadowed areas where the ice has accumulated.” Comets and asteroids periodi- cally crash into Mercury, bringing water ice and a diverse cocktail of organic material to the planet. In the searing daytime heat of Mercu- ry, the only place water and organics can survive without evaporating A surface temperature map of into space is within permanently shadowed craters at the poles. craters in the north polar region of In the warmest parts of the shadowed areas, the water evaporates Mercury. The two largest craters away, leaving behind the hardier organic molecules that stick are approximately 25 km in diam- around at higher temperatures. This organic coating becomes eter. Blue and purple areas are black when exposed at the surface, in some cases covering sub- cold enough to harbor surface or surface ice deposits and protecting them from evaporation. subsurface ice deposits. The presence of bright ice and dark organics on Mercury’s surface presents a mystery for MESSENGER scientists. Every time a large comet or asteroid collides with Mercury, a huge swath of the planet becomes covered in a layer of dirt and dust kicked up during the impact. For the water ice and black organic layers to have remained exposed as they appear today, the depos- its must have either formed recently in the planet’s history or be maintained by new water brought to Mercury by smaller, more frequent impacts of icy bodies. Planetary scientists remain puzzled as to why the extensive water ice deposits have been preserved on Mercury while corre- sponding permanently shadowed regions on the Moon remain relatively dry. Paige, the principal investigator of the Diviner Lunar Radiometer experiment onboard NASA’s Lunar Recon- naissance Orbiter, created his thermal model of Mercury using data he has collected from the Moon. Since the crater-scarred landscapes of both bodies have comparable temperatures and conditions at the poles, one might expect the two bodies to have the same amount of ice. The large discrepancy remains a mys- tery that may only be solved through future research. Understanding how water ice and organics arrived on Mer- cury may help scientists determine the conditions necessary for sustaining life on other planets. “Billions of years ago, the Earth acquired a layer of water and other volatile material that formed atmospheres, oceans and even the first organic molecules that started life,” Paige said. “Uncovering the origin of the surface material at the poles of Mercury is a very important problem. It is essential to understanding the origins of life and the potential habitability of planetary systems around other stars.” David Paige is a professor in the Earth and Space Sciences department. UCLA Planets | 5 Putting a spin on fluid dynamics Scientists from UCLA’s SPINLab simulate planetary interiors with rotating experiments he Simulated Planetary Interiors Laborato- fluid inside a planetary core.” “The idea is to study all the in- ry, known more fondly as the SPINLab, is gredients that are involved in planetary core convection and a state-of-the-art fluid dynamics research dynamo generation in their simplified state,” said Jonathan facilityT among only a handful of such unique labs in Cheng, a fourth-year graduate student with Aurnou. Dyna- the world. Funded by the National Science Founda- mos, large-scale magnetic fields generated from the motions tion, the group is led by Associate Professor Jonathan of an electrically conducting fluid, are known to exist within Aurnou, who has dedicated over ten years of his life planets, stars and even galaxies. Yet the detailed physics of to building functional models of planetary cores and these natural dynamos remain largely mysterious. atmospheres. The daily routine for Jon, his graduate students, post-doctoral scholars and researchers involves spinning large, heat-driven containers of water or liquid metal in order to understand the fundamental physics of rotating bodies. “We are interested in ex- plaining how strongly turbulent systems, like planetary cores and planetary atmospheres, organize into planetary-scale magnetic fields, jet systems, and vortices,” said Aurnou. The primary device used in the lab, a rotating magnetic convection device (RoMag), is a fluid-filled cylinder that to The SPINLab team. From Left to Right: Michael Le Bars, Alex Grannan, Jonathan Aurnou, Aurnou represents “a parcel of and Jonathan Cheng.
Recommended publications
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]
  • Source of Knowledge, Techniques and Skills That Go Into the Development of Technology, and Prac- Tical Applications
    DOCUMENT RESUME ED 027 216 SE 006 288 By-Newell, Homer E. NASA's Space Science and Applications Program. National Aeronautics and Space Administration, Washington, D.C. Repor t No- EP -47. Pub Date 67 Note-206p.; A statement presented to the Committee on Aeronautical and Space Sciences, United States Senate, April 20, 1967. EDRS Price MF-$1.00 HC-$10.40 Descriptors-*Aerospace Technology, Astronomy, Biological Sciences, Earth Science, Engineering, Meteorology, Physical Sciences, Physics, *Scientific Enterprise, *Scientific Research Identifiers-National Aeronautics and Space Administration This booklet contains material .prepared by the National Aeronautic and Space AdMinistration (NASA) office of Space Science and Applications for presentation.to the United States Congress. It contains discussion of basic research, its valueas a source of knowledge, techniques and skillsthat go intothe development of technology, and ioractical applications. A series of appendixes permitsa deeper delving into specific aspects of. Space science. (GR) U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVEDFROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OMCE OFEDUCATION POSITION OR POLICY. r.,; ' NATiONAL, AERONAUTICS AND SPACEADi4N7ISTRATION' , - NASNS SPACE SCIENCE AND APPLICATIONS PROGRAM .14 A Statement Presented to the Committee on Aeronautical and Space Sciences United States Senate April 20, 1967 BY HOMER E. NEWELL Associate Administrator for Space Science and Applications National Aeronautics and Space Administration Washington, D.C. 20546 +77.,M777,177,,, THE MATERIAL in this booklet is a re- print of a portion of that which was prepared by NASA's Office of Space Science and Ap- -olications for presentation to the Congress of the United States in the course of the fiscal year 1968 authorization process.
    [Show full text]
  • User Guide to 1:250,000 Scale Lunar Maps
    CORE https://ntrs.nasa.gov/search.jsp?R=19750010068Metadata, citation 2020-03-22T22:26:24+00:00Z and similar papers at core.ac.uk Provided by NASA Technical Reports Server USER GUIDE TO 1:250,000 SCALE LUNAR MAPS (NASA-CF-136753) USE? GJIDE TO l:i>,, :LC h75- lu1+3 SCALE LUNAR YAPS (Lumoalcs Feseclrch Ltu., Ottewa (Ontario) .) 24 p KC 53.25 CSCL ,33 'JIACA~S G3/31 11111 DANNY C, KINSLER Lunar Science Instltute 3303 NASA Road $1 Houston, TX 77058 Telephone: 7131488-5200 Cable Address: LUtiSI USER GUIDE TO 1: 250,000 SCALE LUNAR MAPS GENERAL In 1972 the NASA Lunar Programs Office initiated the Apollo Photographic Data Analysis Program. The principal point of this program was a detailed scientific analysis of the orbital and surface experiments data derived from Apollo missions 15, 16, and 17. One of the requirements of this program was the production of detailed photo base maps at a useable scale. NASA in conjunction with the Defense Mapping Agency (DMA) commenced a mapping program in early 1973 that would lead to the production of the necessary maps based on the need for certain areas. This paper is designed to present in outline form the neces- sary background informatiox or users to become familiar with the program. MAP FORMAT * The scale chosen for the project was 1:250,000 . The re- search being done required a scale that Principal Investigators (PI'S) using orbital photography could use, but would also serve PI'S doing surface photographic investigations. Each map sheet covers an area four degrees north/south by five degrees east/west.
    [Show full text]
  • Moon-Miners-Manifesto-Mars.Pdf
    http://www.moonsociety.org/mars/ Let’s make the right choice - Mars and the Moon! Advantages of a low profile for shielding Mars looks like Arizona but feels like Antarctica Rover Opportunity at edge of Endeavor Crater Designing railroads and trains for Mars Designing planes that can fly in Mars’ thin air Breeding plants to be “Mars-hardy” Outposts between dunes, pulling sand over them These are just a few of the Mars-related topics covered in the past 25+ years. Read on for much more! Why Mars? The lunar and Martian frontiers will thrive much better as trading partners than either could on it own. Mars has little to trade to Earth, but a lot it can trade with the Moon. Both can/will thrive together! CHRONOLOGICAL INDEX MMM THEMES: MARS MMM #6 - "M" is for Missing Volatiles: Methane and 'Mmonia; Mars, PHOBOS, Deimos; Mars as I see it; MMM #16 Frontiers Have Rough Edges MMM #18 Importance of the M.U.S.-c.l.e.Plan for the Opening of Mars; Pavonis Mons MMM #19 Seizing the Reins of the Mars Bandwagon; Mars: Option to Stay; Mars Calendar MMM #30 NIMF: Nuclear rocket using Indigenous Martian Fuel; Wanted: Split personality types for Mars Expedition; Mars Calendar Postscript; Are there Meteor Showers on Mars? MMM #41 Imagineering Mars Rovers; Rethink Mars Sample Return; Lunar Development & Mars; Temptations to Eco-carelessness; The Romantic Touch of Old Barsoom MMM #42 Igloos: Atmosphere-derived shielding for lo-rem Martian Shelters MMM #54 Mars of Lore vs. Mars of Yore; vendors wanted for wheeled and walking Mars Rovers; Transforming Mars; Xities
    [Show full text]
  • Rogue River Watershed Analysis Marial To
    United States zz on-A.-A Sc~t.'s Department ' S~~s, -. i'-Va/ of Agriculture Forest Service Pacific Northwest Region . United States Department of Agriculture Forest Service Pacific Northwest Region 1999 ROGUE RIVER WATERSHED ANALYSIS MARIAL TO AGNESS ITERATION 1.0 I have read this analysis and find it meets the Standards and Guidelines for watershed analysis required by the Record of Decision for Amendments to Forest Service and Bureau of Land Management Planning Documents Within the Range of the Northern Spotted Owl (USDA and USDI, 1994). Signed: /s/Michael Frazier Date: September 24, 1999 District Ranger Gold Beach Ranger District Siskiyou National Forest TABLE OF CONTENTS Title Page Introduction 1 Key Findings 3 Aquatic Ecosystem Narrative 5 Riparian Ecosystem Narrative 31 Terrestrial Ecosystem Narrative 39 Social Aspects Narrative 57 Appendix A - Subwatersheds Appendix B - Maps References List of Preparers LIST OF TABLES Table Title Page Table 1 Land Ownership 1 Table 2 Management Areas 2 Table 3 Subwatersheds by US Geologic Service Hydrologic Unit Code 2 Table 4 Geologic Rock Types 6 Table 5 Rogue River Water Quality Limited Segments 14 Table 6 Water withdrawal Permits for Rogue River Tributaries Streams and 17 Springs Table 7 Timber Harvest and Roads by Watershed Analysis Areas 19 Table 8 7- Day Average Maximum Temperature 22 Table 9 Riparian Condition 37 Table 10 Distribution of Interior Late-Successional Forest Blocks within the 41 Rogue River (Marial to Agness) watershed. Table 11 Special Habitat Sites 42 Table 12 Habitat Trends for Selected Indicator Species 46 Table 13 Historic Elk Habitat (1940) 47 Table 14 Current Elk Habitat (1995) 47 Table 15 Road Closures 51 Table 16 Potential Candidates for Seasonal or Permanent Closure 52 Table 17 Roads List 73 Table 18 Roads Summary 73 INTRODUCTION The Rogue River Watershed Analysis, Marial to Agness, Iteration 1.0, was initiated to analyze the aquatic, terrestrial, and social resources of the watershed.
    [Show full text]
  • Dunes and Dreams: a History of White Sands National Monument
    Dunes and Dreams: A History of White Sands National Monument Administrative History White Sands National Monument by Michael Welsh 1995 National Park Service Division of History Intermountain Cultural Resources Center Santa Fe, New Mexico Professional Paper No. 55 Table of Contents List of Illustrations Acknowledgements Foreword Chapter One: A Monument in Waiting: Environment and Ethnicity in the Tularosa Basin Chapter Two: The Politics of Monument-Building: White Sands, 1898-1933 Chapter Three: New Deal, New Monument, New Mexico, 1933-1939 Chapter Four: Global War at White Sands, 1940-1945 Chapter Five: Baby Boom, Sunbelt Boom, Sonic Boom: The Dunes in the Cold War Era, 1945- 1970 Chapter Six: A Brave New World: White Sands and the Close of the 20th Century, 1970-1994 Bibliography List of Illustrations Figure 1. Dune Pedestal Figure 2. Selenite crystal formation at Lake Lucero Figure 3. Cave formation, Lake Lucero Figure 4. Cactus growth Figure 5. Desert lizard Figure 6. Visitors to White Sands Dunes (1904) Figure 7. Frank and Hazel Ridinger's White Sands Motel (1930s) Figure 8. Roadside sign for White Sands west of Alamogordo (1930) Figure 9. Early registration booth (restroom in background) (1930s) Figure 10. Grinding stone unearthed at Blazer's Mill on Mescalero Apache Reservation (1930s) Figure 11. Nineteenth-Century Spanish carreta and replica in Visitors Center Courtyard (1930s) Figure 12. Pouring gypsum for road shoulder construction (1930s) Figure 13. Blading gypsum road into the heart of the sands (1930s) Figure 14. Hazards of road grading (1930s) Figure 15. Adobe style of construction by New Deal Agency Work Crews (1930s) Figure 16.
    [Show full text]
  • Paper Session II-B - Lunar and Martian Paleontology
    2001 (38th) A Space Odyssey - The Next 50 The Space Congress® Proceedings Years May 2nd, 2:00 PM Paper Session II-B - Lunar and Martian Paleontology Doug D. Shull Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Shull, Doug D., "Paper Session II-B - Lunar and Martian Paleontology" (2001). The Space Congress® Proceedings. 15. https://commons.erau.edu/space-congress-proceedings/proceedings-2001-38th/may-2-2001/15 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Lunar and Martian Paleontology by Douglas D. Shull 20 Feb 2001 for 2001 Space Congress Introduction The discovery of organic material imbedded in the Martian Meteorite Alan Hills (AH) 84001 in 1996 changed science. Many people now consider the possibility that microbial life existed on or may still exist on the planet Mars. NASA, The Jet Propulsion Laboratory (JPL), and the European Space Agency (ESA) are considering packages and experiments for future Mars robotic missions to detect the presence of microbial life near the surface of Mars. We should pursue these worthy efforts. However, the surfaces of Mars and the Moon may very well hold evidence of life, both microbial and macroscopic, from Earth’s past. I will discuss how past meteor strikes causing large extinction events can positively affect today’s science. Understanding Meteors and Meteor Impacts The history of knowledge about meteors has undergone quite a change in the last few decades.
    [Show full text]
  • Species Report for Leona's Little Blue Butterfly (Philotiella Leona)
    Species Report for Leona’s Little Blue Butterfly (Philotiella leona) Photo credit: Sarina Jepsen; The Xerces Society U.S. Fish and Wildlife Service May 20, 2015 Species Report for Leona’s Little Blue Butterfly (Philotiella leona) Purpose The purpose of this species report is to provide the best available scientific and commercial information about Leona’s little blue (Philotiella leona) and its habitat. The information within this report will be part of our biological basis for any potential listing, recovery, or consultation recommendations under the Endangered Species Act of 1973 as amended (Act), (16 U.S.C. 1531 et seq.). Executive Summary On May 12, 2010, the U.S. Fish and Wildlife (Service) received a petition from the Xerces Society for Invertebrate Conservation, Dr. David McCorkle of Western Oregon University, and Oregon Wild to list the Leona’s little blue butterfly under the Act. On August 17, 2011, the Service published in the Federal Register a positive 90-day finding stating that the petition presented substantial scientific or commercial information indicating that listing the Leona’s little blue butterfly may be warranted (76 FR 50971). As a result, we are initiating a status review of the species to determine if Leona’s little blue butterfly is warranted for listing under the Act. The Xerces Society for Invertebrate Conservation and Oregon Wild filed a notice of intent to sue on March 7, 2013, for failure to issue a 12-month finding on whether listing the Leona’s little blue butterfly is warranted under the Act. On July 31, 2014, the court ordered the Service to issue a 12-month finding for the Leona’s little blue butterfly by June 30, 2015.
    [Show full text]
  • Apollo 16 Press
    .. Arii . cLyI( ’ JOHN F . KENNEDY Si ACE GENTEb @@C€ i!AM LIB XRY cJ- / NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D . C . 20546 202-755-8370 I FOR RELEASE: THURSDAY A .M . RELEASE NO: 12-64X April 6. 1972 PRO IFCT. APOLLO 16 (To be launched no earlier than April 16) E GENERAL RELEASE ..................... .1-5 COUNTDOWN ........................ 6-10 Launch Windows ................... .9 Ground Elapsed Time Update ............. .10 LAUNCH AND MISSION PROFILE ............... 11-39 Launch Events .................... 15-16 Mission Events .............. ..... 19-24 EVA Mission Events ................. 29-39 APOLLO 16 MISSION OBJECTIVES .............. 40-41 SCIENTIFIC RESULTS OF APOLLO 11, 12. 14 AND 15 MISSIONS . 42-44 APOLLO 16 LANDING SITE ................. 45-47 LUNAR SURFACE SCIENCE .................. 48-85 Passive Seismic Experiment ............. 48-52 ALSEP to Impact Distance Table ...... ..... 52-55 Lunar Surface Magnetometer ............. 55-58 Magnetic Lunar sample Returned to the Moon ..... .59 K Lunar Heat Flow Experiment ............. 60-65 ALSEP Central Station ................ .65 SNAP-27 .. Power Source for ALSEP .......... 66-67 Soil Mechanics ................... .68 I Lunar Portable Magnetometer ............. 68-71 Far Ultraviolet Camera/Spectroscope ......... 71-73 Solar Wind Composition Experiment .......... .73 Cosmic Ray Detector ................. .74 T Lunar Geology Investigation........ ..... 75-78 Apollo Lunar Geology Hand Tools ........... 79-85 LUNAR ORBITAL SCIENCE ............. ...... 86-98 Gamma-Ray
    [Show full text]
  • Industrial Maintenance
    Title 7: K-12 Part 125: Manufacturing (REPEAL 11/2013) Industrial Maintenance Program CIP: 47.0303 – Industrial Maintenance Ordering Information Research and Curriculum Unit for Workforce Development Vocational and Technical Education Attention: Reference Room and Media Center Coordinator P.O. Drawer DX Mississippi State, MS 39762 www.rcu.msstate.edu/curriculum/download/ (662) 325-2510 Direct inquiries to Doug Ferguson Andy Sims Instructional Design Specialist Program Coordinator P.O. Drawer DX Office of Vocational Education and Workforce Mississippi State, MS 39762 Development (662) 325-2510 Mississippi Department of Education E-mail: [email protected] P.O. Box 771 Jackson, MS 39205 (601) 359-3479 E-mail: [email protected] Published by Office of Vocational and Technical Education Mississippi Department of Education Jackson, MS 39205 Research and Curriculum Unit for Workforce Development Vocational and Technical Education Mississippi State University Mississippi State, MS 39762 Robin Parker, EdD, Curriculum Coordinator Jolanda Harris, Educational Technologist The Research and Curriculum Unit (RCU), located in Starkville, MS, as part of Mississippi State University, was established to foster educational enhancements and innovations. In keeping with the land grant mission of Mississippi State University, the RCU is dedicated to improving the quality of life for Mississippians. The RCU enhances intellectual and professional development of Mississippi students and educators while applying knowledge and educational research to
    [Show full text]
  • Precontact Archeology in Yellowstone
    volume 18 • issue 1 • 2010 Precontact Archeology in Yellowstone Interview with Archeologist Ann Johnson A New View of Yellowstone’s Geyser Basins Science in Brief he value of Yellowstone National Park as a I would also like scientific laboratory as well as a public pleasuring to remind you of an- ground is reflected in the fact that the park hosts other forum for sci- Tmore than 200 researchers from various agencies, universi- ence in Yellowstone, the ties, and organizations each year. They produce hundreds upcoming 10th Biennial of papers, manuscripts, books, and book chapters on their Scientific Conference on work annually—a volume of information that is difficult the Greater Yellowstone NPS/HFC Commi to absorb. Yellowstone Science journal was started in 1992 to Ecosystem, “Questioning help report Yellowstone-based scientific research findings to Greater Yellowstone’s Future: researchers, park managers and staff, and the interested pub- Climate, Land Use, and SS io N lic. In each issue we feature articles written by researchers Invasive Species.” Information Colle Art ed from many disciplines—from art history to microbiology— on the conference can be found and distribute it to more than 3,500 readers as well as make on the Greater Yellowstone C it available online. Science Learning Center web- tio N A , , Since the inception of Yellowstone Science there have site (www.greateryellow- rti S been few changes to the journal. Yet with advances in tech- stonescience.org/gyesci- t Gil Co nology our audiences now receive even more information conf2010). Registration H e which is ever more widely available.
    [Show full text]
  • Scientific Exploration of the Moon
    Scientific Exploration of the Moon DR FAROUK EL-BAZ Research Director, Center for Earth and Planetary Studies, Smithsonian Institution, Washington, DC, USA The exploration of the Moon has involved a highly successful interdisciplinary approach to solving a number of scientific problems. It has required the interactions of astronomers to classify surface features; cartographers to map interesting areas; geologists to unravel the history of the lunar crust; geochemists to decipher its chemical makeup; geophysicists to establish its structure; physicists to study the environment; and mathematicians to work with engineers on optimizing the delivery to and from the Moon of exploration tools. Although, to date, the harvest of lunar science has not answered all the questions posed, it has already given us a much better understanding of the Moon and its history. Additionally, the lessons learned from this endeavor have been applied successfully to planetary missions. The scientific exploration of the Moon has not ended; it continues to this day and plans are being formulated for future lunar missions. The exploration of the Moon undoubtedly started Moon, and Luna 3 provided the first glimpse of the with the naked eye at the dawn of history,1 when lunar far side. After these significant steps, the mankind hunted in the wilderness and settled the American space program began its contribution to earliest farms. Our knowledge of the Moon took a lunar exploration with the Ranger hard landers' quantum jump when Galileo Galilei trained his from 1964 to 1965. These missions provided us with telescope toward it. Since then, generations of the first close-up views (nearly 0.3 m resolution) of researchers have followed suit utilizing successively the lunar surface by transmitting pictures until just more complex instruments." The most significant before crashing.6 The pictures confirmed that the quantum jump in the knowledge of our only natural lunar dark areas, the maria, were relatively flat and satellite came with the advent of the space age, topographically simple.
    [Show full text]