Apollo 16 Press

Total Page:16

File Type:pdf, Size:1020Kb

Apollo 16 Press .. Arii . cLyI( ’ JOHN F . KENNEDY Si ACE GENTEb @@C€ i!AM LIB XRY cJ- / NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D . C . 20546 202-755-8370 I FOR RELEASE: THURSDAY A .M . RELEASE NO: 12-64X April 6. 1972 PRO IFCT. APOLLO 16 (To be launched no earlier than April 16) E GENERAL RELEASE ..................... .1-5 COUNTDOWN ........................ 6-10 Launch Windows ................... .9 Ground Elapsed Time Update ............. .10 LAUNCH AND MISSION PROFILE ............... 11-39 Launch Events .................... 15-16 Mission Events .............. ..... 19-24 EVA Mission Events ................. 29-39 APOLLO 16 MISSION OBJECTIVES .............. 40-41 SCIENTIFIC RESULTS OF APOLLO 11, 12. 14 AND 15 MISSIONS . 42-44 APOLLO 16 LANDING SITE ................. 45-47 LUNAR SURFACE SCIENCE .................. 48-85 Passive Seismic Experiment ............. 48-52 ALSEP to Impact Distance Table ...... ..... 52-55 Lunar Surface Magnetometer ............. 55-58 Magnetic Lunar sample Returned to the Moon ..... .59 K Lunar Heat Flow Experiment ............. 60-65 ALSEP Central Station ................ .65 SNAP-27 .. Power Source for ALSEP .......... 66-67 Soil Mechanics ................... .68 I Lunar Portable Magnetometer ............. 68-71 Far Ultraviolet Camera/Spectroscope ......... 71-73 Solar Wind Composition Experiment .......... .73 Cosmic Ray Detector ................. .74 T Lunar Geology Investigation........ ..... 75-78 Apollo Lunar Geology Hand Tools ........... 79-85 LUNAR ORBITAL SCIENCE ............. ...... 86-98 Gamma-Ray Spectrometer ............... .86 X-Ray Fluorescence Spectrometer...... ......86 Alpha-Particle Spectrometer........ ..... .86 .more . March 22. 1972 .. i2 Laser Altimeter .................... 93 Subsatellite ...................... 93-96 UV Photography-Earth and Moon .............96 Gegenschein from Lunar Orbit.............. 96 CSM/LM S-Band Transponder ............... 97 Bistatic Radar Experiment ...............98 Apollo Window Meteoroid ................98 MEDICAL EXPERIMENTS AND TESTS ............... 99-101 Microbial Response in Space Environment ........99 Visual Light Flash Phenomenon .............99-100 Biostack ........................ 100 Bone Mineral Measurement ................101 ENGINEERING/OPERATIONAL TESTS AND DEMONSTRATION ......102-104 Skylab Contamination Study ............... 102 Skylab Food Package ..................102-103 Improved Gaspater Separator .............. 103 Improved Fecal Collection Bag .............103 Electrophoretic Separation Demonstration ........ 103-104 LUNAR ROVING VEHICLE .................... 105-118 General Description .................. 105-109 Mobility System .................... 109-111 Crew Station...................... 111-114 Navigation System ...................114-115 Power System ...................... 115 Thermal Control .................... 115-116 Stowage and Deployment ................. 116 LUNAR COMMUNICATIONS RELAY UNIT (LCRU) ...........119-120 TELEVISION AND GROUND COMMANDED TELEVISION ASSEMBLY ....121-122 PHOTOGRAPHIC EQUIPMENT ...................123-125 ASTRONAUT EQUIPMENT .................... 126-136 Space Suit....................... 126-129 Personal Hygiene .................... 130 Survival Kit...................... 130 Medical Kits...................... 131 Crew Food System .................... 132-136 APOLLO 16 FLAGS, LUNAR MODULE PLAQUE ............ 137 SATURN V LAUNCH VEHICLE .................. 138-140 APOLLO SPACECRAFT ..................... 141-146 Launch Escape System.................. 141 Command Module ..................... 141 Service Module ..................... 143 Spacecraft-LM Adapter Structure ............143 Lunar Module ...................... 144-146 CREW BIOGRAPHIES ...................... 147-162 SPACEFLIGHT TRACKING AND DATA SUPPORT NETWORK ....... 163-166 NASA Communications Network (NASCOM) .......... 163-165 ENVIRONMENTAL IMPACT OF APOLLO/SATURN V MISSION ......167-168 PROGRAM MANAGEMENT ..................... 169-171 CONVERSION TABLE ...................... 172 - more - i3 TABLES AND ILLUGTRATIONS Apollo 16 Flight Profile ...................12 Apollo 16 vs Apollo 15 Operational Differences ........13 Comparison of Apollo Missions .................14 . Launch Events ......................... 15-16 Apollo 16'In-Flight Activities ................17 Apollo 16 ........................... 18 Powered Descent Vehicle Positions ............... 21 ApproachPhase ........................ 22 First View of Descartes .................... 23 Film Retrieval From the Sim Bay ................25 Apollo 16 Recovery ...................... 26 Apollo 16 Crew Post-Landing Activities ............27 Apollo 16 Alternate Missions .................28 Descartes LRV Traverses .................... 30 Apollo 16 Traverse Comparison with Apollo 15 .........31 Apollo 16 Lunar Surface Timeline ...............32 Smary Time Line ....................... 33 Near LM Lunar Surface Activity ................ 34 Apollo 16 Walking Traverse .................. 39 Apollo 16 Traverses - Geologic Sketch ............. 46 Apollo Landing Sites ..................... 47 Lunar Surface Science Experiment Assignments ..........49 Lunar Surface Experiment Scientific Discipline Contribution Correlation ..................50 Apollo 16 ALSEP Deployment .................. 51 s-Im/IU Impact ........................ 53 Lunar Impact Target for Spent LM Ascent Stage .........54 Lunar Magnetic Environment ...................57 Active Seismic Experiment ...................63 Active Seismic Experiment Mortar Mode Concept .........64 Soil Mechanics Experiment Penetrometer ............69 Lunar Portable Magnetometer .................. 70 Tripod-Mounted Schmidt Electronographic W Camera/Spectroscope 72 Lunar Geology Hand Tools ................... 83 Lunar Geology Sample Containers ................ 84 Extractor ........................... 85 Lunar Orbital Science Experiment Assignments .........87 Apollo 16 Orbital Timeline ..................88 Apollo 16 Potential Lunar Orbit Coverage ........... 89 Mission SIM Bay Science Equipment Installation ........90 Apollo Mapping Camera Systems .................92 Apollo Subsatellite ...................... 94 SIM Bay Subsatellite Experiments Concepts ...........95 LRV Without Stowed Payload .................. 106 LRV Components and Dimensions .................107 LRV Wheel ........................... 110 LRV Crew Station Components - Control and Display Console ...112 Hand Controller ........................ 113 LRV Deployment Sequence .................... 117 Lunar Field Geology Equipment Stowage on LRV .........118 - more - i4 Apollo 16 Television Events .................122 TV and Photographic Equipment ................125 Extravehicular Mobility Unit .................127 Apollo 16 Menu .Blue .................... 134 Apollo 16 .LMll Menu ..................... 135 Apollo 16 Pantry Stowage Items ................136 Saturn V Launch Vehicle ................... 139 Command Module ........................ 142 Lunar Module ......................... 145 Manned Space Flight Tracking Network .............166 Apollo/Saturn Officials ................... 170-171 Conversion Table....................... 172 NATIONAL AERONAUTiCS AND SPACE ADMINISTRATION Washington, D. C. 20546 Phone: (202) 755-8370 . FOR RELEASE: Kenneth C. Atchison THURSDAY A.M. (Phone: 202/755-3114) April 6, 1972 RELEASE NO: 72-64 APOLLO 16 LAUNCH APRIL 16 ,/Apollo 166scheduled for an April 16 launch’ 3 will devote its 12-day duration to gathering additional knowl- edge about the environment on and around the Moon and about our own planet Earth. !\ During the three days two Apollo 16 crewmen spend on the lunar surface north of the crater Descartes, they will extend the exploration begun by Apollo 11 in the summer of 1969 and continued through the Apollo 12, 14, and 15 lunar landing missions. In addition to gathering samples of lunar surface material for analysis on Earth, the crew will emplace a fourth automatic scientific station. - more - March 22, 1972 . -2- An extensive array of scientific experiments in the orbiting command/service module will search out and record data on the physical properties of the Moon and near-lunar space and photographic images to further refine mapping technology. Additionally, the command module pilot Will photograph astronomical phenomena in the distant reaches of space. The Descartes landing site is a grooved, hilly region which appears to have undergone some modification by vol- canic processes during formation. The Descartes region iS in the southeast quadrant of the visible face of the Moon and will offer an opportunity to examine several young, bright-rayed craters created by impacts in the volcanic terrain. John W. Young is Apollo 16 mission commander, with Thomas K. Mattingly flying as command module pilot and Charles M. Duke, Jr. as lunar module pilot. Young is a US Navy captain, Mattingly a Navy lieutenant commander, and Duke a US Air Force lieutenant -colonel. - more - -3- Young and Duke will climb down from the lunar module onto the lunar surface for three seven-hour periods of explora- . tion and experimentation. A major part of the first EVA will be devoted to establishing the nuclear powered, auto- matic scientific station -- Apollo Lunar Surface Experiment Package (ALSEP) -- which will return scientific data to Earth for many months for correlation with data still being returned by the Apollo 12, 14 and 15 ALSEPs. The second and third EVAs will be devoted primarily to geological exploration and sample gathering in selected areas in the
Recommended publications
  • UAD Instance Chart 04.06.15 11:14
    UAD Instance Chart 04.06.15 11:14 Search Site Hardware UAD-2 + Plug-Ins Store Blog Support About My.Uaudio Pressroom Contact Cart SUBSCRIBE TO THE Enter your email address Home > Support > UAD Support > UAD Compatibility > UAD Instance Chart UA NEWSLETTER UAD Instance Chart Online Support About This Chart The following table indicates DSP usage and instance counts for UAD Powered Plug-Ins. See bottom of page for more details about the chart. UAD Powered Plug-In DSP % SOLO DUO QUAD OCTO Contact Us Mono Stereo Mono Stereo Mono Stereo Mono Stereo Mono Stereo Phone Support 4K Buss Compressor 2.8% 3.4% 35 29 70 58 140 116 280 232 USA (toll free) 877-698-2834 4K Channel Strip * 7.4% 11.4% 17 11 34 22 68 44 136 88 International Ampex ATR-102 Mastering Tape Recorder 17.6% 29.0% 5 3 10 6 20 12 40 24 +1-831-440-1176 AMS RMX16 Digital Reverb 40.6% 41.1% 2 2 4 4 8 8 16 16 Germany, Austria, and Switzerland +31 (0) 20 800 4912 API 550A EQ 7.2% 11.7% 13 8 26 16 52 32 104 64 Fax +1-831-461-1550 API 560 EQ 9.2% 15.5% 10 6 20 12 40 24 80 48 Customer support is available from 9am to 5pm, Monday through Friday, PST API Vision Channel Strip * 22.4% 29.7% 4 3 8 6 16 12 32 24 Contact Support Bermuda Triangle 14.3% 28.4% 7 3 14 6 28 12 56 24 Submit a Request bx_digital V2 EQ & De-Esser 3.4% 4.9% N/A 20 N/A 40 N/A 80 N/A 160 Press, Review, and Advertising Inquiries Amanda Whiting bx_digital V2 Mono EQ & De-Esser 3.4% 3.8% 29 20 58 40 116 80 232 160 +1-831-440-1176 bx_refinement 12.3% 11.9% 7 7 14 14 28 28 56 56 Mailing Address Universal Audio, Inc.
    [Show full text]
  • Apollo Spacecraft
    APOLLO NEWS REFERENCE APOLLO SPACECRAFT The Apollo spacecraft comprises the lunar occupies the right flight station. The astronauts module, the command module, theservice module, transfer to the ascent stage, through the docking the spacecraft-lunar module adapter, and the tunne l, after the LM has docked with the CM and launch escape system. The five parts, 82 feet tall both have attained lunar orbit. The ascent stage when assembled, are carried atop the launch comprises three major areas: crew compartment, vehicle. midsection, and aft equipment bay. The cabin, comprising the crew compartment and midsection, After the launch escape system and the launch has an overa ll volume of 235 cubic feet. vehicle have been jettisoned, the three modu les remain to form the basic spacecraft. The command module carries the three astronauts to and from Because the LM is operated in either the weight­ lunar orbit. The service modu le contains the pro­ lessness of space or in lunar gravity, the cabin pulsion system that propels the spacecraft during contains harness- like restraint equipment rather the trans lunar and transearth flights. The lunar than the foldable couches provided in the CM. The module carries two astronauts, the Commander restraints al low the astronauts sufficient freedom and the Lunar Module Pilot, to and from the of movement to operate al l LM controls while in a moon, and serves as the base of operations during re lativelyupright position. the lunar stay. LUNAR MODULE The lunar module wil l be operated in the vacuum of space; there was no need, therefore,for it to have the aerodynamic symmetry of the com· mand module.
    [Show full text]
  • PEANUTS and SPACE FOUNDATION Apollo and Beyond
    Reproducible Master PEANUTS and SPACE FOUNDATION Apollo and Beyond GRADE 4 – 5 OBJECTIVES PAGE 1 Students will: ö Read Snoopy, First Beagle on the Moon! and Shoot for the Moon, Snoopy! ö Learn facts about the Apollo Moon missions. ö Use this information to complete a fill-in-the-blank fact worksheet. ö Create mission objectives for a brand new mission to the moon. SUGGESTED GRADE LEVELS 4 – 5 SUBJECT AREAS Space Science, History TIMELINE 30 – 45 minutes NEXT GENERATION SCIENCE STANDARDS ö 5-ESS1 ESS1.B Earth and the Solar System ö 3-5-ETS1 ETS1.B Developing Possible Solutions 21st CENTURY ESSENTIAL SKILLS Collaboration and Teamwork, Communication, Information Literacy, Flexibility, Leadership, Initiative, Organizing Concepts, Obtaining/Evaluating/Communicating Ideas BACKGROUND ö According to NASA.gov, NASA has proudly shared an association with Charles M. Schulz and his American icon Snoopy since Apollo missions began in the 1960s. Schulz created comic strips depicting Snoopy on the Moon, capturing public excitement about America’s achievements in space. In May 1969, Apollo 10 astronauts traveled to the Moon for a final trial run before the lunar landings took place on later missions. Because that mission required the lunar module to skim within 50,000 feet of the Moon’s surface and “snoop around” to determine the landing site for Apollo 11, the crew named the lunar module Snoopy. The command module was named Charlie Brown, after Snoopy’s loyal owner. These books are a united effort between Peanuts Worldwide, NASA and Simon & Schuster to generate interest in space among today’s younger children.
    [Show full text]
  • A Comparative Analysis of the Geology Tools Used During the Apollo Lunar Program and Their Suitability for Future Missions to the Om on Lindsay Kathleen Anderson
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2016 A Comparative Analysis Of The Geology Tools Used During The Apollo Lunar Program And Their Suitability For Future Missions To The oM on Lindsay Kathleen Anderson Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Anderson, Lindsay Kathleen, "A Comparative Analysis Of The Geology Tools Used During The Apollo Lunar Program And Their Suitability For Future Missions To The oonM " (2016). Theses and Dissertations. 1860. https://commons.und.edu/theses/1860 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. A COMPARATIVE ANALYSIS OF THE GEOLOGY TOOLS USED DURING THE APOLLO LUNAR PROGRAM AND THEIR SUITABILITY FOR FUTURE MISSIONS TO THE MOON by Lindsay Kathleen Anderson Bachelor of Science, University of North Dakota, 2009 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota May 2016 Copyright 2016 Lindsay Anderson ii iii PERMISSION Title A Comparative Analysis of the Geology Tools Used During the Apollo Lunar Program and Their Suitability for Future Missions to the Moon Department Space Studies Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection.
    [Show full text]
  • Apollo 11 Astronaut Neil Armstrong Broadcast from the Moon (July 21, 1969) Added to the National Registry: 2004 Essay by Cary O’Dell
    Apollo 11 Astronaut Neil Armstrong Broadcast from the Moon (July 21, 1969) Added to the National Registry: 2004 Essay by Cary O’Dell “One small step for…” Though no American has stepped onto the surface of the moon since 1972, the exiting of the Earth’s atmosphere today is almost commonplace. Once covered live over all TV and radio networks, increasingly US space launches have been relegated to a fleeting mention on the nightly news, if mentioned at all. But there was a time when leaving the planet got the full attention it deserved. Certainly it did in July of 1969 when an American man, Neil Armstrong, became the first human being to ever step foot on the moon’s surface. The pictures he took and the reports he sent back to Earth stopped the world in its tracks, especially his eloquent opening salvo which became as famous and as known to most citizens as any words ever spoken. The mid-1969 mission of NASA’s Apollo 11 mission became the defining moment of the US- USSR “Space Race” usually dated as the period between 1957 and 1975 when the world’s two superpowers were competing to top each other in technological advances and scientific knowledge (and bragging rights) related to, truly, the “final frontier.” There were three astronauts on the Apollo 11 spacecraft, the US’s fifth manned spaced mission, and the third lunar mission of the Apollo program. They were: Neil Armstrong, Edwin “Buzz” Aldrin, and Michael Collins. The trio was launched from Kennedy Space Center in Florida on July 16, 1969 at 1:32pm.
    [Show full text]
  • Pro.Ffress D &Dentsdc Raddo
    Pro.ffress d_ &dentSdc Raddo FIFTEENTH GENERAL ASSEMBLY OF THE INTERNATIONAL SCIENTIFIC RADIO UNION September 5-15, 1966 Munich, Germany REPORT OF THE U.S.A. NATIONAL COMMITTEE OF THE INTERNATIONAL SCIENTIFIC RADIO UNION Publication 1468 NATIONAL ACADEMY OF SCIENCES NATIONAL RESEARCH COUNCIL Washington, D.C. 1966 Library of Congress Catalog Card No. 55-31605 Available from Printing and Publishing Office National Academy of Sciences 2101 Constitution Avenue Washington, D.C. 20418 Price: $10.00 October28,1966 Dear Dr. Seitz: I ampleasedto transmitherewitha full report to the NationalAcademy of Sciences--NationalResearchCouncil,onthe 15thGeneralAssemblyof URSIwhichwasheldin Munich,September5-15, 1966. TheUnitedStatesNationalCommitteeof URSIhasparticipatedin the affairs of the Unionfor forty-five years. It hashadmuchinfluenceonthe Unionas,.for example,in therecent creationof a Commissiononthe Mag- netosphere.ThisnewCommission,whichis nowvery strong,demonstrates the ability of theUnion,oneof ICSU'sthree oldest,to respondto the changingneedsof its field. AlthoughtheUnitedStatessendsthelargest delegationsof anycountry to the GeneralAssembliesof URSI,theyare neverthelessrelatively small becauseof thestrict mannerin whichURSIcontrolsthe size of its Assem- blies. This is donein order to preventineffectivenessthroughuncontrolled participationbyvery largenumbersof delegates.Accordingly,our delega- tions are carefully selected,andcomprisepeoplequalifiedto prepareand presentour NationalReportto the Assembly.Thepre-Assemblyreport is a report of progressin
    [Show full text]
  • Mighty Eagle: the Development and Flight Testing of an Autonomous Robotic Lander Test Bed
    Mighty Eagle: The Development and Flight Testing of an Autonomous Robotic Lander Test Bed Timothy G. McGee, David A. Artis, Timothy J. Cole, Douglas A. Eng, Cheryl L. B. Reed, Michael R. Hannan, D. Greg Chavers, Logan D. Kennedy, Joshua M. Moore, and Cynthia D. Stemple PL and the Marshall Space Flight Center have been work- ing together since 2005 to develop technologies and mission concepts for a new generation of small, versa- tile robotic landers to land on airless bodies, including the moon and asteroids, in our solar system. As part of this larger effort, APL and the Marshall Space Flight Center worked with the Von Braun Center for Science and Innovation to construct a prototype monopropellant-fueled robotic lander that has been given the name Mighty Eagle. This article provides an overview of the lander’s architecture; describes the guidance, navi- gation, and control system that was developed at APL; and summarizes the flight test program of this autonomous vehicle. INTRODUCTION/PROJECT BACKGROUND APL and the Marshall Space Flight Center (MSFC) technology risk-reduction efforts, illustrated in Fig. 1, have been working together since 2005 to develop have been performed to explore technologies to enable technologies and mission concepts for a new genera- low-cost missions. tion of small, autonomous robotic landers to land on As part of this larger effort, MSFC and APL also airless bodies, including the moon and asteroids, in our worked with the Von Braun Center for Science and solar system.1–9 This risk-reduction effort is part of the Innovation (VCSI) and several subcontractors to con- Robotic Lunar Lander Development Project (RLLDP) struct the Mighty Eagle, a prototype monopropellant- that is directed by NASA’s Planetary Science Division, fueled robotic lander.
    [Show full text]
  • Stereo Reconstruction from Apollo 15 and 16 Metric Camerazachary
    42nd Lunar and Planetary Science Conference (2011) 2267.pdf Stereo Reconstruction from Apollo 15 and 16 Metric Camera Zachary Moratto1, Ara Nefian1,2, Taemin Kim1, Michael Broxton1,2, Ross Beyer1,3, and Terry Fong1, 1NASA Ames Research Center, MS 269-3, Moffett Field, CA, USA ([email protected]), 2Carnegie Mellon University, 3Carl Sagan Center SETI Introduction saic, DIM, and precision maps are produced for both This paper presents the production of digital terrain mod- missions separately. els (DTMs) and digital image mosaics (DIMs) of the Lu- The DTM mosaic is formed by a weighted average of nar surface that cover a large portion of the near-side of the stereo pair DTMs. Input DTMs were weighted max- the Moon at 40 m/px and 10 m/px respectively. These imum value at their centers and then feathered to zero at data products, produced under direction of the NASA the edges. The DTM mosaics are shown in Fig. 1 and 2. ESMD Lunar Mapping and Modeling Project (LMMP), The DIM was created by projecting the original res- are based on 2600 stereo image pairs from the Apollo olution images onto the 40 m/px DTMs, creating indi- 15 and 16 missions that were digitized at high resolution vidual orthoimages. Those orthoimages were then mo- from the original mission films [1]. Our reconstruction saicked by a process described in [5] without reflectance. was carried out using the highly automated Ames Stereo Therefore, only the final image mosaic and time expo- Pipeline software [2], which runs on NASA’s Pleiades sures were calculated.
    [Show full text]
  • Apollo 13 Mission Review
    APOLLO 13 MISSION REVIEW HEAR& BEFORE THE COMMITTEE ON AERONAUTICAL AND SPACE SCIENCES UNITED STATES SENATE NINETY-FIRST CONGRESS SECOR’D SESSION JUR’E 30, 1970 Printed for the use of the Committee on Aeronautical and Space Sciences U.S. GOVERNMENT PRINTING OFFICE 47476 0 WASHINGTON : 1970 COMMITTEE ON AEROKAUTICAL AND SPACE SCIENCES CLINTON P. ANDERSON, New Mexico, Chairman RICHARD B. RUSSELL, Georgia MARGARET CHASE SMITH, Maine WARREN G. MAGNUSON, Washington CARL T. CURTIS, Nebraska STUART SYMINGTON, bfissouri MARK 0. HATFIELD, Oregon JOHN STENNIS, Mississippi BARRY GOLDWATER, Arizona STEPHEN M.YOUNG, Ohio WILLIAM B. SAXBE, Ohio THOJfAS J. DODD, Connecticut RALPH T. SMITH, Illinois HOWARD W. CANNON, Nevada SPESSARD L. HOLLAND, Florida J4MES J. GEHRIG,Stad Director EVERARDH. SMITH, Jr., Professional staffMember Dr. GLENP. WILSOS,Professional #tad Member CRAIGVOORHEES, Professional Staff Nember WILLIAMPARKER, Professional Staff Member SAMBOUCHARD, Assistant Chief Clerk DONALDH. BRESNAS,Research Assistant (11) CONTENTS Tuesday, June 30, 1970 : Page Opening statement by the chairman, Senator Clinton P. Anderson-__- 1 Review Board Findings, Determinations and Recommendations-----_ 2 Testimony of- Dr. Thomas 0. Paine, Administrator of NASA, accompanied by Edgar M. Cortright, Director, Langley Research Center and Chairman of the dpollo 13 Review Board ; Dr. Charles D. Har- rington, Chairman, Aerospace Safety Advisory Panel ; Dr. Dale D. Myers, Associate Administrator for Manned Space Flight, and Dr. Rocco A. Petrone, hpollo Director -___________ 21, 30 Edgar 11. Cortright, Chairman, hpollo 13 Review Board-------- 21,27 Dr. Dale D. Mvers. Associate Administrator for Manned SDace 68 69 105 109 LIST OF ILLUSTRATIOSS 1. Internal coinponents of oxygen tank So. 2 ---_____-_________________ 22 2.
    [Show full text]
  • Obituaries, A
    OBITUARIES, A - K Updated 7/31/2020 Bernardsville Library Local History Room NAME TITLE DATE OF DEATH SOURCE EDITION PAGE AGE NOTES NJ Archives Abstract & Aaron, Robert 01/13/1802 Wills Vol.X 1801-1805 7 Abantanzo, Marie 01/13/1923 Bernardsville News 01/18/1923 4 Abbate, Michael 06/22/1955 Bernardsville News 06/23/1955 1 Abberman, Jay 04/10/2005 Bernardsville News 04/14/2005 10 82 Abbey, E. Mrs. 06/02/1957 Bernardsville News 06/06/1957 4 Abbond, Doris Weakley 03/27/2000 Bernardsville News 03/30/2000 10 80 Abbond, Robert R. 02/09/1995 Bernardsville News 02/15/1995 10 82 Abbondanzo, Delores L. 11/03/2001 Bernardsville News 11/08/2001 11 75 Abbondanzo, Francis J. 12/26/1993 Bernardsville News 12/29/1993 10 69 Abbondanzo, L. Mrs. 12/22/1962 Bernardsville News 01/03/1963 2 Abbondanzo, Lena I. 05/08/2003 Bernardsville News 05/15/2003 10 80 Abbondanzo, Louis 12/23/1979 Bernardsville News 01/03/1980 6 89 Abbondanzo, Louis J. 12/25/1993 Bernardsville News 12/29/1993 10 65 Abbondanzo, Mary G. 06/12/2014 Bernardsville News 06/26/2014 8 88 Abbondanzo, Patricia A. 11/21/1983 Bernardsville News 11/24/1983 Abbondanzo, Patrick J. 12/11/2000 Bernardsville News 12/14/2000 10 78 Abbondanzo, Rose 12/22/1962 Bernardsville News 01/03/1963 2 63 Abbondanzo, Sharon J. 08/28/2013 Bernardsville News 09/05/2013 9 78 Abbondanzo, Vincent J. 07/26/1996 Bernardsville News 07/31/1996 10 66 Abbott, Charles Cortez Jr.
    [Show full text]
  • Waltham on the Moon, Apollo 15 and the Search for the Holy Grail
    Waltham on the Moon, Apollo 15 and the Search for the Holy Grail. Post contains Pict... Page 1 of 3 [ View Thread ] [ Return to Index ] [ Read Prev Msg ] [ Read Next Msg ] 'Poor Man's' Watch Forum ARCHIVE Waltham on the Moon, Apollo 15 and the Search for the Holy Grail. Posted By: Kelly M. Rayburn <[email protected]> Date: Wednesday, 27 August 2003, at 2:21 a.m. (Reto was kind enough to ask me to repost my earlier post on the above topic for the archives on the new server. It contains nothing new except the post script. If you have already read the post, please disregard.) Hi all: In preparation for purchasing an Omega Speedmaster Professional, I have done the obligatory research on the use of the Speedmaster in the NASA space program. Chuck Maddox's excellent article on Omega's history with the Apollo program revealed some interesting facts that I did not know. In brief: The cal. 321 Speedmasters were purchased by NASA for the astronauts' use prior to the introduction of the cal. 861 movement in 1968. Apparently it is generally accepted that only the cal. 321 Speedmasters were worn on the moon during the various moon missions, as the initial procurement of these watches around 1965 was distributed to all astonauts at that time (two each) with as many as twenty still left in inventory and never used following the final Apollo 17 mission in 1972. Apparently, there is no evidence that a cal. 861 Speedmaster was worn by any of the moonwalkers or that NASA had procured any cal.
    [Show full text]
  • Chenangoforks2.Pdf
    • Rilles – Lunar Rilles are long, narrow, depressions formed by lava flows, resembling channels. • Rugged Terra – Rugged terra are mountainous regions of the moon. • Wrinkle Ridges – Wrinkle Ridges are created through compression of tectonic plates within the maria. • Graben – Graben are formed from the stress of two fault lines. • Scarps – A displacement of land beside a fault. • Fault – A fault is a fracture on the surface. Grabens Rilles Scarps Fault Rugged Terra Wrinkle Ridge •Scarp‐ A type of fault. It is the displacement of land alongside a fault. • Mare Ridge‐ The raised edges of a mare impact basin. •Trough‐ A depression that is characterized by its shallow ridges • Lineament‐ A linear expression used to characterize a fault lined valley •The wrinkle ridge structures that deform and interrupt the mare basalts are commonly asymmetrical, with the steeper side bounded by a complex scarp composed of multiple overlapping lobate scarp segments that may have rounded crests that make them resemble mare ridges. •Lobate scarps are thrust faults that occur primarily in the Moon's lunar highlands. •a graben is a depressed block of land bordered by parallel faults. •Graben is German for ditch. •A graben is the result of a block of land being downthrown producing a valley with a distinct scarp on each side. •Graben often occur side-by-side with horsts. Horst and graben structures are indicative of tensional forces and crustal stretching. •Horsts are parallel blocks that remain between graben, the bounding faults of a horst typically dip away from the center line of the horst. •Also known as a Dark halo craterlets •Dark-halo craters are formed when an impact unearths lower albedo material from below the surface, then deposits this darker ejecta around the main crater.
    [Show full text]