Alg13/Alg14 UDP-Glcnac Transferase
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioinformatics Approach for the Identification of Fragile Regions On
UNIVERSITÉ DU QUÉBEC À MONTRÉAL BIOINFORMATICS APPROACH FOR THE IDENTIFICATION OF FRAGILE REGIONS ON THE HUMAN GENOME THESIS PRESENTED AS PARTIAL REQUIREMENT OF THE MASTERS OF BIOLOGY BY GOLROKH KIANI SEPTEMBER 2015 UNIVERSITÉ DU QUÉBEC À MONTRÉAL Service des bibliothèques Avertissement La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles supérieurs (SDU-522 - Rév.01-2006). Cette autorisation stipule que «conformément à l'article 11 du Règlement no 8 des études de cycles supérieurs, [l'auteur] concède à l'Université du Québec à Montréal une licence non exclusive d'utilisation et de publication de la totalité ou d'une partie importante de [son] travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, [l 'auteur] autorise l'Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des copies de [son] travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété intellectuelle. Sauf entente contraire, [l 'auteur] conserve la liberté de diffuser et de commercialiser ou non ce travail dont [il] possède un exemplaire.» UNIVERSITÉ DU QUÉBEC À MONTRÉAL APPROCHE BIOINFORMATIQUE POUR L'IDENTIFICATION DES RÉGIONS FRAGILES SUR LE GÉNOME HUMAIN MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN BIOLOGIE PAR GOLROKH KIANI SEPTEMBRE 2015 DEDICATION AND ACK OWLEDGEMENTS No research could be performed without the assistance and intellectual comrade ship of many individuals. -
Congenital Disorders of Glycosylation from a Neurological Perspective
brain sciences Review Congenital Disorders of Glycosylation from a Neurological Perspective Justyna Paprocka 1,* , Aleksandra Jezela-Stanek 2 , Anna Tylki-Szyma´nska 3 and Stephanie Grunewald 4 1 Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland 2 Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; [email protected] 3 Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland; [email protected] 4 NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK; [email protected] * Correspondence: [email protected]; Tel.: +48-606-415-888 Abstract: Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post- translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations -
De Novo Mutations in Epileptic Encephalopathies
LETTER doi:10.1038/nature12439 De novo mutations in epileptic encephalopathies Epi4K Consortium* & Epilepsy Phenome/Genome Project* Epileptic encephalopathies are a devastating group of severe child- were found to be highly improbable (Table 1 and Fig. 1). We performed hood epilepsy disorders for which the cause is often unknown1.Here the same calculations on all of the genes with multiple de novo mutations we report a screen for de novo mutations in patients with two clas- observed in 610 control trios and found no genes with a significant excess sical epileptic encephalopathies: infantile spasms (n 5 149) and of de novo mutations (Supplementary Table 4). Although mutations in Lennox–Gastaut syndrome (n 5 115). We sequenced the exomes of GABRB3 have previously been reported in association with another type 264 probands, and their parents, and confirmed 329 de novo muta- of epilepsy15, and in vivo mouse studies suggest that GABRB3 haplo- tions. A likelihood analysis showed a significant excess of de novo insufficiency is one of the causes of epilepsy in Angelman’s syndrome16, mutations in the 4,000 genes that are the most intolerant to func- our observations implicate it, for the first time, as a single-gene cause of tional genetic variation in the human population (P 5 2.9 3 1023). epileptic encephalopathies and provide the strongest evidence to date for Among these are GABRB3,withde novo mutations in four patients, its association with any epilepsy. Likewise, ALG13, an X-linked gene and ALG13,withthesamede novo mutation in two patients; both encoding a subunit of the uridine diphosphate-N-acetylglucosamine genes show clear statistical evidence of association with epileptic transferase, was previously shown to carry a novel de novo mutation in encephalopathy. -
The First Case of Congenital Myasthenic Syndrome Caused by A
G C A T T A C G G C A T genes Case Report The First Case of Congenital Myasthenic Syndrome Caused by a Large Homozygous Deletion in the C-Terminal Region of COLQ (Collagen Like Tail Subunit of Asymmetric Acetylcholinesterase) Protein Nicola Laforgia 1 , Lucrezia De Cosmo 1, Orazio Palumbo 2 , Carlotta Ranieri 3, Michela Sesta 4, Donatella Capodiferro 1, Antonino Pantaleo 3 , Pierluigi Iapicca 5 , Patrizia Lastella 6, Manuela Capozza 1 , Federico Schettini 1, Nenad Bukvic 7 , Rosanna Bagnulo 3 and Nicoletta Resta 3,7,* 1 Section of Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari “Aldo Moro”, 70124 Bari, Italy; [email protected] (N.L.); [email protected] (L.D.C.); [email protected] (D.C.); [email protected] (M.C.); [email protected] (F.S.) 2 Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; [email protected] 3 Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari “Aldo Moro”, 70124 Bari, Italy; [email protected] (C.R.); [email protected] (A.P.); [email protected] (R.B.) 4 Neurology Unit, University Hospital Consortium Corporation Polyclinic of Bari, 70124 Bari, Italy; [email protected] 5 SOPHiA GENETICS SA HQ, 1025 Saint-Sulpice, Switzerland; [email protected] 6 Rare Diseases Centre—Internal Medicine Unit “C. Frugoni”, Polyclinic of Bari, 70124 Bari, Italy; [email protected] 7 Medical Genetics Section, University Hospital Consortium Corporation Polyclinic of Bari, 70124 Bari, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0805593619 Received: 17 November 2020; Accepted: 15 December 2020; Published: 18 December 2020 Abstract: Congenital myasthenic syndromes (CMSs) are caused by mutations in genes that encode proteins involved in the organization, maintenance, function, or modification of the neuromuscular junction. -
Limb Girdle Myasthenia with Digenic RAPSN and a Novel Disease Gene AK9 Mutations
European Journal of Human Genetics (2017) 25, 192–199 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/17 www.nature.com/ejhg ARTICLE Limb girdle myasthenia with digenic RAPSN and a novel disease gene AK9 mutations Ching-Wan Lam*,1,3, Ka-Sing Wong2,3, Ho-Wan Leung2 and Chun-Yiu Law1 Though dysfunction of neuromuscular junction (NMJ) is associated with congenital myasthenic syndrome (CMS), the proteins involved in neuromuscular transmission have not been completely identified. In this study, we aimed to identify a novel CMS gene in a consanguineous family with limb-girdle type CMS. Homozygosity mapping of the novel CMS gene was performed using high-density single-nucleotide polymorphism microarrays. The variants in CMS gene were identified by whole-exome sequencing (WES) and Sanger sequencing. A 20 MB-region of homozygosity (ROH) was mapped on chromosome 6q15–21. This was the only ROH that present in all clinically affected siblings and absent in all clinically unaffected siblings. WES showed a novel variant of AK9 gene located in this ROH. This variant was a start-gain mutation and introduced a cryptic 5′-UTR signal in intron 5 of the AK9 gene. The normal splicing signal would be interfered by the cryptic translation signal leading to defective splicing. Another 25 MB-ROH was found on chromosome 11p13–q12 in all siblings. WES showed a homozygous RAPSN pathogenic variant in this ROH. Since RAPSN-associated limb-girdle type CMS was only manifested in AK9 homozygous variant carriers, the disease phenotype was of digenic inheritance, and was determined by the novel disease modifier AK9 which provides NTPs for N-glycosylation. -
Associated with Low Dehydrodolichol Diphosphate Synthase (DHDDS) Activity S
Sabry et al. Orphanet Journal of Rare Diseases (2016) 11:84 DOI 10.1186/s13023-016-0468-1 RESEARCH Open Access A case of fatal Type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity S. Sabry1,2,3,4, S. Vuillaumier-Barrot1,2,5, E. Mintet1,2, M. Fasseu1,2, V. Valayannopoulos6, D. Héron7,8, N. Dorison8, C. Mignot7,8,9, N. Seta5,10, I. Chantret1,2, T. Dupré1,2,5 and S. E. H. Moore1,2* Abstract Background: Type I congenital disorders of glycosylation (CDG-I) are mostly complex multisystemic diseases associated with hypoglycosylated serum glycoproteins. A subgroup harbour mutations in genes necessary for the biosynthesis of the dolichol-linked oligosaccharide (DLO) precursor that is essential for protein N-glycosylation. Here, our objective was to identify the molecular origins of disease in such a CDG-Ix patient presenting with axial hypotonia, peripheral hypertonia, enlarged liver, micropenis, cryptorchidism and sensorineural deafness associated with hypo glycosylated serum glycoproteins. Results: Targeted sequencing of DNA revealed a splice site mutation in intron 5 and a non-sense mutation in exon 4 of the dehydrodolichol diphosphate synthase gene (DHDDS). Skin biopsy fibroblasts derived from the patient revealed ~20 % residual DHDDS mRNA, ~35 % residual DHDDS activity, reduced dolichol-phosphate, truncated DLO and N-glycans, and an increased ratio of [2-3H]mannose labeled glycoprotein to [2-3H]mannose labeled DLO. Predicted truncated DHDDS transcripts did not complement rer2-deficient yeast. SiRNA-mediated down-regulation of DHDDS in human hepatocellular carcinoma HepG2 cells largely mirrored the biochemical phenotype of cells from the patient. -
Genetic Background of Ataxia in Children Younger Than 5 Years in Finland E444
Volume 6, Number 4, August 2020 Neurology.org/NG A peer-reviewed clinical and translational neurology open access journal ARTICLE Genetic background of ataxia in children younger than 5 years in Finland e444 ARTICLE Cerebral arteriopathy associated with heterozygous variants in the casitas B-lineage lymphoma gene e448 ARTICLE Somatic SLC35A2 mosaicism correlates with clinical fi ndings in epilepsy brain tissuee460 ARTICLE Synonymous variants associated with Alzheimer disease in multiplex families e450 Academy Officers Neurology® is a registered trademark of the American Academy of Neurology (registration valid in the United States). James C. Stevens, MD, FAAN, President Neurology® Genetics (eISSN 2376-7839) is an open access journal published Orly Avitzur, MD, MBA, FAAN, President Elect online for the American Academy of Neurology, 201 Chicago Avenue, Ann H. Tilton, MD, FAAN, Vice President Minneapolis, MN 55415, by Wolters Kluwer Health, Inc. at 14700 Citicorp Drive, Bldg. 3, Hagerstown, MD 21742. Business offices are located at Two Carlayne E. Jackson, MD, FAAN, Secretary Commerce Square, 2001 Market Street, Philadelphia, PA 19103. Production offices are located at 351 West Camden Street, Baltimore, MD 21201-2436. Janis M. Miyasaki, MD, MEd, FRCPC, FAAN, Treasurer © 2020 American Academy of Neurology. Ralph L. Sacco, MD, MS, FAAN, Past President Neurology® Genetics is an official journal of the American Academy of Neurology. Journal website: Neurology.org/ng, AAN website: AAN.com CEO, American Academy of Neurology Copyright and Permission Information: Please go to the journal website (www.neurology.org/ng) and click the Permissions tab for the relevant Mary E. Post, MBA, CAE article. Alternatively, send an email to [email protected]. -
Supplementary Table S1. List of Differentially Expressed
Supplementary table S1. List of differentially expressed transcripts (FDR adjusted p‐value < 0.05 and −1.4 ≤ FC ≥1.4). 1 ID Symbol Entrez Gene Name Adj. p‐Value Log2 FC 214895_s_at ADAM10 ADAM metallopeptidase domain 10 3,11E‐05 −1,400 205997_at ADAM28 ADAM metallopeptidase domain 28 6,57E‐05 −1,400 220606_s_at ADPRM ADP‐ribose/CDP‐alcohol diphosphatase, manganese dependent 6,50E‐06 −1,430 217410_at AGRN agrin 2,34E‐10 1,420 212980_at AHSA2P activator of HSP90 ATPase homolog 2, pseudogene 6,44E‐06 −1,920 219672_at AHSP alpha hemoglobin stabilizing protein 7,27E‐05 2,330 aminoacyl tRNA synthetase complex interacting multifunctional 202541_at AIMP1 4,91E‐06 −1,830 protein 1 210269_s_at AKAP17A A‐kinase anchoring protein 17A 2,64E‐10 −1,560 211560_s_at ALAS2 5ʹ‐aminolevulinate synthase 2 4,28E‐06 3,560 212224_at ALDH1A1 aldehyde dehydrogenase 1 family member A1 8,93E‐04 −1,400 205583_s_at ALG13 ALG13 UDP‐N‐acetylglucosaminyltransferase subunit 9,50E‐07 −1,430 207206_s_at ALOX12 arachidonate 12‐lipoxygenase, 12S type 4,76E‐05 1,630 AMY1C (includes 208498_s_at amylase alpha 1C 3,83E‐05 −1,700 others) 201043_s_at ANP32A acidic nuclear phosphoprotein 32 family member A 5,61E‐09 −1,760 202888_s_at ANPEP alanyl aminopeptidase, membrane 7,40E‐04 −1,600 221013_s_at APOL2 apolipoprotein L2 6,57E‐11 1,600 219094_at ARMC8 armadillo repeat containing 8 3,47E‐08 −1,710 207798_s_at ATXN2L ataxin 2 like 2,16E‐07 −1,410 215990_s_at BCL6 BCL6 transcription repressor 1,74E‐07 −1,700 200776_s_at BZW1 basic leucine zipper and W2 domains 1 1,09E‐06 −1,570 222309_at -
Novel Exopolysaccharides Produced by Lactococcus Lactis Subsp
Biosci. Biotechnol. Biochem., 77 (10), 2013–2018, 2013 Novel Exopolysaccharides Produced by Lactococcus lactis subsp. lactis, and the Diversity of epsE Genes in the Exopolysaccharide Biosynthesis Gene Clusters y Chise SUZUKI, Miho KOBAYASHI, and Hiromi KIMOTO-NIRA NARO Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan Received April 19, 2013; Accepted June 26, 2013; Online Publication, October 7, 2013 [doi:10.1271/bbb.130322] To characterize novel variations of exopolysacchar- ovalbumin-sensitized mice.12) Strain C59 also showed ides (EPSs) produced by dairy strains of Lactococcus significant activity as a plasminogen activator.13) This lactis subsp. lactis and subsp. cremoris, the EPSs of five activity was extracted from bacterial cells by 0.1 M dairy strains of L. lactis were purified. Sugar composi- sodium carbonate buffer (pH 10.0), suggesting that tion analysis showed two novel EPSs produced by cell-surface materials of strain C59 are involved in it. strains of L. lactis subsp. lactis. One strain produced EPS and CPS synthesis is usually controlled by eps EPS lacking galactose, and the other produced EPS operons located on a chromosome or plasmid, and by containing fucose. Among the eps gene clusters of these genes outside the operon.6,14–16) Clusters can differ strains, the highly conserved epsD and its neighboring greatly among strains belonging to the same species, but epsE were sequenced. Sequence and PCR analysis the first six genes, epsRXABCD, in lactococcal eps revealed that epsE genes were strain-specific. By South- operons are highly conserved among strains.6,15,17,18) A ern blot analysis using epsD, the eps gene cluster in each tyrosine (Tyr) phosphorylation regulatory system is strain was found to locate to the chromosome or a very involved in the modulation of polysaccharide synthesis. -
Characterization of X-Linked SNP Genotypic Variation in Globally Distributed Human Populations Genome Biology 2010, 11:R10
Casto et al. Genome Biology 2010, 11:R10 http://genomebiology.com/2010/11/1/R10 RESEARCH Open Access CharacterizationResearch of X-Linked SNP genotypic variation in globally distributed human populations Amanda M Casto*1, Jun Z Li2, Devin Absher3, Richard Myers3, Sohini Ramachandran4 and Marcus W Feldman5 HumanAnhumanulation analysis structurepopulationsX-linked of X-linked variationand provides de geneticmographic insights variation patterns. into in pop- Abstract Background: The transmission pattern of the human X chromosome reduces its population size relative to the autosomes, subjects it to disproportionate influence by female demography, and leaves X-linked mutations exposed to selection in males. As a result, the analysis of X-linked genomic variation can provide insights into the influence of demography and selection on the human genome. Here we characterize the genomic variation represented by 16,297 X-linked SNPs genotyped in the CEPH human genome diversity project samples. Results: We found that X chromosomes tend to be more differentiated between human populations than autosomes, with several notable exceptions. Comparisons between genetically distant populations also showed an excess of X- linked SNPs with large allele frequency differences. Combining information about these SNPs with results from tests designed to detect selective sweeps, we identified two regions that were clear outliers from the rest of the X chromosome for haplotype structure and allele frequency distribution. We were also able to more precisely define the geographical extent of some previously described X-linked selective sweeps. Conclusions: The relationship between male and female demographic histories is likely to be complex as evidence supporting different conclusions can be found in the same dataset. -
Targeted Next-Generation Sequencing in Patients with Suggestive X-Linked Intellectual Disability
G C A T T A C G G C A T genes Article Targeted Next-Generation Sequencing in Patients with Suggestive X-Linked Intellectual Disability Nekane Ibarluzea 1,2 , Ana Belén de la Hoz 1,2, Olatz Villate 1,2,3, Isabel Llano 1,2,3 , Intzane Ocio 4, Itxaso Martí 5, Miriam Guitart 6, Elisabeth Gabau 6, Fernando Andrade 1,2, Blanca Gener 1,2,3 and María-Isabel Tejada 1,2,3,* 1 Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; [email protected] (N.I.); [email protected] (A.B.d.l.H.); [email protected] (O.V.); [email protected] (I.L.); [email protected] (F.A.); [email protected] (B.G.) 2 Spanish Consortium for Research on Rare Diseases (CIBERER), 28029 Madrid, Spain 3 Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, 48903 Barakaldo, Spain 4 Department of Paediatric Neurology, Araba University Hospital, Osakidetza Basque Health Service, 01009 Gasteiz, Spain; [email protected] 5 Department of Paediatric Neurology, Donostia University Hospital, Osakidetza Basque Health Service, 20014 Donostia, Spain; [email protected] 6 Genetics Laboratory, Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain; [email protected] (M.G.); [email protected] (E.G.) * Correspondence: [email protected] Received: 3 December 2019; Accepted: 30 December 2019; Published: 2 January 2020 Abstract: X-linked intellectual disability (XLID) is known to contribute up to 10% of intellectual disability (ID) in males and could explain the increased ratio of affected males observed in patients with ID. -
Table S1 Genes with Coefficients of Variation (CV) Ratios (CVGHS/CVSD) in the Upper and Lower 10% of for Expression in Genetic Hypercalciuric Stone-Forming (GHS) And
Table S1 Genes with coefficients of variation (CV) ratios (CVGHS/CVSD) in the upper and lower 10% of for expression in Genetic Hypercalciuric Stone-forminG (GHS) and Sprague-Dawley (SD) rats, assayed usinG Affymetrix Rat Genome 230 GeneChips. The location of the microsatellite or quantitative trait locus (QTL) position (Loc) in base pairs (bp), gene initiation base pair (BP), chromosomal banding position and RGD or GenBank name are given.Rat Genome Database (RGD) (www.rgd.mcw.edu), GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) and Entrez (http://www.ncbi.nlm.nih.gov/sites/entrez). Variance in gene expression was ranked according to CVGHS/CVSD ratio for all renal (8846 genes, Pctl, Renal) and duodenal genes (9038 genes, Pctl, Duod). Gene Pctl, Pctl, QTL Gene (GenBank) Renal Duod BP GenBank/RGD Description D1Mit95 Riok2 (BG371773) 91.3 52.4 55,897,246 RIO kinase 2 66,832,211 Tmc4 (BF545988) - 93.6 63,582,715 transmembrane channel-like gene family 4 Isoc2b (BM385414) 2.3 - 67,689,183 Isochorismatase domain containing 2b Suv420h2 (AW525235) 69.9 97.3 67,815,980 suppressor of variegation 4-20 homolog 2 (Drosophila) Lilrb4 (BF282961) 95.5 - 69,165,497 leukocyte immunoglobulin-like receptor, subfamily B, member 4 Zbtb45 (BI289556) - 10.0 72,912,203 zinc finger and BTB domain containing 45 Sepw1 (NM_013027) 7.5 - 76,249,869 selenoprotein W, muscle 1 Chmp2a (AW434104) 0.1 86.9 72,889,348 chromatin modifying protein 2a Tmem160 (AWS25031) 97.6 2.2 76,716,254 transmembrane protein Pnmal2 (BI282311) 99.6 - 77,277,341 PNMA-like 2 Dmpk (AI044427) 98.9 7.3 78,449,323 dystrophia myotonica-protein kinase; serine-threonine kinase Vasp (AW520792) 99.3 - 78,621,478 vasodilator-stimulated phosphoprotein Ercc1 (AA892791) 90.6 - 78,711,248 excision repair cross-complementing rodent repair deficiency, complementation G.