Bolt: Faster Reconfiguration in Operating Systems Sankaralingam Panneerselvam and Michael M

Total Page:16

File Type:pdf, Size:1020Kb

Bolt: Faster Reconfiguration in Operating Systems Sankaralingam Panneerselvam and Michael M Bolt: Faster Reconfiguration in Operating Systems Sankaralingam Panneerselvam and Michael M. Swift, University of Wisconsin—Madison https://www.usenix.org/conference/atc15/technical-session/presentation/panneerselvam This paper is included in the Proceedings of the 2015 USENIX Annual Technical Conference (USENIC ATC ’15). July 8–10, 2015 • Santa Clara, CA, USA ISBN 978-1-931971-225 Open access to the Proceedings of the 2015 USENIX Annual Technical Conference (USENIX ATC ’15) is sponsored by USENIX. Bolt: Faster Reconfiguration in Operating Systems Sankaralingam Panneerselvam1, Michael M. Swift1, and Nam Sung Kim2 1Department of Computer Sciences 2Department of Electrical and Computer Engineering University of Wisconsin-Madison 1 sankarp,swift @cs.wisc.edu { [email protected]} Abstract Current operating systems assume that the processor Dynamic resource scaling enables provisioning extra re- cores available to them are essentially static and almost sources during peak loads and saving energy by reclaim- never change over runtime of the system. These systems ing those resources during off-peak times. Scaling the support scaling through a hotplug mechanism that was number of CPU cores is particularly valuable as it allows primarily designed to remove faulty cores from the sys- power savings during low-usage periods. Current sys- tem [11]. This mechanism is slow, bulky and halts the tems perform scaling with a slow hotplug mechanism, entire machine for a few milliseconds while the OS re- which was primarily designed to remove or replace faulty configures. The current Linux hotplug mechanism takes cores. The high cost of scaling is reflected in power tens of milliseconds to reconfigure the OS [22]. In con- management policies that perform scaling at coarser time trast, processor vendors are aiming for transitions to and scales to amortize the high reconfiguration latency. from sleep states in the order of microseconds [26, 24], We describe Bolt, a new mechanism built on existing making OS the bottleneck in scaling. In spite of these hotplug infrastructure to reduce scaling latency. Bolt also drawbacks, hotplug is being widely used by mobile ven- supports a new bulk interface to add or remove multiple dors as a means to scale the number of processor cores cores at once. We implemented Bolt for x86 and ARM to save energy [23] due to the lack of better alternatives. architectures. Our evaluation shows that Bolt can achieve We propose a new mechanism, Bolt, that builds on over 20x speedup for entering offline state. While turn- the Linux hotplug infrastructure with the assumption that ing on CPUs, Bolt achieves speedup upto 10x and 21x scaling events are frequent and a goal of low latency for x86 and ARM respectively. scaling mechanism. Bolt classifies every operation car- ried out during hotplug as critical or non-critical opera- 1 Introduction tions. The critical operations are performed immediately Most operating system policies focus on improving per- for proper functioning of the system whereas non-critical formance given a fixed set of resources. For example, operations are done lazily. Bolt also supports a new bulk schedulers assume a fixed set of processors to which as- interface to turn on/off multiple cores simultaneously, sign threads, and memory managers assume a fixed pool which is not supported by the hotplug mechanism. of memory. However, this assumption is increasingly We implemented Bolt for both x86 and ARM proces- violated in the current computing landscape, where re- sors, and find that Bolt can achieve upto 20x better la- sources can be added or removed dynamically during tency over native hotplug offline mechanism. For get- runtime for reasons of energy reduction, cost savings, ting a CPU to online state, Bolt offers a speedup of 10x virtual-machine scaling or hardware heterogeneity [12]. for modern x86 processors and 21x for Exynos (ARM) We refer to changing the set of resources as resource processor. The bulk interface supported in Bolt achieves scaling and our work focuses on scaling the set of proces- speedup of 18x-67x when adding or removing 3 cores in sors available to the operating system. This scaling may x86 processors compared to doing the same operations be helpful in virtualized settings such as cloud comput- over native hotplug mechanism. ing [8] and disaggregated servers [15, 2] where it is pos- sible to add or remove CPUs at anytime within a system. 2 Motivation Scaling can improve performance during peak loads and 2.1 Processor Scaling minimize energy during off-peak loads [9]. Dynamically reconfigurable processors (e.g., [17]), which allow pro- Many current and future systems will support a dynamic cessing resources to be reconfigured at runtime to meet changing set of cores for three major reasons. application demands, can also benefit from scaling the Energy Proportionality. This property dictates that en- set of available CPUs [22]. ergy consumption should be proportional to the amount USENIX Association 2015 USENIX Annual Technical Conference 511 of work done and is getting a major focus in all forms (PCPU). In terms of latency, virtualization could provide on computing from cloud to mobile devices. Low power an ideal support where it could switch VCPUs from a (P-states) and sleep state (C-states) support from proces- PCPU that is being switched off to a different physical sors help achieve energy proportionality by reducing en- CPU instantly by saving and restoring context of those ergy consumption when the processor is not fully uti- virtual CPUs. lized. However, in many processors further power sav- However, the drawbacks of using virtualization-based ings could be achieved by turning off cores to a deeper techniques are two-fold. First, virtualization adds over- sleep state, turning off an entire socket or allowing to head in the common case, particularly for memory ac- enter package level sleep state. These deeper states re- cess [7]. Second, multiplexing VCPUs on a physical quire OS intervention, as the core is logically turned off CPU can hurt performance due to context switches dur- and not available for scheduling threads or processing ing critical sections [27]. interrupts. For example, most mobile systems turn off Power Management. OS support for idle sleep states cores during low system utilization to conserve battery (C-states) can be used to move unused cores to a sleep capacity by reducing static power consumption. Some state and wake up when needed. The latency of entering processors (e.g. Exynos [19]) provide a package-level and exiting such sleep state is very low when compared deep sleep state that is enabled when all but one core to the hotplug mechanism. However, OS power man- is switched off. Operating systems may use core park- agement support requires that cores can still respond to ing [13] to consolidate tasks in a single socket to switch interrupts, which is not the case for all deep sleep states off other sockets completely. Quick scaling support by or for non-power uses of scaling. Furthermore, the OS the OS can allow rapid transitions into and out of deep may accidentally wake up a sleeping core unnecessarily sleep states. to involve them in regular activities like scheduling or Heterogeneity. Many processors support heterogeneity TLB shootdowns [25]. either statically [1] via different core designs or dynam- Processor Proxies. Chameleon [22] proposed a new al- ically [17] through reconfiguration. On dark silicon sys- ternative to hotplug called processor proxies that is sev- tems [6], not all processors could be used at full perfor- eral times faster than hotplug. A proxy represents an of- mance together, and hence the OS must decide which fline CPU and runs on an active CPU making the sys- processors to enable based on the application character- tem believe that the offline CPU is still active. However, istics. Processors like Exynos [4] and Tegra [21] em- proxies can only be used for a short period because they ploy ARM’s big.LITTLE architecture, with a mix of high handle interrupts and Read-Copy-Update (RCU) opera- performance and high efficiency cores. In systems with tions only, and do not reschedule threads from a CPU in these processors, the OS must choose the type of proces- offline state. sor core based on the performance need. The OS must change the processor set when switching between differ- Scalability-Aware Kernel. Ideally, an OS kernel could ent CPU types. natively support changing the set of CPUs at low la- tency and with low overhead. Rather than assuming that VM Scaling. Virtual machines are widely used in cloud scaling events are rare, a scalability-aware kernel would environment, and many hypervisors provide support for spend little time freeing resources during a scale-down scaling the number of virtual CPUs in a virtual machine event when they are likely to be re-allocated during an (VM) [20]. IBM supports VM scaling through DLPAR upcoming scale-up event. (dynamic logical partitioning [18]) and VMware sup- ports them through hot add/remove interfaces. Some ap- 2.3 Hotplug plication like databases benefit from scaling up of vir- tual machines by provisioning more resources rather than Hotplug is a widely used mechanism available in Linux scaling out where more virtual machines are spawned. to support processor set scaling. It offers interfaces for These techniques can be used at finer scale if the guest any kernel subsystem to subscribe to notifications for OS provides quick processor scaling. processor set changes. However, handling of notifica- tions by every subsystem follow the assumption that hot- 2.2 OS Support plug events are rare. The shortcomings of the mechanism There are several mechanisms an OS can use to scale the are discussed below. number of CPUs in use. Repeat Execution. A direct implication of the above as- Virtualization. An extra layer of indirection through vir- sumption is that most kernel subsystems free or reinitial- tualization decouples the physical execution layer from ize the software structures during hotplug event.
Recommended publications
  • An Emerging Architecture in Smart Phones
    International Journal of Electronic Engineering and Computer Science Vol. 3, No. 2, 2018, pp. 29-38 http://www.aiscience.org/journal/ijeecs ARM Processor Architecture: An Emerging Architecture in Smart Phones Naseer Ahmad, Muhammad Waqas Boota * Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan Abstract ARM is a 32-bit RISC processor architecture. It is develop and licenses by British company ARM holdings. ARM holding does not manufacture and sell the CPU devices. ARM holding only licenses the processor architecture to interested parties. There are two main types of licences implementation licenses and architecture licenses. ARM processors have a unique combination of feature such as ARM core is very simple as compare to general purpose processors. ARM chip has several peripheral controller, a digital signal processor and ARM core. ARM processor consumes less power but provide the high performance. Now a day, ARM Cortex series is very popular in Smartphone devices. We will also see the important characteristics of cortex series. We discuss the ARM processor and system on a chip (SOC) which includes the Qualcomm, Snapdragon, nVidia Tegra, and Apple system on chips. In this paper, we discuss the features of ARM processor and Intel atom processor and see which processor is best. Finally, we will discuss the future of ARM processor in Smartphone devices. Keywords RISC, ISA, ARM Core, System on a Chip (SoC) Received: May 6, 2018 / Accepted: June 15, 2018 / Published online: July 26, 2018 @ 2018 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license.
    [Show full text]
  • SECOND AMENDED COMPLAINT 3:14-Cv-582-JD
    Case 3:14-cv-00582-JD Document 51 Filed 11/10/14 Page 1 of 19 1 EDUARDO G. ROY (Bar No. 146316) DANIEL C. QUINTERO (Bar No. 196492) 2 JOHN R. HURLEY (Bar No. 203641) PROMETHEUS PARTNERS L.L.P. 3 220 Montgomery Street Suite 1094 San Francisco, CA 94104 4 Telephone: 415.527.0255 5 Attorneys for Plaintiff 6 DANIEL NORCIA 7 UNITED STATES DISTIRCT COURT 8 NORTHERN DISTRICT OF CALIFORNIA 9 DANIEL NORCIA, on his own behalf and on Case No.: 3:14-cv-582-JD 10 behalf of all others similarly situated, SECOND AMENDED CLASS ACTION 11 Plaintiffs, COMPLAINT FOR: 12 v. 1. VIOLATION OF CALIFORNIA CONSUMERS LEGAL REMEDIES 13 SAMSUNG TELECOMMUNICATIONS ACT, CIVIL CODE §1750, et seq. AMERICA, LLC, a New York Corporation, and 2. UNLAWFUL AND UNFAIR 14 SAMSUNG ELECTRONICS AMERICA, INC., BUSINESS PRACTICES, a New Jersey Corporation, CALIFORNIA BUS. & PROF. CODE 15 §17200, et seq. Defendants. 3. FALSE ADVERTISING, 16 CALIFORNIA BUS. & PROF. CODE §17500, et seq. 17 4. FRAUD 18 JURY TRIAL DEMANDED 19 20 21 22 23 24 25 26 27 28 1 SECOND AMENDED COMPLAINT 3:14-cv-582-JD Case 3:14-cv-00582-JD Document 51 Filed 11/10/14 Page 2 of 19 1 Plaintiff DANIEL NORCIA, having not previously amended as a matter of course pursuant to 2 Fed.R.Civ.P. 15(a)(1)(B), hereby exercises that right by amending within 21 days of service of 3 Defendants’ Motion to Dismiss filed October 20, 2014 (ECF 45). 4 Individually and on behalf of all others similarly situated, Daniel Norcia complains and alleges, 5 by and through his attorneys, upon personal knowledge and information and belief, as follows: 6 NATURE OF THE ACTION 7 1.
    [Show full text]
  • Three Ways of Seeing Improved Health and Productivity
    Three ways of seeing Key Features Galaxy Watch3 improved health and The Galaxy Watch3 is a premium solution that’s B2B-ready, with days of power and a rotating bezel that allows easy productivity. navigation even while wearing gloves. • Onboard GPS, motion, activity and heart-rate sensors • Battery lasts up to 56 hours (45mm model)2 • Carrier-agnostic LTE3 Take a look at the Samsung Galaxy • Tested to MIL-STD-810G standards,4 IP685, rated at 5 ATM Watch3, Galaxy Watch Active2, and Galaxy Watch Active. Galaxy Watch Active2 The premium Galaxy Watch3, the versatile Galaxy Watch Active, With a focus on wellness, the Galaxy Watch Active2 features and the health-oriented Galaxy Watch Active2 offer greater a digital touch bezel plus advanced sensors that enable health and productivity to virtually any enterprise. They’re more accurate blood pressure tracking, ECG tracking, 1 protected by Samsung Knox . And they’re all customizable to heart rate tracking, alerts, and fall detection. incorporate your company’s branding. Be more nimble. Be • Advanced sensors include heart rate tracker, ECG sensor, and 32G high more productive. Samsung Galaxy watches make it possible. sampling rate accelerometer and gyro • Battery lasts up to 60 hours (44mm model)2 • Carrier-agnostic LTE3 • Tested to MIL-STD-810G standards,4 IP685, rated at 5 ATM Galaxy Watch Active The Galaxy Watch Active offers secure communications in fast-paced environments, and supports corporate efficiency, productivity, health, and safety initiatives. • Advanced sleep tracking helps improve stress levels and sleep patterns • Battery lasts up to 45 hours2 • Tested to MIL-STD-810G standards,4 IP685, rated at 5 ATM Contact Us: samsung.com/wearablesforbiz Galaxy Watch3 Galaxy Watch Active2 Galaxy Watch Active “1.77”” x 1.82”” x 0.44”” (45.0 x 46.2 x 11.1 mm) 1.73" x 1.73" x 0.43" (44 x 44 x 10.9mm) Dimensions 1.56” x 1.56” x 0.41” (39.5 x 39.5 x 10.5mm) 1.61”” x 1.67”” x 0.44”” (41.0 x 42.5 x 11.3 mm)” 1.57" x 1.73" x 0.43" (40 x 40 x 10.9mm) Physical Weight 1.90 oz (53.8 g) /1.70 oz (48.2g) 1.7 oz.
    [Show full text]
  • Survey and Benchmarking of Machine Learning Accelerators
    1 Survey and Benchmarking of Machine Learning Accelerators Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy Kepner MIT Lincoln Laboratory Supercomputing Center Lexington, MA, USA freuther,pmichaleas,michael.jones,vijayg,sid,[email protected] Abstract—Advances in multicore processors and accelerators components play a major role in the success or failure of an have opened the flood gates to greater exploration and application AI system. of machine learning techniques to a variety of applications. These advances, along with breakdowns of several trends including Moore’s Law, have prompted an explosion of processors and accelerators that promise even greater computational and ma- chine learning capabilities. These processors and accelerators are coming in many forms, from CPUs and GPUs to ASICs, FPGAs, and dataflow accelerators. This paper surveys the current state of these processors and accelerators that have been publicly announced with performance and power consumption numbers. The performance and power values are plotted on a scatter graph and a number of dimensions and observations from the trends on this plot are discussed and analyzed. For instance, there are interesting trends in the plot regarding power consumption, numerical precision, and inference versus training. We then select and benchmark two commercially- available low size, weight, and power (SWaP) accelerators as these processors are the most interesting for embedded and Fig. 1. Canonical AI architecture consists of sensors, data conditioning, mobile machine learning inference applications that are most algorithms, modern computing, robust AI, human-machine teaming, and users (missions). Each step is critical in developing end-to-end AI applications and applicable to the DoD and other SWaP constrained users.
    [Show full text]
  • 2016 Comparison of Application Processor (AP) Packaging 1 Table of Contents
    Application Processor for Smartphone Packaging Technology & Cost Review Advanced Packaging report by Stéphane ELISABETH November 2016 21 rue la Noue Bras de Fer 44200 NANTES - FRANCE +33 2 40 18 09 16 [email protected] www.systemplus.fr ©2016 System Plus Consulting | 2016 Comparison of Application Processor (AP) packaging 1 Table of Contents Overview / Introduction 3 Manufacturing Process Flow 73 o Executive Summary o Global Overview o AP I/O count & Footprint o Package Fabrication Unit o AP I/O count & L/S width Cost Analysis 76 o Reverse Costing Methodology o Synthesis of the cost analysis Company Profile 10 o Main Steps of Economic Analysis o Apple, Huawei, Samsung, Qualcomm o Yields Explanation & Hypotheses o Apple, Huawei, Samsung, Qualcomm AP history o Die cost 81 o Apple, Huawei, Samsung, Qualcomm Supply Chain History Front-End Cost o iPhone 7 Plus, Huawei P9, Samsung Galaxy S7 Teardown Wafer & Die Cost o PoP Packaging Technology o Package Manufacturing Cost 83 Physical Analysis 32 A10 Package Cost Breakdown o Synthesis of the Physical Analysis Kirin 955 Package Cost Breakdown o Physical Analysis Methodology Exynos 8 Package Cost Breakdown o A10, Kirin 955, Exynos 8, Snapdragon 820 Package 34 Snapdragon 820 Package Cost Breakdown Package Views & Dimensions o Component Cost 88 Wafer/Panel & Component Cost Package Opening Component Cost Breakdown Package Opening Comparison o PoP Cross-Section 47 Company services 91 Package Details Cross-Section Package Cross-Section Comparison o Die & Land-Side Decoupling Capacitor Comparison 66 Die View & Dimensions LSC Capacitor View & Dimensions LSC Capacitor Footprint Embedded LSC Capacitor Cross-Section Soldered LSC Capacitor Cross-Section o Summary of the physical Data 72 ©2016 System Plus Consulting | 2016 Comparison of Application Processor (AP) packaging 2 Executive Summary Overview / Introduction o Executive Summary • Located under the DRAM chip on the main board, the application processors (AP) are packaged using PoP o Reverse Costing Methodology technology.
    [Show full text]
  • Android Vs Ios
    Android vs iOS By Mohammad Daraghmeh Jack DeGonzaque AGENDA ● Android ○ History ● Samsung S6 ○ System Architecture ○ Processor ○ Performance Metrics ● iOS ○ History ● iPhone 6 ○ System Architecture ○ Processor ○ Performance Metrics ● Samsung S6 vs iPhone 6 Android Android History ● The Android OS was created mainly by three amazing people Andy Rubin, Rich Miner, Nick Sears, and Chris White. ○ Initial development for the OS was to create an operating system for digital cameras and PC integration. ○ After gauging the size of the market for such a product, Rubin and his colleagues decided to target the booming smartphone market. ● In 2005, Google also wanted to venture into the smartphone market and did so by acquiring Android Inc. ○ The primary directive was to develop technologies that are developed and distributed at a significantly lower cost to make it more accessible. ○ In 2008, the first Android running smartphone, the HTC Dream, was released. Android History (Cont.) ● The Android operating system has become one of the most popular operating systems. ○ According to research firm, called Gartner, more than a billion Android devices were sold in 2014, which is roughly five times more than Apple iOS devices sold and three times more Windows machines sold. ● Their attribute to success stems from the fact that Google does not charge for Android, and that most phone manufacturers are making cost effective phones, which results in affordable smartphones and internet services at low costs for consumers to enjoy. SAMSUNG GALAXY S6 System Architecture ● Samsung S6 uses the Exynos 7420 processor, which is developed by Samsung as well. ○ The Exynos 7420 is a 78 mm^2 SoC comprised of 8 cores connected to two L2 cache instances.
    [Show full text]
  • Digital Forensic Analysis of Smart Watches
    TALLINN UNIVERSITY OF TECHNOLOGY School of Information Technologies Kehinde Omotola Adebayo (174449IVSB) DIGITAL FORENSIC ANALYSIS OF SMART WATCHES Bachelor’s Thesis Supervisor: Hayretdin Bahsi Research Professor Tallinn 2020 TALLINNA TEHNIKAÜLIKOOL Infotehnoloogia teaduskond Kehinde Omotola Adebayo (174449IVSB) NUTIKELLADE DIGITAALKRIMINALISTIKA Bachelor’s Thesis Juhendaja: Hayretdin Bahsi Research Professor Tallinn 2020 Author’s declaration of originality I hereby certify that I am the sole author of this thesis. All the used materials, references to the literature and the work of others have been referred to. This thesis has not been presented for examination anywhere else. Author: Kehinde Omotola Adebayo 30.04.2020 3 Abstract As wearable technology is becoming increasingly popular amongst consumers and projected to continue to increase in popularity they become probable significant source of digital evidence. One category of wearable technology is smart watches and they provide capabilities to receive instant messaging, SMS, email notifications, answering of calls, internet browsing, fitness tracking etc. which can be a great source of digital artefacts. The aim of this thesis is to analyze Samsung Gear S3 Frontier and Fitbit Versa Smartwatches, after which we present findings alongside the limitations encountered. Our result shows that we can recover significant artefacts from the Samsung Gear S3 Frontier, also more data can be recovered from Samsung Gear S3 Frontier than the accompanying mobile phone. We recovered significant data that can serve as digital evidence, we also provided a mapping that would enable investigators and forensic examiners work faster as they are shown where to look for information in the course of an investigation. We also presented the result of investigating Fitbit Versa significant artefacts like Heart rate, sleep, exercise and personal data like age, weight and height of the user of the device, this shows this device contains artefacts that might prove useful for forensic investigators and examiners.
    [Show full text]
  • NEON Implementation of an Attribute-Based Encryption Scheme
    NEON implementation of an attribute-based encryption scheme Ana Helena S´anchez, Francisco Rodr´ıguez-Henr´ıquez? Computer Science Department, CINVESTAV-IPN, M´exico [email protected], [email protected] Abstract. In 2011, Waters presented a ciphertext-policy attribute-based encryption protocol that uses bilinear pairings to provide control access mechanisms, where the set of user's attributes is specified by means of a linear secret sharing scheme. Some of the applications foreseen for this protocol lie in the context of mobile devices such a smartphones and tablets, which in a majority of instances are powered by an ARM pro- cessor supporting the NEON vector set of instructions. In this paper we present the design of a software cryptographic library that implements a 127-bit security level attribute-based encryption scheme over mobile devices equipped with a 1.4GHz Exynos 4 Cortex-A9 processor and a developing board that hosts a 1.7 GHz Exynos 5 Cortex-A15 processor. For the latter platform and taking advantage of the inherent parallelism of the NEON vector instructions, our library computes a single optimal pairing over a Barreto-Naehrig curve approximately 2 times faster than the best timings previously reported on ARM platforms at this level of security. Further, using a 6-attribute access formula our library is able to encrypt/decrypt a text/ciphertext in less than 4:49mS and 15:67mS, respectively. Key words: Atribute Based-Encryption, Optimal-Ate pairing, Barreto- Naehrig curves, ARM processor, pairing-based protocols, elliptic curve scalar multiplication. 1 Introduction It was long assumed that the task of computing a single bilinear pairing was rather expensive, so much so that when assessing the complexity of a given protocol, a designer could safely ignore the computational cost of all the other cryptographic components.
    [Show full text]
  • Arxiv:1910.06663V1 [Cs.PF] 15 Oct 2019
    AI Benchmark: All About Deep Learning on Smartphones in 2019 Andrey Ignatov Radu Timofte Andrei Kulik ETH Zurich ETH Zurich Google Research [email protected] [email protected] [email protected] Seungsoo Yang Ke Wang Felix Baum Max Wu Samsung, Inc. Huawei, Inc. Qualcomm, Inc. MediaTek, Inc. [email protected] [email protected] [email protected] [email protected] Lirong Xu Luc Van Gool∗ Unisoc, Inc. ETH Zurich [email protected] [email protected] Abstract compact models as they were running at best on devices with a single-core 600 MHz Arm CPU and 8-128 MB of The performance of mobile AI accelerators has been evolv- RAM. The situation changed after 2010, when mobile de- ing rapidly in the past two years, nearly doubling with each vices started to get multi-core processors, as well as power- new generation of SoCs. The current 4th generation of mo- ful GPUs, DSPs and NPUs, well suitable for machine and bile NPUs is already approaching the results of CUDA- deep learning tasks. At the same time, there was a fast de- compatible Nvidia graphics cards presented not long ago, velopment of the deep learning field, with numerous novel which together with the increased capabilities of mobile approaches and models that were achieving a fundamentally deep learning frameworks makes it possible to run com- new level of performance for many practical tasks, such as plex and deep AI models on mobile devices. In this pa- image classification, photo and speech processing, neural per, we evaluate the performance and compare the results of language understanding, etc.
    [Show full text]
  • Exynos 9110 with Eplp: First Generation of Samsung’S Fan-Out Panel Level Packaging (FO-PLP)
    REVERSE COSTING® – STRUCTURE, PROCESS & COST REPORT Samsung Exynos 9110 with ePLP: First Generation of Samsung’s Fan-Out Panel Level Packaging (FO-PLP) The first ultra-small multi-chip High Volume Manufacturing (HVM) FO-PLP device for consumer applications found in the Samsung Galaxy Watch. Until 2018, Samsung integrated its molded substrate on four redistribution Application Processor Engine (APE) in layers (RDL). standard Package-on-Package (PoP) packaging. Starting this year, with the Dedicated to smart watch application, the Exynos 9810 in the Samsung Galaxy S9, module has to be extremely power- Samsung has brought a new packaging efficient with a low z-height and good technology called iPoP. And following this thermal dissipation. Thanks to the FO-PLP new packaging integration, the company technology applied to this SiP, Samsung has also introduced a breakthrough could realize the smallest form factor, technology using Fan-Out Panel Level lowest power and highest performance Packaging (FO-PLP) in its latest smart- solution on the market. watch, the Samsung Galaxy Watch. The report includes a complete analysis of Dealing with the dimensions and footprint the SiP FO-PLP, featuring die analyses, constraints of the watch world, Samsung processes and package cross-sections. It has managed to bring together an APE also includes a comparison with Nepes’ and a Power Management Integrated Redistributed Chip Packaging (RCP) Circuit (PMIC) in the same package in technology applied in the NXP SCM- System-in-Package (SiP)-PoP configura- i.MX6Q, TSMC’s integrated Fan-Out (inFO) tion. technology applied to the Apple A11 and This complete tiny solution is integrated Shinko’s Molded Core embedded on the main board of the Samsung Galaxy Packaging (MCeP) technology applied to Watch.
    [Show full text]
  • Evolution of the Samsung Exynos CPU Microarchitecture
    Evolution of the Samsung Exynos CPU Microarchitecture Industrial Product Brian Grayson∗, Jeff Rupleyy, Gerald Zuraski Jr.z, Eric Quinnellx, Daniel A. Jimenez´ {, Tarun Nakrazz, Paul Kitchin∗∗, Ryan Hensleyyy, Edward Brekelbaum∗, Vikas Sinha∗∗, and Ankit Ghiyax [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], and [email protected] ∗Sifive yCentaur zIndependent Consultant xARM {Texas A&M University zzAMD ∗∗Nuvia yyGoodix Abstract—The Samsung Exynos family of cores are high- • Deep technical details within the microarchitecture. performance “big” processors developed at the Samsung Austin The remainder of this paper discusses several aspects of Research & Design Center (SARC) starting in late 2011. This paper discusses selected aspects of the microarchitecture of these front-end microarchitecture (including branch prediction mi- cores - specifically perceptron-based branch prediction, Spectre croarchitecture, security mitigations, and instruction supply) v2 security enhancements, micro-operation cache algorithms, as well as details on the memory subsystem, in particular prefetcher advancements, and memory latency optimizations. with regards to prefetching and DRAM latency optimization. Each micro-architecture item evolved over time, both as part The overall generational impact of these and other changes is of continuous yearly improvement, and in reaction to changing mobile workloads.
    [Show full text]
  • Samsung Galaxy S4's Jaw Dropping Official Specs
    Mar 20, 2013 07:00 GMT Samsung Galaxy S4's Jaw Dropping Official Specs Samsung has finally revealed the much awaited Samsung Galaxy S4 during the Samsung Unpacked Event. Spectators that were present during the said event can’t still get over how Samsung unveiled the new sg4 because they were more like given a production number rather than presenting the smartphone itself. However, the production – like launch is over and the thrill brought about the new technology Samsung Galaxy S4 offers has just started to kick in. Below are brief discussions of the specs that are featured in the new sg4 smartphone. As speculated, the Samsung Galaxy S4 comes in with a magnificent 5-inch 1080p Super AMOLED panel and has 441 ppi pixel density. Adding up to this better screen resolution is the integration of PenTile matrix screen allowing one to navigate through the screen while using gloves – any kind of gloves. Another speculation that appeared to be true is the 2GB RAM that may work on two different processors: 1.6 GHz Exynos Octa-core chip and the 1.9GHz quad-core Qualcomm. The different processors will work based on the user’s region. Moreover, sg4 will be running under Android 4.2.2 operating system. As compared to the Samsung Galaxy S3, the new Galaxy S series is way smaller, lighter and thinner with 136.6x69.8x7.9 mm dimensions and a weight of 130 grams only. A removable 2,600mAh battery is also another plus for the sg4. Samsung Galaxy S4 also features WiFi 802.11ac support, Bluetooth 4.0, a/b/g/n, IR blaster, WatchON service, NFC and use of infrared as a remote control.
    [Show full text]