Exynos 9110 with Eplp: First Generation of Samsung’S Fan-Out Panel Level Packaging (FO-PLP)

Total Page:16

File Type:pdf, Size:1020Kb

Exynos 9110 with Eplp: First Generation of Samsung’S Fan-Out Panel Level Packaging (FO-PLP) REVERSE COSTING® – STRUCTURE, PROCESS & COST REPORT Samsung Exynos 9110 with ePLP: First Generation of Samsung’s Fan-Out Panel Level Packaging (FO-PLP) The first ultra-small multi-chip High Volume Manufacturing (HVM) FO-PLP device for consumer applications found in the Samsung Galaxy Watch. Until 2018, Samsung integrated its molded substrate on four redistribution Application Processor Engine (APE) in layers (RDL). standard Package-on-Package (PoP) packaging. Starting this year, with the Dedicated to smart watch application, the Exynos 9810 in the Samsung Galaxy S9, module has to be extremely power- Samsung has brought a new packaging efficient with a low z-height and good technology called iPoP. And following this thermal dissipation. Thanks to the FO-PLP new packaging integration, the company technology applied to this SiP, Samsung has also introduced a breakthrough could realize the smallest form factor, technology using Fan-Out Panel Level lowest power and highest performance Packaging (FO-PLP) in its latest smart- solution on the market. watch, the Samsung Galaxy Watch. The report includes a complete analysis of Dealing with the dimensions and footprint the SiP FO-PLP, featuring die analyses, constraints of the watch world, Samsung processes and package cross-sections. It has managed to bring together an APE also includes a comparison with Nepes’ and a Power Management Integrated Redistributed Chip Packaging (RCP) Circuit (PMIC) in the same package in technology applied in the NXP SCM- System-in-Package (SiP)-PoP configura- i.MX6Q, TSMC’s integrated Fan-Out (inFO) tion. technology applied to the Apple A11 and This complete tiny solution is integrated Shinko’s Molded Core embedded on the main board of the Samsung Galaxy Packaging (MCeP) technology applied to Watch. The module includes the Exynos the Qualcomm Snapdragon 845. Title: Samsung 9110 application processor, and Exynos 9110 FO- Samsung’s Power management system all PLP SiP in a single package smaller than 80 mm². COMPLETE TEARDOWN WITH This is the second multi-chip Fan-Out • Detailed photos and cross-sections Pages: 127 device we have found on the market, but the first for a consumer product, which • Precise measurements Date: November could be a key milestone for Fan-Out SiP • Material analysis 2018 technology. • Manufacturing process flow Format: The system uses advanced panel-level • Supply chain evaluation PDF & Excel file packaging developed by Samsung-SEMCO. It has innovative interconnections, • Manufacturing cost analysis Price: enabling a Package-on-Package (PoP) • Estimated sales price EUR 3,990 configuration with Samsung’s in-house DRAM memory chip. The interconnections • Comparison with Nepes’ FO-WLP SiP are made with an embedded structure and TSMC’s inFO technology along with the PMIC and the APE in a IC – LED – RF – MEMS – IMAGING – PACKAGING – SYSTEM – POWER - DISPLAY SAMSUNG EXYNOS 9110 WITH EPLP: FIRST GENERATION OF SAMSUNG’S FO-PLP TABLE OF CONTENTS Overview/Introduction Manufacturing Process Flow Samsung Company Profile • Die Fabrication Unit: APE, PMIC Samsung Galaxy Watch Teardown • Packaging Fabrication Unit Physical Analysis • FO-PLP SiP Package Process Flow • Physical Analysis Methodology Cost Analysis • FO-PLP SiP Packaging analysis • Overview of the Cost Analysis Package view and dimensions • Supply Chain Description Package x-ray view • Yield Hypotheses Package opening: RDL, line/space width • Die Cost Analyses: APE, PMIC Package cross-section: RDL, bumps, Front-end cost Fan-Out substrate Wafers and dies costs • Physical Analysis Comparison • FO-PLP SiP Package Cost Analysis SiP vs discrete FO-PLP SiP panel cost TSMC’s inFO FO-PLP SiP cost by process NEPES’ RCP SiP step • Die Analysis: APE, PMIC • Final Test Cost Die view and dimensions • Component Cost Die cross-section Estimated Price Analysis Die process AUTHORS Dr Stéphane Elisabeth has joined Yvon Le Goff has joined System System Plus Consulting's team in Plus Consulting in 2011 to setup its 2016. He has a deep knowledge laboratory. He previously worked of Materials characterizations for 25 years at Atmel Nantes and Electronics systems. Technological Analysis Laboratory He holds an Engineering Degree as fab support in physical analysis, in Electronics and Numerical and for three years at Hirex Technology, and a PhD in Engineering in Toulouse, in a Materials for Microelectronics. destructive physical analysis lab. RELATED REPORTS NXP SCM-i.MX6 Quad High Second Generation of TSMC’s Samsung’s Galaxy S9 Plus Density Fan-Out Wafer-Level inFO Packaging for the Apple Processor Packages: System-in-Package A11 found in the iPhone X Samsung’s iPoP vs. The first ultra-small multi-die low The latest Apple application Qualcomm/Shinko MCeP power module with boot processor engine : from the Comparison Samsung Galaxy S9 memory and power mgmt stacked board to the A11, and processor packages: Samsung integrated in a PoP compatible reverse costing of TSMC’s Exynos 9810 with new TMV PoP device for the IoT. updated inFO packaging. vs. Qualcomm Snapdragon 845 June 2017 - EUR 3,490* February 2018 - EUR 3,490* with MCeP Packaging. June 2018 - EUR 3,490* REVERSE COSTING® – STRUCTURE, PROCESS & COST REPORT COSTING TOOLS Parametric IC MEMS Power Display PCB Costing Tools Price+ Price+ Price+ Price+ Price+ Process-Based MEMS Power LED 3D Package Costing Tools CoSim+ CoSim+ CoSim+ SYSCost+ CoSim+ Our analysis is performed with our costing tools 3D Packaging CoSim+ and IC Price+. System Plus Consulting offers powerful costing tools to evaluate the production cost and selling price from single chip to complex structures. 3D Packaging CoSim+ IC Price+ Cost simulation tool to evaluate the cost of any The tool performs the necessary cost simulation of Packaging process: Wafer-level packaging, TSV, 3D any Integrated Circuit: ASICs, microcontrollers, integration… memories, DSP, smartpower… ABOUT SYSTEM PLUS CONSULTING System Plus Consulting is specialized WHAT IS A REVERSE COSTING®? in the cost analysis of electronics from semiconductor devices to Reverse Costing® is the process of disassembling a device (or a electronic systems. system) in order to identify its technology and calculate its A complete range of services and manufacturing cost, using in-house models and tools. costing tools to provide in-depth production cost studies and to estimate the objective selling price of a product is available. Our services: • STRUCTURE & PROCESS ANALYSES CONTACTS • CUSTOM ANALYSES Headquarters America Sales Office Asia Sales Office • COSTING SERVICES 22, bd Benoni Goullin Steve LAFERRIERE Takashi ONOZAWA • COSTING TOOLS Nantes Biotech Western USA Japan & Rest of Asia • TRAININGS 44200 Nantes +1 310-600-8267 +81 3 4405 9204 France [email protected] [email protected] +33 2 40 18 09 16 [email protected] Troy BLANCHETTE Mavis WANG www.systemplus.fr Eastern USA Greater China [email protected] Europe Sales Office +1 704-859-0453 +886 979 336 809 Lizzie LEVENEZ [email protected] [email protected] Frankfurt am Main Germany +49 151 23 54 41 82 [email protected] SAMSUNG EXYNOS 9110 WITH EPLP: FIRST GENERATION OF SAMSUNG’S FO-PLP REVERSE COSTING® – STRUCTURE, PROCESS & COST REPORT ORDER FORM Please process my order for “Samsung Exynos 9110 with ePLP: First Generation of Samsung’s Fan-Out Panel Level Packaging (FO-PLP)” Return order by: Reverse Costing® – Structure, Process & Cost Report FAX: +33 2 53 55 10 59 Ref: SP18444 MAIL: SYSTEM PLUS CONSULTING 22, bd Benoni Goullin Full Structure, Process & Cost Report : EUR 3,990* Nantes Biotech Annual Subscription offers possible from 3 reports, including this 44200 Nantes – France report as the first of the year. Contact us for more information. EMAIL: [email protected] *For price in dollars please use the day’s SHIP TO exchange rate *All reports are delivered electronically in Name (Mr/Ms/Dr/Pr): ............................................................. pdf format Job Title: ……............................................................................. *For French customer, add 20 % for VAT *Our prices are subject to change. Please Company: …............................................................................. check our new releases and price Address: ……............................................................................. changes on www.systemplus.fr. The City: ………………………………… State: .......................................... present document is valid 6 months after its publishing date: November 2018 Postcode/Zip: .......................................................................... Country: ……............................................................................ VAT ID Number for EU members: .......................................... ANNUAL SUBSCRIPTIONS Tel: ………………......................................................................... Email: ..................................................................................... Each year System Plus Consulting Date: ...................................................................................... releases a comprehensive collection Signature: .............................................................................. of new reverse engineering and costing analyses in various domains. BILLING CONTACT You can choose to buy over 12 First Name : ............................................................................ months a set of 3, 4, 5, 7, 10 or 15 Reverse Costing® reports. Last Name: ……....................................................................... Up to 47%
Recommended publications
  • An Emerging Architecture in Smart Phones
    International Journal of Electronic Engineering and Computer Science Vol. 3, No. 2, 2018, pp. 29-38 http://www.aiscience.org/journal/ijeecs ARM Processor Architecture: An Emerging Architecture in Smart Phones Naseer Ahmad, Muhammad Waqas Boota * Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan Abstract ARM is a 32-bit RISC processor architecture. It is develop and licenses by British company ARM holdings. ARM holding does not manufacture and sell the CPU devices. ARM holding only licenses the processor architecture to interested parties. There are two main types of licences implementation licenses and architecture licenses. ARM processors have a unique combination of feature such as ARM core is very simple as compare to general purpose processors. ARM chip has several peripheral controller, a digital signal processor and ARM core. ARM processor consumes less power but provide the high performance. Now a day, ARM Cortex series is very popular in Smartphone devices. We will also see the important characteristics of cortex series. We discuss the ARM processor and system on a chip (SOC) which includes the Qualcomm, Snapdragon, nVidia Tegra, and Apple system on chips. In this paper, we discuss the features of ARM processor and Intel atom processor and see which processor is best. Finally, we will discuss the future of ARM processor in Smartphone devices. Keywords RISC, ISA, ARM Core, System on a Chip (SoC) Received: May 6, 2018 / Accepted: June 15, 2018 / Published online: July 26, 2018 @ 2018 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license.
    [Show full text]
  • SECOND AMENDED COMPLAINT 3:14-Cv-582-JD
    Case 3:14-cv-00582-JD Document 51 Filed 11/10/14 Page 1 of 19 1 EDUARDO G. ROY (Bar No. 146316) DANIEL C. QUINTERO (Bar No. 196492) 2 JOHN R. HURLEY (Bar No. 203641) PROMETHEUS PARTNERS L.L.P. 3 220 Montgomery Street Suite 1094 San Francisco, CA 94104 4 Telephone: 415.527.0255 5 Attorneys for Plaintiff 6 DANIEL NORCIA 7 UNITED STATES DISTIRCT COURT 8 NORTHERN DISTRICT OF CALIFORNIA 9 DANIEL NORCIA, on his own behalf and on Case No.: 3:14-cv-582-JD 10 behalf of all others similarly situated, SECOND AMENDED CLASS ACTION 11 Plaintiffs, COMPLAINT FOR: 12 v. 1. VIOLATION OF CALIFORNIA CONSUMERS LEGAL REMEDIES 13 SAMSUNG TELECOMMUNICATIONS ACT, CIVIL CODE §1750, et seq. AMERICA, LLC, a New York Corporation, and 2. UNLAWFUL AND UNFAIR 14 SAMSUNG ELECTRONICS AMERICA, INC., BUSINESS PRACTICES, a New Jersey Corporation, CALIFORNIA BUS. & PROF. CODE 15 §17200, et seq. Defendants. 3. FALSE ADVERTISING, 16 CALIFORNIA BUS. & PROF. CODE §17500, et seq. 17 4. FRAUD 18 JURY TRIAL DEMANDED 19 20 21 22 23 24 25 26 27 28 1 SECOND AMENDED COMPLAINT 3:14-cv-582-JD Case 3:14-cv-00582-JD Document 51 Filed 11/10/14 Page 2 of 19 1 Plaintiff DANIEL NORCIA, having not previously amended as a matter of course pursuant to 2 Fed.R.Civ.P. 15(a)(1)(B), hereby exercises that right by amending within 21 days of service of 3 Defendants’ Motion to Dismiss filed October 20, 2014 (ECF 45). 4 Individually and on behalf of all others similarly situated, Daniel Norcia complains and alleges, 5 by and through his attorneys, upon personal knowledge and information and belief, as follows: 6 NATURE OF THE ACTION 7 1.
    [Show full text]
  • Three Ways of Seeing Improved Health and Productivity
    Three ways of seeing Key Features Galaxy Watch3 improved health and The Galaxy Watch3 is a premium solution that’s B2B-ready, with days of power and a rotating bezel that allows easy productivity. navigation even while wearing gloves. • Onboard GPS, motion, activity and heart-rate sensors • Battery lasts up to 56 hours (45mm model)2 • Carrier-agnostic LTE3 Take a look at the Samsung Galaxy • Tested to MIL-STD-810G standards,4 IP685, rated at 5 ATM Watch3, Galaxy Watch Active2, and Galaxy Watch Active. Galaxy Watch Active2 The premium Galaxy Watch3, the versatile Galaxy Watch Active, With a focus on wellness, the Galaxy Watch Active2 features and the health-oriented Galaxy Watch Active2 offer greater a digital touch bezel plus advanced sensors that enable health and productivity to virtually any enterprise. They’re more accurate blood pressure tracking, ECG tracking, 1 protected by Samsung Knox . And they’re all customizable to heart rate tracking, alerts, and fall detection. incorporate your company’s branding. Be more nimble. Be • Advanced sensors include heart rate tracker, ECG sensor, and 32G high more productive. Samsung Galaxy watches make it possible. sampling rate accelerometer and gyro • Battery lasts up to 60 hours (44mm model)2 • Carrier-agnostic LTE3 • Tested to MIL-STD-810G standards,4 IP685, rated at 5 ATM Galaxy Watch Active The Galaxy Watch Active offers secure communications in fast-paced environments, and supports corporate efficiency, productivity, health, and safety initiatives. • Advanced sleep tracking helps improve stress levels and sleep patterns • Battery lasts up to 45 hours2 • Tested to MIL-STD-810G standards,4 IP685, rated at 5 ATM Contact Us: samsung.com/wearablesforbiz Galaxy Watch3 Galaxy Watch Active2 Galaxy Watch Active “1.77”” x 1.82”” x 0.44”” (45.0 x 46.2 x 11.1 mm) 1.73" x 1.73" x 0.43" (44 x 44 x 10.9mm) Dimensions 1.56” x 1.56” x 0.41” (39.5 x 39.5 x 10.5mm) 1.61”” x 1.67”” x 0.44”” (41.0 x 42.5 x 11.3 mm)” 1.57" x 1.73" x 0.43" (40 x 40 x 10.9mm) Physical Weight 1.90 oz (53.8 g) /1.70 oz (48.2g) 1.7 oz.
    [Show full text]
  • Survey and Benchmarking of Machine Learning Accelerators
    1 Survey and Benchmarking of Machine Learning Accelerators Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy Kepner MIT Lincoln Laboratory Supercomputing Center Lexington, MA, USA freuther,pmichaleas,michael.jones,vijayg,sid,[email protected] Abstract—Advances in multicore processors and accelerators components play a major role in the success or failure of an have opened the flood gates to greater exploration and application AI system. of machine learning techniques to a variety of applications. These advances, along with breakdowns of several trends including Moore’s Law, have prompted an explosion of processors and accelerators that promise even greater computational and ma- chine learning capabilities. These processors and accelerators are coming in many forms, from CPUs and GPUs to ASICs, FPGAs, and dataflow accelerators. This paper surveys the current state of these processors and accelerators that have been publicly announced with performance and power consumption numbers. The performance and power values are plotted on a scatter graph and a number of dimensions and observations from the trends on this plot are discussed and analyzed. For instance, there are interesting trends in the plot regarding power consumption, numerical precision, and inference versus training. We then select and benchmark two commercially- available low size, weight, and power (SWaP) accelerators as these processors are the most interesting for embedded and Fig. 1. Canonical AI architecture consists of sensors, data conditioning, mobile machine learning inference applications that are most algorithms, modern computing, robust AI, human-machine teaming, and users (missions). Each step is critical in developing end-to-end AI applications and applicable to the DoD and other SWaP constrained users.
    [Show full text]
  • 2016 Comparison of Application Processor (AP) Packaging 1 Table of Contents
    Application Processor for Smartphone Packaging Technology & Cost Review Advanced Packaging report by Stéphane ELISABETH November 2016 21 rue la Noue Bras de Fer 44200 NANTES - FRANCE +33 2 40 18 09 16 [email protected] www.systemplus.fr ©2016 System Plus Consulting | 2016 Comparison of Application Processor (AP) packaging 1 Table of Contents Overview / Introduction 3 Manufacturing Process Flow 73 o Executive Summary o Global Overview o AP I/O count & Footprint o Package Fabrication Unit o AP I/O count & L/S width Cost Analysis 76 o Reverse Costing Methodology o Synthesis of the cost analysis Company Profile 10 o Main Steps of Economic Analysis o Apple, Huawei, Samsung, Qualcomm o Yields Explanation & Hypotheses o Apple, Huawei, Samsung, Qualcomm AP history o Die cost 81 o Apple, Huawei, Samsung, Qualcomm Supply Chain History Front-End Cost o iPhone 7 Plus, Huawei P9, Samsung Galaxy S7 Teardown Wafer & Die Cost o PoP Packaging Technology o Package Manufacturing Cost 83 Physical Analysis 32 A10 Package Cost Breakdown o Synthesis of the Physical Analysis Kirin 955 Package Cost Breakdown o Physical Analysis Methodology Exynos 8 Package Cost Breakdown o A10, Kirin 955, Exynos 8, Snapdragon 820 Package 34 Snapdragon 820 Package Cost Breakdown Package Views & Dimensions o Component Cost 88 Wafer/Panel & Component Cost Package Opening Component Cost Breakdown Package Opening Comparison o PoP Cross-Section 47 Company services 91 Package Details Cross-Section Package Cross-Section Comparison o Die & Land-Side Decoupling Capacitor Comparison 66 Die View & Dimensions LSC Capacitor View & Dimensions LSC Capacitor Footprint Embedded LSC Capacitor Cross-Section Soldered LSC Capacitor Cross-Section o Summary of the physical Data 72 ©2016 System Plus Consulting | 2016 Comparison of Application Processor (AP) packaging 2 Executive Summary Overview / Introduction o Executive Summary • Located under the DRAM chip on the main board, the application processors (AP) are packaged using PoP o Reverse Costing Methodology technology.
    [Show full text]
  • Android Vs Ios
    Android vs iOS By Mohammad Daraghmeh Jack DeGonzaque AGENDA ● Android ○ History ● Samsung S6 ○ System Architecture ○ Processor ○ Performance Metrics ● iOS ○ History ● iPhone 6 ○ System Architecture ○ Processor ○ Performance Metrics ● Samsung S6 vs iPhone 6 Android Android History ● The Android OS was created mainly by three amazing people Andy Rubin, Rich Miner, Nick Sears, and Chris White. ○ Initial development for the OS was to create an operating system for digital cameras and PC integration. ○ After gauging the size of the market for such a product, Rubin and his colleagues decided to target the booming smartphone market. ● In 2005, Google also wanted to venture into the smartphone market and did so by acquiring Android Inc. ○ The primary directive was to develop technologies that are developed and distributed at a significantly lower cost to make it more accessible. ○ In 2008, the first Android running smartphone, the HTC Dream, was released. Android History (Cont.) ● The Android operating system has become one of the most popular operating systems. ○ According to research firm, called Gartner, more than a billion Android devices were sold in 2014, which is roughly five times more than Apple iOS devices sold and three times more Windows machines sold. ● Their attribute to success stems from the fact that Google does not charge for Android, and that most phone manufacturers are making cost effective phones, which results in affordable smartphones and internet services at low costs for consumers to enjoy. SAMSUNG GALAXY S6 System Architecture ● Samsung S6 uses the Exynos 7420 processor, which is developed by Samsung as well. ○ The Exynos 7420 is a 78 mm^2 SoC comprised of 8 cores connected to two L2 cache instances.
    [Show full text]
  • Digital Forensic Analysis of Smart Watches
    TALLINN UNIVERSITY OF TECHNOLOGY School of Information Technologies Kehinde Omotola Adebayo (174449IVSB) DIGITAL FORENSIC ANALYSIS OF SMART WATCHES Bachelor’s Thesis Supervisor: Hayretdin Bahsi Research Professor Tallinn 2020 TALLINNA TEHNIKAÜLIKOOL Infotehnoloogia teaduskond Kehinde Omotola Adebayo (174449IVSB) NUTIKELLADE DIGITAALKRIMINALISTIKA Bachelor’s Thesis Juhendaja: Hayretdin Bahsi Research Professor Tallinn 2020 Author’s declaration of originality I hereby certify that I am the sole author of this thesis. All the used materials, references to the literature and the work of others have been referred to. This thesis has not been presented for examination anywhere else. Author: Kehinde Omotola Adebayo 30.04.2020 3 Abstract As wearable technology is becoming increasingly popular amongst consumers and projected to continue to increase in popularity they become probable significant source of digital evidence. One category of wearable technology is smart watches and they provide capabilities to receive instant messaging, SMS, email notifications, answering of calls, internet browsing, fitness tracking etc. which can be a great source of digital artefacts. The aim of this thesis is to analyze Samsung Gear S3 Frontier and Fitbit Versa Smartwatches, after which we present findings alongside the limitations encountered. Our result shows that we can recover significant artefacts from the Samsung Gear S3 Frontier, also more data can be recovered from Samsung Gear S3 Frontier than the accompanying mobile phone. We recovered significant data that can serve as digital evidence, we also provided a mapping that would enable investigators and forensic examiners work faster as they are shown where to look for information in the course of an investigation. We also presented the result of investigating Fitbit Versa significant artefacts like Heart rate, sleep, exercise and personal data like age, weight and height of the user of the device, this shows this device contains artefacts that might prove useful for forensic investigators and examiners.
    [Show full text]
  • NEON Implementation of an Attribute-Based Encryption Scheme
    NEON implementation of an attribute-based encryption scheme Ana Helena S´anchez, Francisco Rodr´ıguez-Henr´ıquez? Computer Science Department, CINVESTAV-IPN, M´exico [email protected], [email protected] Abstract. In 2011, Waters presented a ciphertext-policy attribute-based encryption protocol that uses bilinear pairings to provide control access mechanisms, where the set of user's attributes is specified by means of a linear secret sharing scheme. Some of the applications foreseen for this protocol lie in the context of mobile devices such a smartphones and tablets, which in a majority of instances are powered by an ARM pro- cessor supporting the NEON vector set of instructions. In this paper we present the design of a software cryptographic library that implements a 127-bit security level attribute-based encryption scheme over mobile devices equipped with a 1.4GHz Exynos 4 Cortex-A9 processor and a developing board that hosts a 1.7 GHz Exynos 5 Cortex-A15 processor. For the latter platform and taking advantage of the inherent parallelism of the NEON vector instructions, our library computes a single optimal pairing over a Barreto-Naehrig curve approximately 2 times faster than the best timings previously reported on ARM platforms at this level of security. Further, using a 6-attribute access formula our library is able to encrypt/decrypt a text/ciphertext in less than 4:49mS and 15:67mS, respectively. Key words: Atribute Based-Encryption, Optimal-Ate pairing, Barreto- Naehrig curves, ARM processor, pairing-based protocols, elliptic curve scalar multiplication. 1 Introduction It was long assumed that the task of computing a single bilinear pairing was rather expensive, so much so that when assessing the complexity of a given protocol, a designer could safely ignore the computational cost of all the other cryptographic components.
    [Show full text]
  • Arxiv:1910.06663V1 [Cs.PF] 15 Oct 2019
    AI Benchmark: All About Deep Learning on Smartphones in 2019 Andrey Ignatov Radu Timofte Andrei Kulik ETH Zurich ETH Zurich Google Research [email protected] [email protected] [email protected] Seungsoo Yang Ke Wang Felix Baum Max Wu Samsung, Inc. Huawei, Inc. Qualcomm, Inc. MediaTek, Inc. [email protected] [email protected] [email protected] [email protected] Lirong Xu Luc Van Gool∗ Unisoc, Inc. ETH Zurich [email protected] [email protected] Abstract compact models as they were running at best on devices with a single-core 600 MHz Arm CPU and 8-128 MB of The performance of mobile AI accelerators has been evolv- RAM. The situation changed after 2010, when mobile de- ing rapidly in the past two years, nearly doubling with each vices started to get multi-core processors, as well as power- new generation of SoCs. The current 4th generation of mo- ful GPUs, DSPs and NPUs, well suitable for machine and bile NPUs is already approaching the results of CUDA- deep learning tasks. At the same time, there was a fast de- compatible Nvidia graphics cards presented not long ago, velopment of the deep learning field, with numerous novel which together with the increased capabilities of mobile approaches and models that were achieving a fundamentally deep learning frameworks makes it possible to run com- new level of performance for many practical tasks, such as plex and deep AI models on mobile devices. In this pa- image classification, photo and speech processing, neural per, we evaluate the performance and compare the results of language understanding, etc.
    [Show full text]
  • Evolution of the Samsung Exynos CPU Microarchitecture
    Evolution of the Samsung Exynos CPU Microarchitecture Industrial Product Brian Grayson∗, Jeff Rupleyy, Gerald Zuraski Jr.z, Eric Quinnellx, Daniel A. Jimenez´ {, Tarun Nakrazz, Paul Kitchin∗∗, Ryan Hensleyyy, Edward Brekelbaum∗, Vikas Sinha∗∗, and Ankit Ghiyax [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], and [email protected] ∗Sifive yCentaur zIndependent Consultant xARM {Texas A&M University zzAMD ∗∗Nuvia yyGoodix Abstract—The Samsung Exynos family of cores are high- • Deep technical details within the microarchitecture. performance “big” processors developed at the Samsung Austin The remainder of this paper discusses several aspects of Research & Design Center (SARC) starting in late 2011. This paper discusses selected aspects of the microarchitecture of these front-end microarchitecture (including branch prediction mi- cores - specifically perceptron-based branch prediction, Spectre croarchitecture, security mitigations, and instruction supply) v2 security enhancements, micro-operation cache algorithms, as well as details on the memory subsystem, in particular prefetcher advancements, and memory latency optimizations. with regards to prefetching and DRAM latency optimization. Each micro-architecture item evolved over time, both as part The overall generational impact of these and other changes is of continuous yearly improvement, and in reaction to changing mobile workloads.
    [Show full text]
  • Samsung Galaxy S4's Jaw Dropping Official Specs
    Mar 20, 2013 07:00 GMT Samsung Galaxy S4's Jaw Dropping Official Specs Samsung has finally revealed the much awaited Samsung Galaxy S4 during the Samsung Unpacked Event. Spectators that were present during the said event can’t still get over how Samsung unveiled the new sg4 because they were more like given a production number rather than presenting the smartphone itself. However, the production – like launch is over and the thrill brought about the new technology Samsung Galaxy S4 offers has just started to kick in. Below are brief discussions of the specs that are featured in the new sg4 smartphone. As speculated, the Samsung Galaxy S4 comes in with a magnificent 5-inch 1080p Super AMOLED panel and has 441 ppi pixel density. Adding up to this better screen resolution is the integration of PenTile matrix screen allowing one to navigate through the screen while using gloves – any kind of gloves. Another speculation that appeared to be true is the 2GB RAM that may work on two different processors: 1.6 GHz Exynos Octa-core chip and the 1.9GHz quad-core Qualcomm. The different processors will work based on the user’s region. Moreover, sg4 will be running under Android 4.2.2 operating system. As compared to the Samsung Galaxy S3, the new Galaxy S series is way smaller, lighter and thinner with 136.6x69.8x7.9 mm dimensions and a weight of 130 grams only. A removable 2,600mAh battery is also another plus for the sg4. Samsung Galaxy S4 also features WiFi 802.11ac support, Bluetooth 4.0, a/b/g/n, IR blaster, WatchON service, NFC and use of infrared as a remote control.
    [Show full text]
  • NVIDIA Tegra X1 Targets Neural Net Image Processing Performance
    NVIDIA Tegra X1 Targets Neural Net Image Processing Performance Enables Practical Real­Time Neural Network Based Image Recognition Take­Away NVIDIA Tegra X1 (TX1) based client­side neural network acceleration is a strong complement to server­side deep learning using NVIDIA Kepler based Tegra server accelerators. In the software world, “function overloading” refers to using one procedure name to invoke different behavior depending on the context of the procedure call. NVIDIA borrowed that concept for their graphics processing pipelines. They essentially are “overloading” their graphics architecture to be a capable neural network processing architecture. NVIDIA reuses every portion of their TX1 32­bit floating point pipelines to run two 16­bit pipelines side­by­side, thus doubling numeric throughput at half the precision. Running two 16­bit instructions in the same pipeline as one 32­bit instruction also roughly halves the power consumed per instruction. For applications that do not require 32­bit precision, this arrangement is much more power efficient. In addition to creating half­width 16­bit floating point graphics pipelines, NVIDIA implemented DSP­like “fused” arithmetic operations in these pipelines. Most notably, the classic FMA instruction (fused multiply­add) enables multiplies and adds to be pipelined into effectively a single­cycle operation when done in bulk. These operations further accelerate neural network recognition functions. Couple these new advances with the Tegra X1’s I/O offload processors, and you have a system­on­chip (SoC) optimized for recognizing a useful number of features in a real­ time 360° high­resolution visual sensory environment. It would take many years for the industry to pick up an SoC like the TX1 and figure out optimal use cases on its own.
    [Show full text]