Vinylogous Sulfonamides in the Total Synthesis of Indolizidine Alkaloids from Amphibians and Ants

Total Page:16

File Type:pdf, Size:1020Kb

Vinylogous Sulfonamides in the Total Synthesis of Indolizidine Alkaloids from Amphibians and Ants VINYLOGOUS SULFONAMIDES IN THE TOTAL SYNTHESIS OF INDOLIZIDINE ALKALOIDS FROM AMPHIBIANS AND ANTS Susan Winks A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg in fulfilment of the requirements for the Degree of Doctor of Philosophy. January 2010 i Declaration I declare that the work presented in this thesis was carried out exclusively by me under the supervision of Professor J. P. Michael and Professor C. B. de Koning. It is being submitted for the degree of Doctor of Philosophy at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other university. ______________________ 15th day of January 2010. ii Abstract This thesis describes the application of vinylogous sulfonamides in a generalised synthetic protocol for the synthesis of indolizidine alkaloids, viz. monomorine I, 5-epi-monomorine I and the key precursor to indolizidine 209D. Chapter one puts the work into perspective with a review of the different classes of amphibian alkaloids, with specific emphasis on previous syntheses of indolizidine 209D and monomorine I. This is followed by a brief overview of previous synthetic strategies employed for alkaloid synthesis in the Wits laboratories and an introduction to vinylogous sulfonamides. Chapter 2 concludes with our aims and proposed strategies for the project. The attempted total synthesis of (−)-indolizidine 209D is described in Chapter 3. The initial three steps to prepare t-butyl (3R)-3-{benzyl[(1R)-1- phenylethyl]amino}nonanoate (274) proceeded well, but the fourth step, deprotecting the nitrogen, gave inconsistent results and hindered the completion of the synthesis. The free amine that we succeeded in isolating, t- butyl (3R)-3-aminononanoate (275), reacted with chlorobutyryl chloride to give us lactam, t-butyl (3R)-3-(2-oxo-1-pyrrolidinyl)nonanoate (277) in addition to the unusual by-product N-(cyclopropanecarbonyl)cyclopropanecarboxamide (327). From the lactam (277) we successfully prepared the key intermediate, vinylogous sulfonamide t-butyl (3R)-3-{2-[(E)-(p-toluenesulfonyl)methylene-1- pyrrolidinyl} nonanoate (280). The vinylogous sulfonamide effectively facilitated a high-yielding cyclisation reaction to produce the bicyclic hexahydroindolizine (282). Unfortunately the failing debenzylation reaction prevented the completion of the synthesis as no more material was available. The total syntheses of (±)-monomorine I and (±)-5-epi-monomorine I are described in Chapter 4. Notable intermediates include the enamide, ethyl 3- [(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293), which we prepared from a condensation reaction between the ketoester (292) and the racemic amine (291). The diastereoselective reduction of the enamide (293) was optimised to give ethyl 3-(2-butyl-5-oxo-1-pyrrolidinyl)butanoate (294) as a 1:5 mixture of iii isomers. After thionation, the two isomers were separable, (295A) was the intermediate for (±)-monomorine I and (295B) the intermediate for (±)-5-epi- monomorine I. Following the formation of the vinylogous sulfonamide, the key cyclisation step proceeded well for both the diastereomers to give the hexahydroindolizines (298A) and (298B). We obtained crystal structures of both hexahydroindolizines and were able to confirm the relative stereochemistry of the isomers. Defunctionalisation of the vinylogous sulfonamide included a stereoselective platinum-catalysed reduction of the alkene, followed by desulfonylation. Conditions were optimized and the synthesis was completed to give (±)-monomorine I in an overall yield of 3% and (±)-5-epi-monomorine I in an overall yield of 7%. Approaches towards the enantioselective synthesis were explored but, unfortunately, we experienced difficulties with the debenzylation reaction required to produce the chiral amine (291). In the process of trying to circumvent this problem a side route involving monobenzylated analogues was investigated. While the side route produced some interesting products, we were unable to direct the synthetic path back towards enantiopure monomorine I. The feasibility of extending this methodology to more complex alkaloids was briefly investigated. Initial experimentation involving allylated analogues of the ketoester (292) was investigated and was found to be incompatible with our reaction conditions. iv In memory of my grandmother Edna Robins Sept 1927 – Aug 2009 v Personal acknowledgements Firstly, Professor J. P. Michael, thank you for giving me the freedom to explore organic chemistry and for nurturing my love of the subject. You were always there providing me with complete support, guidance and confidence. In addition, I would like to thank my second supervisor, Professor C. B. de Koning, for many useful discussions and reminding me that there is more to life than chemistry. I would also like to thank the other organic chemistry members of staff, Professor W. A. L. van Otterlo and Dr. S. Pelly for support and encouragement. Richard Mampa, thank you for your endless patience and assistance with my many, many NMR samples, and thank you for taking the time to train and guide me in the use of the 300 MHz instrument. I would like to express my sincere gratitude to Manuel Fernandes for constantly encouraging me to grow crystals, even when the majority of my products stubbornly remained as oils, and also, of course, for doing the crystallographic analyses when I did succeed. Thank you also to Andreas Lemmerer for crystallographic analyses. A big thank you to Chris Perry, who is responsible for all the MD/SA results, and many fruitful discussions on stereoselectivity. Thank you also for proof- reading my thesis and supporting me through-out this project. I would like to thank Tommy van der Merwe, Martin Brits and Marelize Ferreira for running low and high resolution mass spectrometry. The Organic Group, past and present, thank you for all the fun and encouragement, especially to my lab mates, mentors and friends; Garreth, Sameshnee, Siyanda and Jeremy. vi Acknowledgements for funding Without all the funding I have received, this PhD would not have been possible. I would like to express my sincere appreciation to the Andrew Mellon Mentorship Programme for their substantial financial contribution, the University of the Witwatersrand for the Post Graduate Merit Award and the School of Chemistry for the Teaching Assistantship bursaries; I thoroughly enjoyed the classes I taught and the experience I gained from lecturing was invaluable. The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the NRF. vii CONTENTS Chapter 1: An overview of amphibian alkaloids, and reported syntheses of indolizidine 209D and monomorine I..........................................................1 1.1 Definition, occurrence and classification of alkaloids....................................1 1.2 Indolizidine alkaloids in nature......................................................................4 1.3 Major classes of “amphibian” alkaloids..........................................................7 1.3.1 Steroidal alkaloids............................................................................7 1.3.2 Monocyclic alkaloids........................................................................8 1.3.3 Bicyclic alkaloids..............................................................................9 1.3.4 Tricyclic alkaloids...........................................................................15 1.3.5 Pyridine alkaloids...........................................................................17 1.3.6 Indole alkaloids..............................................................................17 1.4 Indolizidines of interest in this project..........................................................18 1.4.1 Indolizidine 209D...........................................................................18 1.4.2 Monomorine I.................................................................................27 1.4.3 Tricyclic alkaloids...........................................................................52 Chapter 2: Background, aims and scope of this project.............................56 2.1 The “Wits Approach” to indolizidine alkaloids .............................................56 2.1.1 Introduction to the “Wits Approach”...............................................56 2.1.2 Preparation of enaminones............................................................57 2.1.3 Enaminones in action at Wits........................................................59 2.2 Vinylogous sulfonamides.............................................................................67 2.2.1 Preparation of vinylogous sulfonamides........................................67 2.2.2 Uses of vinylogous sulfonamides..................................................68 2.3 Aims and proposed strategies of this project...............................................71 2.3.1 (−)-Indolizidine 209D......................................................................71 2.3.2 Monomorine I and diastereomers..................................................74 2.3.3 Accessing tricyclic alkaloids...........................................................79 2.3.4 Summary of aims...........................................................................83 viii Chapter 3: The attempted total synthesis of (−)-indolizidine
Recommended publications
  • "Alcohol Activation" That Would Be Stereochemically Complementary to That Involving Reaction of an Alcohol with P / S Halides (Notes of Nov 20)
    CHEM 203 Topics Discussed on Nov. 23 Desirability of a method for "alcohol activation" that would be stereochemically complementary to that involving reaction of an alcohol with P / S halides (notes of Nov 20): PBr3 CH S Na 3 overall (inversion of H (inversion) H retention configuration) Br SMe (S)-2-bromobutane (R)-configured pdt. H OH (R)-2-butanol ? (S)-configured pdt. overall H inversion SMe Sulfonyl chlorides: para-toluenesulfonyl ("tosyl") chloride, methanesulfonyl ("mesyl") chloride O O O R S Cl H3C S Cl S Cl O O O A generic sulfonyl methanesulfonyl chloride Toluene para-toluenesulfonyl chloride chloride: R = any ( "mesyl chloride" ) (= methyl benzene) ( "tosyl chloride" ) alkyl group Pyridine: a weakly basic, nucleophilic analog of benzene in which an N atom replaces a CH unit: pyridine N Reaction of primary and secondary alcohols with sulfonyl chlorides in the presence of pyridine: formation of sulfonate esters (= alkyl sulfonates): R1 O R1 O OH + Cl S R N O S R + R2 O R2 N O H Cl a generic primary or an "alkyl sulfonate" secondary alcohol ("tosylate", "mesylate," etc.) note: tertiary alcohols are insufficiently nucleophilic to react with sulfonyl chlorides Presumed mechanism for the formation of sulfonate esters from primary and secondary (but not tertiary) alcohols and sulfonyl chlorides: • slow rate of reaction of an alcohol with sulfonyl chlorides in the presence of generic bases Lecture of Nov. 23 p. 2 • pyridine as a nucleophilic catalyst that greatly accelerates the reaction of an alcohol with a sulfonyl chloride by: (i)
    [Show full text]
  • Radical Approaches to Alangium and Mitragyna Alkaloids
    Radical Approaches to Alangium and Mitragyna Alkaloids A Thesis Submitted for a PhD University of York Department of Chemistry 2010 Matthew James Palframan Abstract The work presented in this thesis has focused on the development of novel and concise syntheses of Alangium and Mitragyna alkaloids, and especial approaches towards (±)-protoemetinol (a), which is a key precursor of a range of Alangium alkaloids such as psychotrine (b) and deoxytubulosine (c). The approaches include the use of a key radical cyclisation to form the tri-cyclic core. O O O N N N O O O H H H H H H O N NH N Protoemetinol OH HO a Psychotrine Deoxytubulosine b c Chapter 1 gives a general overview of radical chemistry and it focuses on the application of radical intermolecular and intramolecular reactions in synthesis. Consideration is given to the mediator of radical reactions from the classic organotin reagents, to more recently developed alternative hydrides. An overview of previous synthetic approaches to a range of Alangium and Mitragyna alkaloids is then explored. Chapter 2 follows on from previous work within our group, involving the use of phosphorus hydride radical addition reactions, to alkenes or dienes, followed by a subsequent Horner-Wadsworth-Emmons reaction. It was expected that the tri-cyclic core of the Alangium alkaloids could be prepared by cyclisation of a 1,7-diene, using a phosphorus hydride to afford the phosphonate or phosphonothioate, however this approach was unsuccessful and it highlighted some limitations of the methodology. Chapter 3 explores the radical and ionic chemistry of a range of silanes.
    [Show full text]
  • Hydrophilic Thin Coating and Method of Manufacturing the Same
    Europaisches Patentamt European Patent Office © Publication number: 0 599 150 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 93118306.5 int. CIA B05D 1/18, C03C 17/30, C08J 7/04 @ Date of filing: 11.11.93 ® Priority: 12.11.92 JP 302124/92 © Applicant: MATSUSHITA ELECTRIC INDUSTRIAL Co., Ltd. @ Date of publication of application: 1006-banchi, Oaza-Kadoma 01.06.94 Bulletin 94/22 Kadoma-shi, Osaka(JP) © Designated Contracting States: @ Inventor: Ohtake, Tadashi DE FR GB Kawakitanaka-machi 30-15 Neyagawa-shi, Osaka 572(JP) Inventor: Mino, Norihisa Senrioka Higashi 4-6-8-806 Settsu-shi, Osaka 566(JP) Inventor: Ogawa, Kazufumi Aoyama 2-3-50 Nara-shi, Nara 630(JP) © Representative: VOSSIUS & PARTNER Siebertstrasse 4 D-81675 Munchen (DE) © Hydrophilic thin coating and method of manufacturing the same. © The invention relates to a hydrophilic thin film and a method of manufacturing the same in which a hydrophilic thin film 4 is formed by incorporating or fixing molecules comprising hydrophilic groups to a chemically adsorbed film on the surface of a substrate 1 . 7\ oj— Cl O I OH 2 ^4 $ -0— Si — 0 Si — 0 Si- -o- -Si-0- I I I I 0 0 0 0 — > 7> , , , 1 , , r-i-. i ///////////// X FIG . Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 599 150 A1 The invention relates to a hydrophilic thin film and a method of manufacturing the same. More specifically, the invention relates to a hydrophilic thin film and its method of manufacture, in which molecules comprising hydrophilic groups are incorporated or chemically bonded to the surface of a chemically adsorbed film on a substrate surface.
    [Show full text]
  • Ew Routes to Indolizidine Alkaloids: the Total Synthesis of (−)Grandisine B
    ew Routes to Indolizidine Alkaloids: The Total Synthesis of (−)-Grandisine B James David Cuthbertson Thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy The University of York Department of Chemistry September 2011 Abstract The plant family Elaeocarpaceae has been the source of a plethora of structurally related alkaloids isolated over the last 50 years. This Thesis describes our synthetic approaches to (−)-grandisine B I, a bioactive indolizidine alkaloid isolated from Elaocarpus grandis in 2005. An overview of alkaloids isolated from the family Elaeocarpaceae is provided and preliminary studies into the synthesis of grandisine B I are described (Chapters 1 and 2). Novel routes to bicyclic lactams II and isoquinuclidinone frameworks III have been developed using aqueous ammonia in a one-pot amination/cyclisation sequence (Chapters 3 and 4). The scope of the developed methodology was initially demonstrated with a concise synthesis of the alkaloid (−)-mearsine V. A biomimetic synthesis of (±)- grandisine B I, using the alkaloid grandisine D IV as a synthetic precursor, is then described in Chapter 5. The development of a formic acid mediated alkyne/acetal cyclisation for the synthesis of heterocyclic scaffolds is also reported. The scope and limitations of the methodology are discussed and applications of the methodology in the synthesis of (−)-grandisine B I and structurally related Elaeocarpus alkaloids are described (Chapter 6). I Contents Abstract ...........................................................................................................................
    [Show full text]
  • R. B. Woodward Precipitation of Barium in the Copper-Tin Group Of
    HETEROCYCLES, Vol. 7, No. 1. 1977 R. B. Woodward Precipitation of barium in the copper-tin group of qualitative analysis. W.J.Hal1 and RBW, -Ind. Eng. Chem., Anal. Ed., 6, 478 (1934). A new pressure regulator for vacuum distillation. R.L.Emerson and RBW, g.,2, 347 (1937). The Staling of coffee. II. S.C.Prescott, R.L.Emerson, RBW, and R. Heggie, Food Re- --search, 2, 165 (1937). Pyrolysis of organomagnesium compounds. I. A new agent for the reduction of bemophenone. D.B.Clapp, and RBW, 1. ---Am. Chem. Soc., -60, 1019 (1938). The direct introduction of the angular methyl group. RBW, Ibid., 62, 1208 (1940). Experiments on the synthesis of oestrone. I. 2-(8-phenylethy1)-furans as components in the diene synthesis. RBW, Ibid., 62, 1478 (1940). The formation of Reissert's compounds in non-aqueous media. RBW, Ibid., 62, 1626 (1940). A new optically active reagent for carbonyl compounds. The resolution of -dl-camphor. RBW, T. P. Kohman, and G. C. Harris, Ibid., 63, lu) (1941). The isolation and properties of 1, 1-dineopentylethylene, a component of triisobutylene. P.D.Bartlett, G.L. Fraser, and RBW, x.,3, 495 (1941). Structure and absorption spectra of a,p-unsaturated ketones. RBW, Ibid., 3, 1123 (1941). 5 Structure and absorption spectra. II. 3-Acetoxy-A -(6)-~cholestene-7-carboxylicacid. RBW, and A.F.Clifiord, -Ibid., -63, 2727 (1941). The structure of cantharidine and the synthesis of desoxycantharidine. RLW, and R.B. Loftfield, Ibid., 3, 3167 (1941). -t-Butyllithium. P.D.Bardett, C .G.Swain, and RBW, --Ibid., 63, 3229 (1941).
    [Show full text]
  • Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: the Effect of Reaction Conditions
    polymers Article Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: The Effect of Reaction Conditions Balázs Pásztói 1,2,* , Tobias M. Trötschler 3,4,5, Ákos Szabó 1, Györgyi Szarka 1, Benjamin Kerscher 3,4 , Rolf Mülhaupt 3,4,5,* and Béla Iván 1,* 1 Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; [email protected] (Á.S.); [email protected] (G.S.) 2 George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 2, H-1117 Budapest, Hungary 3 Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany; [email protected] (T.M.T.); [email protected] (B.K.) 4 Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany 5 Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany * Correspondence: [email protected] (B.P.); [email protected] (R.M.); [email protected] (B.I.) Received: 7 October 2020; Accepted: 24 October 2020; Published: 28 October 2020 Abstract: Endfunctional polymers possess significant industrial and scientific importance. Sulfonyl endgroups, such as tosyl and nosyl endfunctionalities, due their ease of substitution are highly desired for a variety of polymer structures. The sulfonylation of hydroxyl-terminated polyisobutylene (PIB-OH), a chemically and thermally stable, biocompatible, fully saturated polymer, with tosyl chloride (TsCl) and nosyl chloride (NsCl) is presented in this study.
    [Show full text]
  • Mild Reductive Functionalization of Amides Into N‐Sulfonylformamidines
    http://www.diva-portal.org This is the published version of a paper published in ChemistryOpen. Citation for the original published paper (version of record): Trillo, P., Slagbrand, T., Tinnis, F., Adolfsson, H. (2017) Mild Reductive Functionalization of Amides into N-Sulfonylformamidines. ChemistryOpen, 6(4): 484-487 https://doi.org/10.1002/open.201700087 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-138585 DOI:10.1002/open.201700087 Mild Reductive Functionalization of Amides into N- Sulfonylformamidines Paz Trillo,[a] Tove Slagbrand,[a] Fredrik Tinnis,*[a] and Hans Adolfsson*[a, b] The development of aprotocolfor the reductivefunctionaliza- tion of amides into N-sulfonylformamidines is reported. The one-pot procedure is based on amild catalytic reduction of tertiaryamides into the corresponding enamines by the use of Mo(CO)6 (molybdenum hexacarbonyl) and TMDS (1,1,3,3-tetra- methyldisiloxane). The formed enamines were allowed to react with sulfonyl azidestogive the target compounds in moderate to good yields. The amidine functional group is frequently found in biological- ly activecompounds possessing anti-inflammatory,antibacteri- al, antiviral, antibiotic, and anestheticproperties.[1] They are also employed as intermediates and precursors in organic syn- thesis of importantheterocyclic compounds such as imida- zoles, quinazolines,isoquinolines, and pyrimidines.[2] Further- more, amidines are employed as ligandsinmetal complexes and as protecting groups for primary amines.[3] Scheme1.Preparation of amidines through a–c) electrophilic amide activa- The stability of amides makes this functional group valuable tion and d) reductive functionalization of amides.
    [Show full text]
  • 1006134632-Mckeown-1960.Pdf
    PROOF OF STRUCTURE OF SOME CONTROVERSIAL SULFONYL CHLORIDES by GEORGE BAKER McKEOWN H A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemistry in the School of Chemistry in the Graduate School of the University of Alabama UNIVERSITY, ALABAMA 1960 I ACKNOWLEDGMENT I wish to express my great indebtedness to Dr. R. B. Scott, Jr. for his supervision and numerous suggestions during the course of this work. G. B. M. CONTENTS Page INTRODUCTION • • • • • • • • • • • • • • • • • • • 1 THE PHOTOCHEMICAL CHLOROSULFANYLATION OF ALKANES ••••••••••••• . 3 TERTIARY SULFONYL CHLORIDES •• . 9 DECOMPOSITION OF SULFONYL CHLORIDES • • 13 CONCERNING A CLAIM AND A COUNTER-CLAIM TO PREP.A~ING TERTIARY SULFONYL CHLORIDES PHOTOCHEMICALLY • • • • • • • • • 15 EXPERIMENTAL • • • • • • • • • • • • • • • • • • 17 Preparation of 4-Chloro-2-methyl-l-butanesulfonyl Chloride from 4-Chloro-2-Methylbutane. • • • • . 17 Preparation of 4-Hydroxy-2-methyl-l-butanesulfonic Acid Sultone. • • • . • • • • • • • • • • . • . • • • 18 Conversion of 4-Chloro-2-methyl-l-butanesulfonyl Chloride to 2-Methyl -1-butanethiol • . .. • • . • • • 19 Preparation of 2-Methyl-1-butanethiol from 2-Methyl- 1-butanol. • • • • • • • • • • . • • • • . • • • . • 21 Preparation of 4-Chloro-2-methyl-1-pentanesulfonyl Chloride • • . • • • • • . • • • • • • • • • • • • • • 23 Preparation of 4-Hydroxy-2-methyl-l-pentanesulfonic Acid Sultone . • • • • • • • • • • • • • • • • • • • 25 Conversion of 4-Chloro-2-methyl-1-pentanesulfonyl Chloride to 2-Methyl-1-pentanethiol
    [Show full text]
  • Fluoropropanesulfonyl Chloride As a Prosthetic Agent for The
    Use of 3-[18F]fluoropropanesulfonyl chloride as a prosthetic agent for the radiolabelling of amines: Investigation of precursor molecules, labelling conditions and enzymatic stability of the corresponding sulfonamides Reik Löser*1,2, Steffen Fischer3, Achim Hiller3, Martin Köckerling4, Uta Funke3, Aurélie Maisonial3, Peter Brust3 and Jörg Steinbach1,2,3 Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2013, 9, 1002–1011. 1Institute of Radiopharmaceutical Cancer Research (formerly Institute doi:10.3762/bjoc.9.115 of Radiopharmacy), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany, 2Department of Received: 05 February 2013 Chemistry and Food Chemistry, Technical University of Dresden, Accepted: 26 April 2013 Bergstraße 66c, 01062 Dresden, Germany, 3Institute of Published: 27 May 2013 Radiopharmaceutical Cancer Research, HZDR Research Site Leipzig, Permoserstraße 15, 04318 Leipzig, Germany and 4Institute of This article is part of the Thematic Series "Synthetic probes for the study Chemistry, University of Rostock, Inorganic Solid-State Chemistry of biological function". Group, Albert-Einstein-Straße 3a, 18059 Rostock, Germany Guest Editor: J. Aubé Email: Reik Löser* - [email protected] © 2013 Löser et al; licensee Beilstein-Institut. License and terms: see end of document. * Corresponding author Keywords: fluorine-18; hydrolytic metabolism; prosthetic groups; radiochemistry; sulfonamides Abstract 3-[18F]Fluoropropanesulfonyl chloride, a recently proposed prosthetic agent for fluorine-18 labelling, was prepared in a two-step radiosynthesis via 3-[18F]fluoropropyl thiocyanate as an intermediate. Two benzenesulfonate-based radiolabelling precursors were prepared by various routes. Comparing the reactivities of 3-thiocyanatopropyl nosylate and the corresponding tosylate towards [18F]fluoride the former proved to be superior accounting for labelling yields of up to 85%.
    [Show full text]
  • Indolizidine Alkaloids Baran Group Meeting
    5/10/06 Richter Indolizidine Alkaloids Baran Group Meeting Me O O Background/Introduction: HO H H H HO Me 1. Isolated from a myriad of sources, including, but not limited to ants, N frogs, fungi, and trees. Me N HO H N N 2. A host of effects including, but not limited to, harvest failures, edemas, Me Me necrosis, and rashes. elaeokanine C 3. A host of activities including, but not limited to, phytotoxic, insecticidal, Me Me N antibacterial, and fungicidal. allopumiliotoxin 267A myrmicarin 215A 4. It is unclear what defines the limits of the family, however scores of rhazinilam H H natural products contain the core structure shown below. A sampling Me HO H is provided at the end of the handout. HO 5. The ring is numbered as shows below. N N OH Me Me N 8 1 Me 7 9 2 Me Me OH 6 N Me Me 4 myrmicarin 215B myrmicarin 217 5 3 allopumiliotoxin 339B Me Me OH OH H H Me OH H Syntheses Discussed (in order): H H OAc Me H OH OH N N HO O N Me N Me N H Me swainsonine N nuphar alkaloids Me H2N N indolizidine 223AB slaframine N indolizidine 209D indolizidine 223A serratinine Me tashiromine O Me Me HO H H HO H HO H OH H OH OH Me H Me N N N Me N N OH N H OH OH Me Me OH Me Me lentiginosine O pumiliotoxin 323A lepadiformine pumiliotoxin 307A pumiliotoxin 251D gephyrotoxin O OH OH O H H OH H Me H HO H H N H Me N H N N Me OH N HO H N Me H castanospermine H N H Me securinine gephyrotoxin indolizomycin O alkaloid 205B indolizidine 167B HO ipaldibine Me Me Me 5/10/06 Richter Indolizidine Alkaloids Baran Group Meeting Gallagher, Tetrahedron Lett.
    [Show full text]
  • Plant Toxins: Alkaloids and Their Toxicities
    GSC Biological and Pharmaceutical Sciences, 2019, 06(02), 021–029 Available online at GSC Online Press Directory GSC Biological and Pharmaceutical Sciences e-ISSN: 2581-3250, CODEN (USA): GBPSC2 Journal homepage: https://www.gsconlinepress.com/journals/gscbps (REVIEW ARTICLE) Plant toxins: alkaloids and their toxicities Kamarul Zaman Munirah Adibah and Mohamad Azzeme Azzreena * Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Publication history: Received on 09 January 2019; revised on 28 January 2019; accepted on 29 January 2019 Article DOI: https://doi.org/10.30574/gscbps.2019.6.2.0003 Abstract Since ancient civilization, plants have been utilized in many aspects of life, especially in medicinal purposes due to the presence of distinctive secondary metabolites like alkaloids, phenolics and terpenoids. Among them, alkaloids represent a large group of secondary metabolites that have basic properties and comprise nitrogen atom within the heterocyclic ring. Plant synthesizes alkaloids to maintain their survivability under unfavorable conditions. Over 3000 years, indigenous people have been used alkaloid-containing plant extracts to treat several ailments such as fever, snakebite and insanity. However, despite significant benefits to humans and pharmaceutical industries, some of the plant alkaloids are categorized as main plant toxins due to their enormous structural diversity and various modes of actions. Humans and animals can be exposed to
    [Show full text]
  • Approach and Synthesis of Strychnos Alkaloids
    N° d'ordre : 4155 THÈSE Présentée à L'UNIVERSITÉ BORDEAUX I ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES par Dawood Hosni DAWOOD POUR OBTENIR LE GRADE DE DOCTEUR SPÉCIALITÉ : CHIMIE ORGANIQUE ********************* TOWARDS THE SYNTHESIS OF MONOTERPENOIDS INDOLE ALKALOIDS OF THE ASPIDOSPERMATAN AND STRYCHNAN TYPE ********************* Soutenue le: 17 décembre 2010 Après avis de: MM. PIVA Olivier Professeur, Claude Bernard Lyon 1 Rapporteur PALE Patrick Professeur, Louis Pasteur Strasbourg 1 Rapporteur Devant la commission d'examen formée de : MM. PIVA Olivier Professeur, Claude Bernard Lyon 1 Rapporteur PALE Patrick Professeur, Louis Pasteur Strasbourg 1 Rapporteur POISSON Jean-François Chargé de recherche, CNRS Examinateur VINCENT Jean-Marc Directeur de recherche, CNRS Examinateur LANDAIS Yannick Professeur, Bordeaux 1 Directeur de thèse ROBERT Frédéric Chargé de recherche, CNRS Codirecteur de thèse - 2010 - Abbreviations ∆: reflux °C: celsius degrees Ac: acetyle ALB Aluminium Lithium bis(binaphthoxide) complex AIBN : azobis(isobutyronitrile) aq.: aqueous Ar : aromatic BINAP : 2,2'-bis(diphenylphosphino)-1,1'-binaphthyle BINAPO : 2-diphenylphosphino-2'-diphenylphosphinyl-1,1'-binaphthalene BINOL: 1,1’-bi-2-naphthol Boc: tert-butyloxycarbonyle BOX: Bisoxazoline Bz : benzoyle Bn: benzyle cat. : catalytic DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene DCM: dichloromethane DCC: dicyclohexacarbodiimide dr.: diastereomeric ratio DIBAL-H: diisobutylaluminium hydride DIPEA: diisopropyléthylamine (Hünig Base) DMAP: dimethylaminopyridine DME: dimethoxyethane
    [Show full text]