Synthesis and Properties of Ortho-T-Buso2c6h4-Substituted Iodonium Ylides

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Properties of Ortho-T-Buso2c6h4-Substituted Iodonium Ylides crystals Communication CommunicationSynthesis and Properties of ortho-t-BuSO2C6H4-Substituted Synthesis and Properties of ortho-t-BuSO C H -Substituted Iodonium Ylides 2 6 4 Iodonium Ylides Tomohiro Kimura 1, Shohei Hamada 2, Takumi Furuta 2, Yoshiji Takemoto 1,* and Yusuke Kobayashi 2,* Tomohiro Kimura 1, Shohei Hamada 2, Takumi Furuta 2, Yoshiji Takemoto 1,* and Yusuke Kobayashi 2,* 1 Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan; 1 Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan; [email protected] [email protected] 2 Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; 2 Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; [email protected] (S.H.); [email protected] (T.F.) [email protected] (S.H.); [email protected] (T.F.) * Correspondence: [email protected] (Y.T.); [email protected] (Y.K.); * Correspondence: [email protected] (Y.T.); [email protected] (Y.K.); Tel.: +81-75-753-4528 (Y.T.); +81-75-595-4666 (Y.K.) Tel.: +81-75-753-4528 (Y.T.); +81-75-595-4666 (Y.K.) Abstract:Abstract: Iodonium ylides ylides have have recently recently attracted attracted much much attention attention on on account account of oftheir their synthetic synthetic ap- applications.plications. However, However, only only a alimited limited number number of of repo reportsrts concerning concerning the properties andand reactivityreactivity ofof iodoniumiodonium ylidesylides exist,exist, whichwhich isis partlypartly duedue toto theirtheir instability.instability. InIn thisthis study,study, we we synthesized synthesized several several iodoniumiodonium ylidesylides that that bear bear both both an an electron-withdrawing electron-withdrawing group group and and an an aromatic aromatic ring ring with with an anortho ortho-t-- t-BuSO2 group. Based on the crystal structures of the synthesized iodonium ylides in combination BuSO2 group. Based on the crystal structures of the synthesized iodonium ylides in combination with natural-bond-orbitalwith natural-bond-orbital (NBO) (NBO) calculations, calculations, we estimated we estimated the strength the strength of the intra-of the andintra- intermolecular and intermo- halogen-bondinglecular halogen-bonding interactions. interactions. In addition, In addition, we investigated we investigated the reactivity the reac oftivity theiodonium of the iodonium ylides underylides photoirradiation.under photoirradiation. Keywords: halogen bonding; hypervalent iodine; NBO analysis; photochemistry; radical reactions Keywords: halogen bonding; hypervalent iodine; NBO analysis; photochemistry; radical reactions Citation: Kimura, T.; Hamada, S.; Furuta,Citation: T.; Kimura, Takemoto, T.;Y.; Hamada, Kobayashi, S.; Y. SynthesisFuruta, T.; and Takemoto, Properties Y.; of Kobayashi, 1.1. IntroductionIntroduction Y. Synthesis and Properties of ortho-t-BuSO2C6H4-Substituted IodoniumIodonium ylides,ylides, aa classclass ofof hypervalenthypervalent iodineiodine compoundscompounds [[1],1], havehave attractedattracted muchmuch Iodoniumortho- t-BuSO Ylides.2C6HCrystals4-Substituted2021, 11 , attentionattention duedue toto theirtheir useuse asas carbenecarbene precursorsprecursors forfor C-H-insertionC‒H-insertion and and cyclopropanation cyclopropanation 1085.Iodonium https://doi.org/10.3390/ Ylides. Crystals 2021, 11, x. reactionsreactions (Scheme (Scheme1a) 1a) [ 2 ,[2,3].3]. Moreover, Moreover, iodonium iodonium ylides ylides have have been been used used for various for various synthetic syn- cryst11091085https://doi.org/10.3390/xxxxx applications,thetic applications, including including condensations condensations with thioamides with thioamides to produce to produce thiazole ringsthiazole in aqueous rings in mediaaqueous (Scheme media1 (Schemeb; Nu = 1b; thioamide) Nu = thioamide) [4,5], and [4,5], for and the for introduction the introduction of 18F of atoms 18F atoms into AcademicAcademic Editors: Editor: Sergiy RosokhaRosokha, − aromaticinto aromatic rings rings (Scheme (Scheme1c; Nu 1c;= Nu F )[ = 6F,−7)]. [6,7]. It has It alsohas also been been reported reported that that depending depending on the on andAtash Atash V. Gurbanov V. Gurbanov iodoniumthe iodonium ylide ylide and nucleophileand nucleophile that is that employed, is employed, the equilibrium the equilibrium between between the T-shaped the T- intermediatesshaped intermediates A and B canA and be influencedB can be influenc [6,7], anded thus,[6,7], theand ratio thus, of couplingthe ratio productsof coupling C Received:Received: 2020 August August 2021 2021 and D can be controlled. Accepted:Accepted: 3 3 September September 2021 2021 products C and D can be controlled. Published:Published: 7 7 September September 2021 2021 Publisher’sPublisher’s Note: Note:MDPI MDPI stays stays neutral neu- withtral regardwith toregard jurisdictional to jurisdictional claims in publishedclaims in published maps and maps institutional and institu- affil- iations.tional affiliations. Copyright: © 2021 by the authors. Copyright:Submitted for© 2021possible by theopen authors. access Licenseepublication MDPI, under Basel, the terms Switzerland. and con- Thisditions article of the is Creative an open Commons access article At- distributedtribution (CC under BY) license the (http://crea- terms and conditions of the Creative Commons tivecommons.org/licenses/by/4.0/). Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ Scheme 1. General synthetic utility of iodonium ylides. (a) Cyclopropanation of alkenes (b) Introduction 4.0/). of nucleophile into active methylene compound (c) Introduction of nucleophile into aromatic rings. Crystals 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/crystals Crystals 2021, 11, 1085. https://doi.org/10.3390/cryst11091085 https://www.mdpi.com/journal/crystals Crystals 2021, 11, x FOR PEER REVIEW 2 of 7 Scheme 1. General synthetic utility of iodonium ylides. (a) Cyclopropanation of alkenes (b) Intro- Crystals 2021, 11, 1085 duction of nucleophile into active methylene compound (c) Introduction of nucleophile2 of 7 into aro- matic rings However, to date, only a limited number of reports concerning the properties and However, to date, only a limited number of reports concerning the properties and reactivity of iodonium ylides have been published, which is at least in part due to their reactivity of iodonium ylides have been published, which is at least in part due to their instability (e.g.,instability degradation (e.g., via degradation intermediates via intermediates A and/or B) onA and/or account B) of on the account remaining of the remaining σ- σ-hole of intermediateshole of intermediates A and B, which A and can B, reactwhich with can nucleophilesreact with nucleophiles such as water. such We as water. We an- anticipate thatticipate the synthesis that the of asynthesis variety of of iodonium a variety ylidesof iodonium and the ylides investigation and the ofinvestigation their of their properties wouldproperties provide would essential provide information essential for informatio the advancementn for the ofadvancement synthetic applica- of synthetic applica- tions such as chemoselectivetions such as chemoselective coupling reactions. coupling Of particular reactions. interest Of particular to us are interest iodonium to us are iodonium ylides that containylides a coordinatingthat contain aortho coordinatinggroup on ortho the aromatic group on ring the[ aromatic8], as such ring groups [8], as are such groups are known to stabilizeknown iodonium to stabilize ylides iodonium and other ylides hypervalent and othe iodiner hypervalent compounds iodine[5 –compounds9], thus [5–9], thus increasing theirincreasing solubility their via intramolecular solubility via intramolecular halogen bonding halogen (XB) [ bonding10]. In this (XB) study, [10]. we In this study, we synthesized severalsynthesized iodonium several ylides iodonium bearing bothylides an bearing electron-withdrawing both an electron-withdrawing group and an group and an 2 aromatic ring witharomatic an ortho ring- twith-BuSO an2 grouportho-t-BuSO [8,11]. Basedgroup on [8,11]. the crystalBased structureson the crystal of the structures of the synthesized iodoniumsynthesized ylides iodonium in combination ylides in with combination natural-bond-order with natural-bond-order (NBO) analysis, (NBO) we analysis, we also estimatedalso the strengthestimated of the the strength intra- and of intermolecularthe intra- and intermolecular XBs [12–23]. In XBs addition, [12–23]. we In addition, we investigated theinvestigated reactivity of the these reactivity iodonium of these ylides iodoni underum photoirradiation ylides under photoi [24–27rradiation]. [24–27]. 2. Results 2. Results We began by synthesizingWe began by iodonium synthesizi ylidesng iodonium2 via the ylides condensation 2 via the of condensation iodosobenzene of iodosobenzene 1 [11] with a variety1 [11] ofwith active a variety methylene of active compounds methylene (Table compounds1). The reaction (Table 1). of The1 and reaction the of 1 and the ◦ active methyleneactive compounds methylene proceeded compounds at 0proceededC in etheric at 0 solvents°C in etheric such solvents as THF such or Et 2asO THF or Et2O to to furnish thefurnish corresponding the corresponding iodonium ylidesiodonium (2) as ylides precipitates (2) as precipitates
Recommended publications
  • "Alcohol Activation" That Would Be Stereochemically Complementary to That Involving Reaction of an Alcohol with P / S Halides (Notes of Nov 20)
    CHEM 203 Topics Discussed on Nov. 23 Desirability of a method for "alcohol activation" that would be stereochemically complementary to that involving reaction of an alcohol with P / S halides (notes of Nov 20): PBr3 CH S Na 3 overall (inversion of H (inversion) H retention configuration) Br SMe (S)-2-bromobutane (R)-configured pdt. H OH (R)-2-butanol ? (S)-configured pdt. overall H inversion SMe Sulfonyl chlorides: para-toluenesulfonyl ("tosyl") chloride, methanesulfonyl ("mesyl") chloride O O O R S Cl H3C S Cl S Cl O O O A generic sulfonyl methanesulfonyl chloride Toluene para-toluenesulfonyl chloride chloride: R = any ( "mesyl chloride" ) (= methyl benzene) ( "tosyl chloride" ) alkyl group Pyridine: a weakly basic, nucleophilic analog of benzene in which an N atom replaces a CH unit: pyridine N Reaction of primary and secondary alcohols with sulfonyl chlorides in the presence of pyridine: formation of sulfonate esters (= alkyl sulfonates): R1 O R1 O OH + Cl S R N O S R + R2 O R2 N O H Cl a generic primary or an "alkyl sulfonate" secondary alcohol ("tosylate", "mesylate," etc.) note: tertiary alcohols are insufficiently nucleophilic to react with sulfonyl chlorides Presumed mechanism for the formation of sulfonate esters from primary and secondary (but not tertiary) alcohols and sulfonyl chlorides: • slow rate of reaction of an alcohol with sulfonyl chlorides in the presence of generic bases Lecture of Nov. 23 p. 2 • pyridine as a nucleophilic catalyst that greatly accelerates the reaction of an alcohol with a sulfonyl chloride by: (i)
    [Show full text]
  • Radical Approaches to Alangium and Mitragyna Alkaloids
    Radical Approaches to Alangium and Mitragyna Alkaloids A Thesis Submitted for a PhD University of York Department of Chemistry 2010 Matthew James Palframan Abstract The work presented in this thesis has focused on the development of novel and concise syntheses of Alangium and Mitragyna alkaloids, and especial approaches towards (±)-protoemetinol (a), which is a key precursor of a range of Alangium alkaloids such as psychotrine (b) and deoxytubulosine (c). The approaches include the use of a key radical cyclisation to form the tri-cyclic core. O O O N N N O O O H H H H H H O N NH N Protoemetinol OH HO a Psychotrine Deoxytubulosine b c Chapter 1 gives a general overview of radical chemistry and it focuses on the application of radical intermolecular and intramolecular reactions in synthesis. Consideration is given to the mediator of radical reactions from the classic organotin reagents, to more recently developed alternative hydrides. An overview of previous synthetic approaches to a range of Alangium and Mitragyna alkaloids is then explored. Chapter 2 follows on from previous work within our group, involving the use of phosphorus hydride radical addition reactions, to alkenes or dienes, followed by a subsequent Horner-Wadsworth-Emmons reaction. It was expected that the tri-cyclic core of the Alangium alkaloids could be prepared by cyclisation of a 1,7-diene, using a phosphorus hydride to afford the phosphonate or phosphonothioate, however this approach was unsuccessful and it highlighted some limitations of the methodology. Chapter 3 explores the radical and ionic chemistry of a range of silanes.
    [Show full text]
  • Hydrophilic Thin Coating and Method of Manufacturing the Same
    Europaisches Patentamt European Patent Office © Publication number: 0 599 150 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 93118306.5 int. CIA B05D 1/18, C03C 17/30, C08J 7/04 @ Date of filing: 11.11.93 ® Priority: 12.11.92 JP 302124/92 © Applicant: MATSUSHITA ELECTRIC INDUSTRIAL Co., Ltd. @ Date of publication of application: 1006-banchi, Oaza-Kadoma 01.06.94 Bulletin 94/22 Kadoma-shi, Osaka(JP) © Designated Contracting States: @ Inventor: Ohtake, Tadashi DE FR GB Kawakitanaka-machi 30-15 Neyagawa-shi, Osaka 572(JP) Inventor: Mino, Norihisa Senrioka Higashi 4-6-8-806 Settsu-shi, Osaka 566(JP) Inventor: Ogawa, Kazufumi Aoyama 2-3-50 Nara-shi, Nara 630(JP) © Representative: VOSSIUS & PARTNER Siebertstrasse 4 D-81675 Munchen (DE) © Hydrophilic thin coating and method of manufacturing the same. © The invention relates to a hydrophilic thin film and a method of manufacturing the same in which a hydrophilic thin film 4 is formed by incorporating or fixing molecules comprising hydrophilic groups to a chemically adsorbed film on the surface of a substrate 1 . 7\ oj— Cl O I OH 2 ^4 $ -0— Si — 0 Si — 0 Si- -o- -Si-0- I I I I 0 0 0 0 — > 7> , , , 1 , , r-i-. i ///////////// X FIG . Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 599 150 A1 The invention relates to a hydrophilic thin film and a method of manufacturing the same. More specifically, the invention relates to a hydrophilic thin film and its method of manufacture, in which molecules comprising hydrophilic groups are incorporated or chemically bonded to the surface of a chemically adsorbed film on a substrate surface.
    [Show full text]
  • R. B. Woodward Precipitation of Barium in the Copper-Tin Group Of
    HETEROCYCLES, Vol. 7, No. 1. 1977 R. B. Woodward Precipitation of barium in the copper-tin group of qualitative analysis. W.J.Hal1 and RBW, -Ind. Eng. Chem., Anal. Ed., 6, 478 (1934). A new pressure regulator for vacuum distillation. R.L.Emerson and RBW, g.,2, 347 (1937). The Staling of coffee. II. S.C.Prescott, R.L.Emerson, RBW, and R. Heggie, Food Re- --search, 2, 165 (1937). Pyrolysis of organomagnesium compounds. I. A new agent for the reduction of bemophenone. D.B.Clapp, and RBW, 1. ---Am. Chem. Soc., -60, 1019 (1938). The direct introduction of the angular methyl group. RBW, Ibid., 62, 1208 (1940). Experiments on the synthesis of oestrone. I. 2-(8-phenylethy1)-furans as components in the diene synthesis. RBW, Ibid., 62, 1478 (1940). The formation of Reissert's compounds in non-aqueous media. RBW, Ibid., 62, 1626 (1940). A new optically active reagent for carbonyl compounds. The resolution of -dl-camphor. RBW, T. P. Kohman, and G. C. Harris, Ibid., 63, lu) (1941). The isolation and properties of 1, 1-dineopentylethylene, a component of triisobutylene. P.D.Bartlett, G.L. Fraser, and RBW, x.,3, 495 (1941). Structure and absorption spectra of a,p-unsaturated ketones. RBW, Ibid., 3, 1123 (1941). 5 Structure and absorption spectra. II. 3-Acetoxy-A -(6)-~cholestene-7-carboxylicacid. RBW, and A.F.Clifiord, -Ibid., -63, 2727 (1941). The structure of cantharidine and the synthesis of desoxycantharidine. RLW, and R.B. Loftfield, Ibid., 3, 3167 (1941). -t-Butyllithium. P.D.Bardett, C .G.Swain, and RBW, --Ibid., 63, 3229 (1941).
    [Show full text]
  • Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: the Effect of Reaction Conditions
    polymers Article Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: The Effect of Reaction Conditions Balázs Pásztói 1,2,* , Tobias M. Trötschler 3,4,5, Ákos Szabó 1, Györgyi Szarka 1, Benjamin Kerscher 3,4 , Rolf Mülhaupt 3,4,5,* and Béla Iván 1,* 1 Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; [email protected] (Á.S.); [email protected] (G.S.) 2 George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 2, H-1117 Budapest, Hungary 3 Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany; [email protected] (T.M.T.); [email protected] (B.K.) 4 Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany 5 Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany * Correspondence: [email protected] (B.P.); [email protected] (R.M.); [email protected] (B.I.) Received: 7 October 2020; Accepted: 24 October 2020; Published: 28 October 2020 Abstract: Endfunctional polymers possess significant industrial and scientific importance. Sulfonyl endgroups, such as tosyl and nosyl endfunctionalities, due their ease of substitution are highly desired for a variety of polymer structures. The sulfonylation of hydroxyl-terminated polyisobutylene (PIB-OH), a chemically and thermally stable, biocompatible, fully saturated polymer, with tosyl chloride (TsCl) and nosyl chloride (NsCl) is presented in this study.
    [Show full text]
  • Mild Reductive Functionalization of Amides Into N‐Sulfonylformamidines
    http://www.diva-portal.org This is the published version of a paper published in ChemistryOpen. Citation for the original published paper (version of record): Trillo, P., Slagbrand, T., Tinnis, F., Adolfsson, H. (2017) Mild Reductive Functionalization of Amides into N-Sulfonylformamidines. ChemistryOpen, 6(4): 484-487 https://doi.org/10.1002/open.201700087 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-138585 DOI:10.1002/open.201700087 Mild Reductive Functionalization of Amides into N- Sulfonylformamidines Paz Trillo,[a] Tove Slagbrand,[a] Fredrik Tinnis,*[a] and Hans Adolfsson*[a, b] The development of aprotocolfor the reductivefunctionaliza- tion of amides into N-sulfonylformamidines is reported. The one-pot procedure is based on amild catalytic reduction of tertiaryamides into the corresponding enamines by the use of Mo(CO)6 (molybdenum hexacarbonyl) and TMDS (1,1,3,3-tetra- methyldisiloxane). The formed enamines were allowed to react with sulfonyl azidestogive the target compounds in moderate to good yields. The amidine functional group is frequently found in biological- ly activecompounds possessing anti-inflammatory,antibacteri- al, antiviral, antibiotic, and anestheticproperties.[1] They are also employed as intermediates and precursors in organic syn- thesis of importantheterocyclic compounds such as imida- zoles, quinazolines,isoquinolines, and pyrimidines.[2] Further- more, amidines are employed as ligandsinmetal complexes and as protecting groups for primary amines.[3] Scheme1.Preparation of amidines through a–c) electrophilic amide activa- The stability of amides makes this functional group valuable tion and d) reductive functionalization of amides.
    [Show full text]
  • 1006134632-Mckeown-1960.Pdf
    PROOF OF STRUCTURE OF SOME CONTROVERSIAL SULFONYL CHLORIDES by GEORGE BAKER McKEOWN H A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemistry in the School of Chemistry in the Graduate School of the University of Alabama UNIVERSITY, ALABAMA 1960 I ACKNOWLEDGMENT I wish to express my great indebtedness to Dr. R. B. Scott, Jr. for his supervision and numerous suggestions during the course of this work. G. B. M. CONTENTS Page INTRODUCTION • • • • • • • • • • • • • • • • • • • 1 THE PHOTOCHEMICAL CHLOROSULFANYLATION OF ALKANES ••••••••••••• . 3 TERTIARY SULFONYL CHLORIDES •• . 9 DECOMPOSITION OF SULFONYL CHLORIDES • • 13 CONCERNING A CLAIM AND A COUNTER-CLAIM TO PREP.A~ING TERTIARY SULFONYL CHLORIDES PHOTOCHEMICALLY • • • • • • • • • 15 EXPERIMENTAL • • • • • • • • • • • • • • • • • • 17 Preparation of 4-Chloro-2-methyl-l-butanesulfonyl Chloride from 4-Chloro-2-Methylbutane. • • • • . 17 Preparation of 4-Hydroxy-2-methyl-l-butanesulfonic Acid Sultone. • • • . • • • • • • • • • • . • . • • • 18 Conversion of 4-Chloro-2-methyl-l-butanesulfonyl Chloride to 2-Methyl -1-butanethiol • . .. • • . • • • 19 Preparation of 2-Methyl-1-butanethiol from 2-Methyl- 1-butanol. • • • • • • • • • • . • • • • . • • • . • 21 Preparation of 4-Chloro-2-methyl-1-pentanesulfonyl Chloride • • . • • • • • . • • • • • • • • • • • • • • 23 Preparation of 4-Hydroxy-2-methyl-l-pentanesulfonic Acid Sultone . • • • • • • • • • • • • • • • • • • • 25 Conversion of 4-Chloro-2-methyl-1-pentanesulfonyl Chloride to 2-Methyl-1-pentanethiol
    [Show full text]
  • Fluoropropanesulfonyl Chloride As a Prosthetic Agent for The
    Use of 3-[18F]fluoropropanesulfonyl chloride as a prosthetic agent for the radiolabelling of amines: Investigation of precursor molecules, labelling conditions and enzymatic stability of the corresponding sulfonamides Reik Löser*1,2, Steffen Fischer3, Achim Hiller3, Martin Köckerling4, Uta Funke3, Aurélie Maisonial3, Peter Brust3 and Jörg Steinbach1,2,3 Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2013, 9, 1002–1011. 1Institute of Radiopharmaceutical Cancer Research (formerly Institute doi:10.3762/bjoc.9.115 of Radiopharmacy), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany, 2Department of Received: 05 February 2013 Chemistry and Food Chemistry, Technical University of Dresden, Accepted: 26 April 2013 Bergstraße 66c, 01062 Dresden, Germany, 3Institute of Published: 27 May 2013 Radiopharmaceutical Cancer Research, HZDR Research Site Leipzig, Permoserstraße 15, 04318 Leipzig, Germany and 4Institute of This article is part of the Thematic Series "Synthetic probes for the study Chemistry, University of Rostock, Inorganic Solid-State Chemistry of biological function". Group, Albert-Einstein-Straße 3a, 18059 Rostock, Germany Guest Editor: J. Aubé Email: Reik Löser* - [email protected] © 2013 Löser et al; licensee Beilstein-Institut. License and terms: see end of document. * Corresponding author Keywords: fluorine-18; hydrolytic metabolism; prosthetic groups; radiochemistry; sulfonamides Abstract 3-[18F]Fluoropropanesulfonyl chloride, a recently proposed prosthetic agent for fluorine-18 labelling, was prepared in a two-step radiosynthesis via 3-[18F]fluoropropyl thiocyanate as an intermediate. Two benzenesulfonate-based radiolabelling precursors were prepared by various routes. Comparing the reactivities of 3-thiocyanatopropyl nosylate and the corresponding tosylate towards [18F]fluoride the former proved to be superior accounting for labelling yields of up to 85%.
    [Show full text]
  • Approach and Synthesis of Strychnos Alkaloids
    N° d'ordre : 4155 THÈSE Présentée à L'UNIVERSITÉ BORDEAUX I ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES par Dawood Hosni DAWOOD POUR OBTENIR LE GRADE DE DOCTEUR SPÉCIALITÉ : CHIMIE ORGANIQUE ********************* TOWARDS THE SYNTHESIS OF MONOTERPENOIDS INDOLE ALKALOIDS OF THE ASPIDOSPERMATAN AND STRYCHNAN TYPE ********************* Soutenue le: 17 décembre 2010 Après avis de: MM. PIVA Olivier Professeur, Claude Bernard Lyon 1 Rapporteur PALE Patrick Professeur, Louis Pasteur Strasbourg 1 Rapporteur Devant la commission d'examen formée de : MM. PIVA Olivier Professeur, Claude Bernard Lyon 1 Rapporteur PALE Patrick Professeur, Louis Pasteur Strasbourg 1 Rapporteur POISSON Jean-François Chargé de recherche, CNRS Examinateur VINCENT Jean-Marc Directeur de recherche, CNRS Examinateur LANDAIS Yannick Professeur, Bordeaux 1 Directeur de thèse ROBERT Frédéric Chargé de recherche, CNRS Codirecteur de thèse - 2010 - Abbreviations ∆: reflux °C: celsius degrees Ac: acetyle ALB Aluminium Lithium bis(binaphthoxide) complex AIBN : azobis(isobutyronitrile) aq.: aqueous Ar : aromatic BINAP : 2,2'-bis(diphenylphosphino)-1,1'-binaphthyle BINAPO : 2-diphenylphosphino-2'-diphenylphosphinyl-1,1'-binaphthalene BINOL: 1,1’-bi-2-naphthol Boc: tert-butyloxycarbonyle BOX: Bisoxazoline Bz : benzoyle Bn: benzyle cat. : catalytic DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene DCM: dichloromethane DCC: dicyclohexacarbodiimide dr.: diastereomeric ratio DIBAL-H: diisobutylaluminium hydride DIPEA: diisopropyléthylamine (Hünig Base) DMAP: dimethylaminopyridine DME: dimethoxyethane
    [Show full text]
  • Thiol Reactive Probes and Chemosensors
    Sensors 2012, 12, 15907-15946; doi:10.3390/s121115907 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Thiol Reactive Probes and Chemosensors Hanjing Peng 1, Weixuan Chen 1, Yunfeng Cheng 1, Lovemore Hakuna 2, Robert Strongin 2 and Binghe Wang 1,* 1 Department of Chemistry and the Center for Diagnostics and Therapeutics, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302, USA; E-Mails: [email protected] (H.P.); [email protected] (W.C.); [email protected] (Y.C.) 2 Department of Chemistry, Portland State University, Portland, OR 97207, USA; E-Mails: [email protected] (L.H.); [email protected] (R.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-404-413-5545; Fax: +1-404-413-5543. Received: 24 September 2012; in revised form: 12 November 2012 / Accepted: 13 November 2012 / Published: 19 November 2012 Abstract: Thiols are important molecules in the environment and in biological processes. Cysteine (Cys), homocysteine (Hcy), glutathione (GSH) and hydrogen sulfide (H2S) play critical roles in a variety of physiological and pathological processes. The selective detection of thiols using reaction-based probes and sensors is very important in basic research and in disease diagnosis. This review focuses on the design of fluorescent and colorimetric probes and sensors for thiol detection. Thiol detection methods include probes and labeling agents based on nucleophilic addition and substitution, Michael addition, disulfide bond or Se-N bond cleavage, metal-sulfur interactions and more. Probes for H2S are based on nucleophilic cyclization, reduction and metal sulfide formation.
    [Show full text]
  • Vinylogous Sulfonamides in the Total Synthesis of Indolizidine Alkaloids from Amphibians and Ants
    VINYLOGOUS SULFONAMIDES IN THE TOTAL SYNTHESIS OF INDOLIZIDINE ALKALOIDS FROM AMPHIBIANS AND ANTS Susan Winks A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg in fulfilment of the requirements for the Degree of Doctor of Philosophy. January 2010 i Declaration I declare that the work presented in this thesis was carried out exclusively by me under the supervision of Professor J. P. Michael and Professor C. B. de Koning. It is being submitted for the degree of Doctor of Philosophy at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other university. ______________________ 15th day of January 2010. ii Abstract This thesis describes the application of vinylogous sulfonamides in a generalised synthetic protocol for the synthesis of indolizidine alkaloids, viz. monomorine I, 5-epi-monomorine I and the key precursor to indolizidine 209D. Chapter one puts the work into perspective with a review of the different classes of amphibian alkaloids, with specific emphasis on previous syntheses of indolizidine 209D and monomorine I. This is followed by a brief overview of previous synthetic strategies employed for alkaloid synthesis in the Wits laboratories and an introduction to vinylogous sulfonamides. Chapter 2 concludes with our aims and proposed strategies for the project. The attempted total synthesis of (−)-indolizidine 209D is described in Chapter 3. The initial three steps to prepare t-butyl (3R)-3-{benzyl[(1R)-1- phenylethyl]amino}nonanoate (274) proceeded well, but the fourth step, deprotecting the nitrogen, gave inconsistent results and hindered the completion of the synthesis.
    [Show full text]
  • Synthetic Exploration of Sulfinyl Radicals Using Sulfinyl Sulfones
    ARTICLE https://doi.org/10.1038/s41467-021-25593-5 OPEN Synthetic exploration of sulfinyl radicals using sulfinyl sulfones Zikun Wang 1,5, Zhansong Zhang1,5, Wanjun Zhao1, Paramasivam Sivaguru 1, Giuseppe Zanoni2, ✉ Yingying Wang1, Edward A. Anderson 3 & Xihe Bi 1,4 Sulfinyl radicals – one of the fundamental classes of S-centered radicals – have eluded synthetic application in organic chemistry for over 60 years, despite their potential to 1234567890():,; assemble valuable sulfoxide compounds. Here we report the successful generation and use of sulfinyl radicals in a dual radical addition/radical coupling with unsaturated hydrocarbons, where readily-accessed sulfinyl sulfones serve as the sulfinyl radical precursor. The strategy provides an entry to a variety of previously inaccessible linear and cyclic disulfurized adducts in a single step, and demonstrates tolerance to an extensive range of hydrocarbons and functional groups. Experimental and theoretical mechanistic investigations suggest that these reactions proceed through sequential sulfonyl and sulfinyl radical addition. 1 Department of Chemistry, Northeast Normal University, Changchun, China. 2 Department of Chemistry, University of Pavia, Pavia, Italy. 3 Chemistry Research Laboratory, University of Oxford, Oxford, UK. 4 State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China. 5These ✉ authors contributed equally: Zikun Wang, Zhansong Zhang. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:5244 | https://doi.org/10.1038/s41467-021-25593-5 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25593-5 rganosulfur compounds are of fundamental importance significantly longer than the S–S bond lengths of other disulfide Oin synthetic and biological chemistry.
    [Show full text]