1006134632-Mckeown-1960.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
[19] [11] Patent Number: 4518808
Ulllted States Patent [19] [11] Patent Number: 4,518,808 Wang et a1. [45] Date of Patent: May 21, 1985 [54] PREPARATION OF [56] References Cited 2,5-DICHLOROHYDROQUINONE Us. PATENT DOCUMENTS _ 2,151,137 3/1939 Moness .............................. .. 568/765 [75] Inventors: Richard H. S. Wang; Garry L. Myers, 2,777,002 1/1957 Sullivan . 1 . .. 568/779 both of Kingsport, Tenn. 2,902,518 9/1959 Hurdis et a1. .... .. .. 568/726 X FOREIGN PATENT DOCUMENTS [73] Asslgnee: Eastman Kodak Company’ 839972 6/1960 United Kingdom .............. .. 568/779 Rochester, NY. Primary Examiner—Bernard Hel?n Attorney, Agent, or Firm—Clyde L. Tootle; J. Frederick [21] Appl. No; 537,227 Thomsen [57] ABSTRACT . _ 7 [22] Flled' Sep' "9’ 1983 Disclosed is a process for the preparation of certain dichloro-hydroxy and alkoxy aromatic compounds by [51] Int. Cl.3 ............................................ .. C07C 37/62 reacting the corresponding unchlorinated compound [52] US. Cl. .................................. .. 568/765; 568/633; with sulfuryl chloride in the presence of acetic acid, 568/634; 568/656; 568/726; 568/737; 568/779 propionic acid or lower alkyl esters thereof. [58] Field of Search ............. .. 568/779, 656, 726, 737, 568/765, 649 1 Claim, N0 Drawings 4,518,808 - 1 2 methyl and methoxy being the most common. The aryl PREPARATION OF substituent may be phenyl or alkyl-substituted phenyl. 2,5-DICHLOROHYDROQUINONE The chlorination temperatures used may be varied widely, e.g. from about 15° to 110° C., depending on the DESCRIPTION particular compound being chlorinated. The chlorina This invention relates to a novel process for the prep~ tion promoting temperature preferably is in the range of aration of dichloro-hydroxy and alkoxy aromatic com about 30° to 80° C. -
"Alcohol Activation" That Would Be Stereochemically Complementary to That Involving Reaction of an Alcohol with P / S Halides (Notes of Nov 20)
CHEM 203 Topics Discussed on Nov. 23 Desirability of a method for "alcohol activation" that would be stereochemically complementary to that involving reaction of an alcohol with P / S halides (notes of Nov 20): PBr3 CH S Na 3 overall (inversion of H (inversion) H retention configuration) Br SMe (S)-2-bromobutane (R)-configured pdt. H OH (R)-2-butanol ? (S)-configured pdt. overall H inversion SMe Sulfonyl chlorides: para-toluenesulfonyl ("tosyl") chloride, methanesulfonyl ("mesyl") chloride O O O R S Cl H3C S Cl S Cl O O O A generic sulfonyl methanesulfonyl chloride Toluene para-toluenesulfonyl chloride chloride: R = any ( "mesyl chloride" ) (= methyl benzene) ( "tosyl chloride" ) alkyl group Pyridine: a weakly basic, nucleophilic analog of benzene in which an N atom replaces a CH unit: pyridine N Reaction of primary and secondary alcohols with sulfonyl chlorides in the presence of pyridine: formation of sulfonate esters (= alkyl sulfonates): R1 O R1 O OH + Cl S R N O S R + R2 O R2 N O H Cl a generic primary or an "alkyl sulfonate" secondary alcohol ("tosylate", "mesylate," etc.) note: tertiary alcohols are insufficiently nucleophilic to react with sulfonyl chlorides Presumed mechanism for the formation of sulfonate esters from primary and secondary (but not tertiary) alcohols and sulfonyl chlorides: • slow rate of reaction of an alcohol with sulfonyl chlorides in the presence of generic bases Lecture of Nov. 23 p. 2 • pyridine as a nucleophilic catalyst that greatly accelerates the reaction of an alcohol with a sulfonyl chloride by: (i) -
Radical Approaches to Alangium and Mitragyna Alkaloids
Radical Approaches to Alangium and Mitragyna Alkaloids A Thesis Submitted for a PhD University of York Department of Chemistry 2010 Matthew James Palframan Abstract The work presented in this thesis has focused on the development of novel and concise syntheses of Alangium and Mitragyna alkaloids, and especial approaches towards (±)-protoemetinol (a), which is a key precursor of a range of Alangium alkaloids such as psychotrine (b) and deoxytubulosine (c). The approaches include the use of a key radical cyclisation to form the tri-cyclic core. O O O N N N O O O H H H H H H O N NH N Protoemetinol OH HO a Psychotrine Deoxytubulosine b c Chapter 1 gives a general overview of radical chemistry and it focuses on the application of radical intermolecular and intramolecular reactions in synthesis. Consideration is given to the mediator of radical reactions from the classic organotin reagents, to more recently developed alternative hydrides. An overview of previous synthetic approaches to a range of Alangium and Mitragyna alkaloids is then explored. Chapter 2 follows on from previous work within our group, involving the use of phosphorus hydride radical addition reactions, to alkenes or dienes, followed by a subsequent Horner-Wadsworth-Emmons reaction. It was expected that the tri-cyclic core of the Alangium alkaloids could be prepared by cyclisation of a 1,7-diene, using a phosphorus hydride to afford the phosphonate or phosphonothioate, however this approach was unsuccessful and it highlighted some limitations of the methodology. Chapter 3 explores the radical and ionic chemistry of a range of silanes. -
Hydrophilic Thin Coating and Method of Manufacturing the Same
Europaisches Patentamt European Patent Office © Publication number: 0 599 150 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 93118306.5 int. CIA B05D 1/18, C03C 17/30, C08J 7/04 @ Date of filing: 11.11.93 ® Priority: 12.11.92 JP 302124/92 © Applicant: MATSUSHITA ELECTRIC INDUSTRIAL Co., Ltd. @ Date of publication of application: 1006-banchi, Oaza-Kadoma 01.06.94 Bulletin 94/22 Kadoma-shi, Osaka(JP) © Designated Contracting States: @ Inventor: Ohtake, Tadashi DE FR GB Kawakitanaka-machi 30-15 Neyagawa-shi, Osaka 572(JP) Inventor: Mino, Norihisa Senrioka Higashi 4-6-8-806 Settsu-shi, Osaka 566(JP) Inventor: Ogawa, Kazufumi Aoyama 2-3-50 Nara-shi, Nara 630(JP) © Representative: VOSSIUS & PARTNER Siebertstrasse 4 D-81675 Munchen (DE) © Hydrophilic thin coating and method of manufacturing the same. © The invention relates to a hydrophilic thin film and a method of manufacturing the same in which a hydrophilic thin film 4 is formed by incorporating or fixing molecules comprising hydrophilic groups to a chemically adsorbed film on the surface of a substrate 1 . 7\ oj— Cl O I OH 2 ^4 $ -0— Si — 0 Si — 0 Si- -o- -Si-0- I I I I 0 0 0 0 — > 7> , , , 1 , , r-i-. i ///////////// X FIG . Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 599 150 A1 The invention relates to a hydrophilic thin film and a method of manufacturing the same. More specifically, the invention relates to a hydrophilic thin film and its method of manufacture, in which molecules comprising hydrophilic groups are incorporated or chemically bonded to the surface of a chemically adsorbed film on a substrate surface. -
Material Safety Data Sheet Scction I -IDENTIFICATION
CREAf IN6 TO ORROW Material Safety Data Sheet Scction I -IDENTIFICATION Product Name: LITHIUM SULFURYL CHLORIDE CELLS AND BATTERIES (all hermetically sealed Electrochem CSC/PMX cells) Manufacturer: Electrochem Solutions (Subsidiary of Greatbatch, lnc) 670 Paramount Drive Raynham, MA 02767 USA Telephone: 781-830-5800 Fax: 781-575-1545 Transportation Emergency Number -CHEMTREC 1-800424-9300 Revision Date -2-1 5-201 3 Section 2 - COMPOSITION/INFORMATION ON INGREDIENTS Hazardous Components: 1 ) Lithium- CAS#7439-93-2: TLV/PEL: None est. 2) Sulfuryl Chloride -CAS#7791 -25-5 TLV/PEL: None established 3) Chlorine (Cl2) -CAS# 7782-50-5 ACGIH: 0.5m9/m3 TWA/1ppm STEL 4) Carbon CAS# 1333-86-4 ACGIH: 3.5 mg/m3 TWA For cell lithium content, refer to technical datasheet information. Scction 3-HAZARDS IDENTIFICATION DANGER - lnternal contents are extremely hazardous. Leaking fluid is corrosive and dangerous upon inhalation. Battery may be explosive at higher temperatures. Do not expose to temperatures above the maximum rated temperature as specified by the manufacturer due to potential leak hazard. lf batterv leaks or vents: Primary Routes of Entry: Inhalation or skin contact Carcinogenicity: Not listed by NTP, IARC, or regulated by OSHA Health Hazards: Acute -Vapors are very irritating to skin, eyes, and mucous membranes. lnhalation of sulfuryl chloride or thionyl chloride vapors can result in pulmonary edema. Chronic - Overexposure can cause symptoms of non-fibrotic lung injury. Signs and symtoms of exposure : Eye and mucous membrane irritation. Medical conditions generally aggravated by exposure: Asthma, or other respiratory conditions, skin allergies, and eczema. MSDS-OOO3 Rev. B ECO# I 1598 Page 1 (/atltlrvc toinoRpow Scction 4 -FIRST AID MEASURES Eye Contact: Flush with running water for at least 15 minutes while holding eyelids apart. -
R. B. Woodward Precipitation of Barium in the Copper-Tin Group Of
HETEROCYCLES, Vol. 7, No. 1. 1977 R. B. Woodward Precipitation of barium in the copper-tin group of qualitative analysis. W.J.Hal1 and RBW, -Ind. Eng. Chem., Anal. Ed., 6, 478 (1934). A new pressure regulator for vacuum distillation. R.L.Emerson and RBW, g.,2, 347 (1937). The Staling of coffee. II. S.C.Prescott, R.L.Emerson, RBW, and R. Heggie, Food Re- --search, 2, 165 (1937). Pyrolysis of organomagnesium compounds. I. A new agent for the reduction of bemophenone. D.B.Clapp, and RBW, 1. ---Am. Chem. Soc., -60, 1019 (1938). The direct introduction of the angular methyl group. RBW, Ibid., 62, 1208 (1940). Experiments on the synthesis of oestrone. I. 2-(8-phenylethy1)-furans as components in the diene synthesis. RBW, Ibid., 62, 1478 (1940). The formation of Reissert's compounds in non-aqueous media. RBW, Ibid., 62, 1626 (1940). A new optically active reagent for carbonyl compounds. The resolution of -dl-camphor. RBW, T. P. Kohman, and G. C. Harris, Ibid., 63, lu) (1941). The isolation and properties of 1, 1-dineopentylethylene, a component of triisobutylene. P.D.Bartlett, G.L. Fraser, and RBW, x.,3, 495 (1941). Structure and absorption spectra of a,p-unsaturated ketones. RBW, Ibid., 3, 1123 (1941). 5 Structure and absorption spectra. II. 3-Acetoxy-A -(6)-~cholestene-7-carboxylicacid. RBW, and A.F.Clifiord, -Ibid., -63, 2727 (1941). The structure of cantharidine and the synthesis of desoxycantharidine. RLW, and R.B. Loftfield, Ibid., 3, 3167 (1941). -t-Butyllithium. P.D.Bardett, C .G.Swain, and RBW, --Ibid., 63, 3229 (1941). -
Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: the Effect of Reaction Conditions
polymers Article Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: The Effect of Reaction Conditions Balázs Pásztói 1,2,* , Tobias M. Trötschler 3,4,5, Ákos Szabó 1, Györgyi Szarka 1, Benjamin Kerscher 3,4 , Rolf Mülhaupt 3,4,5,* and Béla Iván 1,* 1 Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; [email protected] (Á.S.); [email protected] (G.S.) 2 George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 2, H-1117 Budapest, Hungary 3 Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany; [email protected] (T.M.T.); [email protected] (B.K.) 4 Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany 5 Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany * Correspondence: [email protected] (B.P.); [email protected] (R.M.); [email protected] (B.I.) Received: 7 October 2020; Accepted: 24 October 2020; Published: 28 October 2020 Abstract: Endfunctional polymers possess significant industrial and scientific importance. Sulfonyl endgroups, such as tosyl and nosyl endfunctionalities, due their ease of substitution are highly desired for a variety of polymer structures. The sulfonylation of hydroxyl-terminated polyisobutylene (PIB-OH), a chemically and thermally stable, biocompatible, fully saturated polymer, with tosyl chloride (TsCl) and nosyl chloride (NsCl) is presented in this study. -
Material Safety Data Sheet
Material Safety Data Sheet Sulfuryl chloride fluoride, distilled, 99% ACC# 88306 Section 1 - Chemical Product and Company Identification MSDS Name: Sulfuryl chloride fluoride, distilled, 99% Catalog Numbers: AC176260000, AC176260100, AC176260250 Synonyms: Chloro fluoro sulfone; Chlorosulfonyl fluoride; Fluorosulfonyl chloride; Sulfonyl chloride fluoride; Sulfuryl chlorofluoride; Sulfuryl fluorochloride Company Identification: Acros Organics N.V. One Reagent Lane Fair Lawn, NJ 07410 For information in North America, call: 800-ACROS-01 For emergencies in the US, call CHEMTREC: 800-424-9300 Section 2 - Composition, Information on Ingredients CAS# Chemical Name Percent EINECS/ELINCS 13637-84-8 Sulfuryl chloride fluoride, distilled 99 237-126-2 Section 3 - Hazards Identification EMERGENCY OVERVIEW Appearance: clear, colorless clear liquid. Danger! Corrosive. Causes eye and skin burns. May cause severe respiratory tract irritation with possible burns. May cause severe digestive tract irritation with possible burns. Moisture sensitive. Target Organs: No data found. Potential Health Effects Eye: Causes eye burns. May cause chemical conjunctivitis and corneal damage. Skin: Causes skin burns. May cause skin rash (in milder cases), and cold and clammy skin with cyanosis or pale color. Ingestion: May cause severe and permanent damage to the digestive tract. Causes gastrointestinal tract burns. May cause perforation of the digestive tract. May cause systemic effects. Inhalation: Causes chemical burns to the respiratory tract. Inhalation may be fatal as a result of spasm, inflammation, edema of the larynx and bronchi, chemical pneumonitis and pulmonary edema. May cause systemic effects. May cause burning sensation, coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and vomiting. Chronic: Effects may be delayed. Section 4 - First Aid Measures Eyes: Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. -
Mild Reductive Functionalization of Amides Into N‐Sulfonylformamidines
http://www.diva-portal.org This is the published version of a paper published in ChemistryOpen. Citation for the original published paper (version of record): Trillo, P., Slagbrand, T., Tinnis, F., Adolfsson, H. (2017) Mild Reductive Functionalization of Amides into N-Sulfonylformamidines. ChemistryOpen, 6(4): 484-487 https://doi.org/10.1002/open.201700087 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-138585 DOI:10.1002/open.201700087 Mild Reductive Functionalization of Amides into N- Sulfonylformamidines Paz Trillo,[a] Tove Slagbrand,[a] Fredrik Tinnis,*[a] and Hans Adolfsson*[a, b] The development of aprotocolfor the reductivefunctionaliza- tion of amides into N-sulfonylformamidines is reported. The one-pot procedure is based on amild catalytic reduction of tertiaryamides into the corresponding enamines by the use of Mo(CO)6 (molybdenum hexacarbonyl) and TMDS (1,1,3,3-tetra- methyldisiloxane). The formed enamines were allowed to react with sulfonyl azidestogive the target compounds in moderate to good yields. The amidine functional group is frequently found in biological- ly activecompounds possessing anti-inflammatory,antibacteri- al, antiviral, antibiotic, and anestheticproperties.[1] They are also employed as intermediates and precursors in organic syn- thesis of importantheterocyclic compounds such as imida- zoles, quinazolines,isoquinolines, and pyrimidines.[2] Further- more, amidines are employed as ligandsinmetal complexes and as protecting groups for primary amines.[3] Scheme1.Preparation of amidines through a–c) electrophilic amide activa- The stability of amides makes this functional group valuable tion and d) reductive functionalization of amides. -
Reactions of Enantiopure Cyclic Diols with Sulfuryl Chloride
Organic & Biomolecular Chemistry Reactions of enantiopure cyclic diols with sulfuryl chloride Journal: Organic & Biomolecular Chemistry Manuscript ID: OB-ART-01-2014-000042.R1 Article Type: Paper Date Submitted by the Author: 06-Feb-2014 Complete List of Authors: Stevenson, P J; Queens University, School of Chemistry and Chemical Engineering Boyd, D; Queens University, Department of Chemistry Sharma, Narain; Queens University, Department of Chemistry Kaik, Magdalena; Queens University, Department of Chemistry McIntyre, Peter; Queens University, Department of Chemistry Malone, John; The Queens University of Belfast, School of Chemistry & Chemical Engineering Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online. graphicalextract.cdx Page 1 of 9 Journal Name Organic & Biomolecular Chemistry Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE Reactions of enantiopure cyclic diols with sulfuryl chloride Derek R. Boyd, Narain D. Sharma, Magdalena Kaik, Peter B. A. M cIntyre, John F. Malone and Paul J. Stevenson* 5 Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x Monocyclic allylic cis -1,2-diols reacted with sulfuryl chloride at 0 oC in a regio- and stereo-selective manner to give 2-chloro-1-sulfochloridates, which were hydrolysed to yield the corresponding trans -1,2- o 10 chlorohydrins. At -78 C, with very slow addition of sulfuryl chloride, cyclic sulfates were formed in good yields, proved to be very reactive with nucleophiles and rapidly decomposed on attempted storage. Reaction of a cyclic sulfate with sodium azide yielded a trans -azidohydrin without evidence of allylic rearrangement occurring. -
Fluoropropanesulfonyl Chloride As a Prosthetic Agent for The
Use of 3-[18F]fluoropropanesulfonyl chloride as a prosthetic agent for the radiolabelling of amines: Investigation of precursor molecules, labelling conditions and enzymatic stability of the corresponding sulfonamides Reik Löser*1,2, Steffen Fischer3, Achim Hiller3, Martin Köckerling4, Uta Funke3, Aurélie Maisonial3, Peter Brust3 and Jörg Steinbach1,2,3 Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2013, 9, 1002–1011. 1Institute of Radiopharmaceutical Cancer Research (formerly Institute doi:10.3762/bjoc.9.115 of Radiopharmacy), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany, 2Department of Received: 05 February 2013 Chemistry and Food Chemistry, Technical University of Dresden, Accepted: 26 April 2013 Bergstraße 66c, 01062 Dresden, Germany, 3Institute of Published: 27 May 2013 Radiopharmaceutical Cancer Research, HZDR Research Site Leipzig, Permoserstraße 15, 04318 Leipzig, Germany and 4Institute of This article is part of the Thematic Series "Synthetic probes for the study Chemistry, University of Rostock, Inorganic Solid-State Chemistry of biological function". Group, Albert-Einstein-Straße 3a, 18059 Rostock, Germany Guest Editor: J. Aubé Email: Reik Löser* - [email protected] © 2013 Löser et al; licensee Beilstein-Institut. License and terms: see end of document. * Corresponding author Keywords: fluorine-18; hydrolytic metabolism; prosthetic groups; radiochemistry; sulfonamides Abstract 3-[18F]Fluoropropanesulfonyl chloride, a recently proposed prosthetic agent for fluorine-18 labelling, was prepared in a two-step radiosynthesis via 3-[18F]fluoropropyl thiocyanate as an intermediate. Two benzenesulfonate-based radiolabelling precursors were prepared by various routes. Comparing the reactivities of 3-thiocyanatopropyl nosylate and the corresponding tosylate towards [18F]fluoride the former proved to be superior accounting for labelling yields of up to 85%. -
Sulfuryl Chloride Final AEGL Document
Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 10 Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Division on Earth and Life Studies Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 10 THE NATIONAL ACADEMIES PRESS 500 FIFTH STREET, NW WASHINGTON, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Insti- tute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This project was supported by Contract No. W81K04-06-D-0023 and EP-W-09-007 be- tween the National Academy of Sciences and the U.S. Department of Defense and the U.S. Environmental Protection Agency. Any opinions, findings, conclusions, or recom- mendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the organizations or agencies that provided support for this project. International Standard Book Number-13: 978-0-309-21987-7 International Standard Book Number-10: 0-309-21987-6 Additional copies of this report are available from The National Academies Press 500 Fifth Street, NW Box 285 Washington, DC 20055 800-624-6242 202-334-3313 (in the Washington metropolitan area) http://www.nap.edu Copyright 2011 by the National Academy of Sciences.