Benzyl-Isothiocyanate Induces Apoptosis and Inhibits Migration

Total Page:16

File Type:pdf, Size:1020Kb

Benzyl-Isothiocyanate Induces Apoptosis and Inhibits Migration Journal of Cancer 2017, Vol. 8 240 Ivyspring International Publisher Journal of Cancer 2017; 8(2): 240-248. doi: 10.7150/jca.16402 Research Paper Benzyl-isothiocyanate Induces Apoptosis and Inhibits Migration and Invasion of Hepatocellular Carcinoma Cells in vitro Mingyue Zhu1,2, Wei Li1,2, Xu Dong1,2, Yi Chen1,2, Yan Lu1,2, Bo Lin1,2, Junli Guo1, Mengsen Li1,2,3 1. Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, PR. China. 2. Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, PR. China. 3. Institution of Tumor, Hainan Medical College, Haikou 570102, Hainan Province, PR. China. Corresponding author: Mengsen Li, Professor, Ph.D; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, 3 Xueyuan Road, Longhua District, Haikou 571199, Hainan Province, PR. China. Tel/Fax: +86-898-66895322; Email: [email protected]. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2016.06.06; Accepted: 2016.10.29; Published: 2017.01.15 Abstract Despite consideration of benzyl isothiocyanate(BITC) is applied to prevention and therapeutic of cancer, the role of BITC in inducing apoptosis, and inhibiting migration and invasion of hepatocellular carcinoma(HCC) cells is still unclear. In this study, we aim to explore the effects of BITC on the growth, migration and invasion of HCC cells in vitro. When human HCC cell lines, Bel 7402 and HLE, were treated with an optimal concentration of BITC for 48 hours, the results indicated that BITC inhibits growth and promotes apoptosis of HCC cells; BITC has a significant inhibitory effect on the migration and invasion of HCC cells. BITC stimulated expression of caspase-3/8 and PARP-1, and suppressed expression of survivin, MMP2/9 and CXCR4. BITC also inhibited the enzymatic activities of MMP2 and MMP9. Altogether, BITC was able to induce apoptosis and suppress the invasive and migratory abilities of Bel 7402 and HLE cells. The role mechanism of BITC might involve an up-regulating the expression of apoptosis-related proteins and down-regulating the expression of metastasis-related proteins. BITC may be applied as a novel chemotherapy for HCC patients. Key words: Benzyl isothiocyanate (BITC), Hepatocellular carcinoma cells, Apoptosis, Metastasis. Introduction Hepatocellular carcinoma (HCC) is the sixth The preventive effects of cruciferous vegetables, most common cancer and the third most common such as broccoli, cabbage, and cauliflower, against cause of cancer death[1,2]. Although an increasing cancer have been suggested to be owing to their number of new methods are now applied to treat relatively high composition of glucosinolates, which HCC patients, surgery and chemotherapy are still the release biologically active isothiocyanates (ITCs) [6,7], most important therapeutic approaches for HCC ITCs play important roles in the detoxification of patients[3]. HCC cells are often refractory or resistant carcinogens[8,9]. Benzyl isothiocyanate (BITC) is a to standard chemotherapy and radiotherapy[4]. Drug member of the ITC family, and it is formed from the resistance and tumor recurrence or metastasis are hydrolysis of glucotropaeolin in cruciferous quite common in HCC patients, even in patients vegetables. Many studies have reported that BITC undergoing liver cancer resection or chemotherapy, prevents cancers in laboratory animals and might also and the survival ratio is only 30% to 40% at 5 years be chemoprotective in humans because BITC has postoperatively [5]. Moreover, malignant behaviors, displayed anti-tumor activities in many types of such as drug resistance and metastasis, often lead to cancer, including breast cancer[10,11], prostate poor prognoses for HCC patients. cancer[12], and HCC[13,14]. These data indicated that http://www.jcancer.org Journal of Cancer 2017, Vol. 8 241 BITC can be applied to prevent and treat cancer. dihydrochloride(DAPI) solution. The cells were Recently, we reported that BITC plays a role in imaged using a fluorescence microscope at inhibiting the growth of HCC cells through arresting 100×magnification. In this study, nuclear pyknosis cell cycle[15]. These results suggested that BITC is and fragmentation were taken to define apoptosis, able to suppress the malignant behaviors of HCC and these criteria were evaluated by fluorescence cells. However, whether BITC plays a role in inducing microscopy as previously described[18,19]. apoptosis and inhibiting the migration and invasion of HCC cells is still unclear. In the present study, we Flow cytometry was used to analyze apoptosis found that BITC promotes apoptosis and suppresses Bel 7402 cells and HLE cells were cultured in the migration and invasion of HCC cells via RPMI-1640 medium supplemented with 10% FCS at regulating the expression of apoptosis- and 37°C in a humidified atmosphere and 5% CO2. The metastasis-related proteins. This study provides an cells were treated with BITC (40 µmol/L or 80 evidence for the potential application of BITC as an µmol/L) for 48 h, and the extent of apoptosis in Bel adjuvant treatment to inhibit metastasis and enhance 7402 cells or HLE cells was analyzed by flow chemotherapy. BITC is a novel nutrient for the cytometry as previously described[19]. prevention and treatment of HCC. Cell migration and invasion were detected by Material and methods the Transwellmethod Cell migration and invasion assays were carried Cell culture out according to the manufacturer’s protocols and as In this study, we selected the human HCC cell previously described[20]. To measure cell migration, lines Bel 7402 (AFP-producer) and HLE transwell chambers were used to observe cultured cell (non-AFP-producer) for testing. These cells were the inserts (Transwell chamber; 8-mm pore size; Costar, gifts from the Department of Cell Biology, Peking High Wycombe, UK). Bel 7402 cells and HLE cells University Health Science Center (Beijing, China), and (5×104) were added to the upper chambers and the cells were cultured with RPMI-160 medium cultured with serum-free RPMI-1640 medium and supplemented with 10% heat-inactivated fetal calf treated with BITC (40 µmol/L or 80 µmol/L) for 48 h, serum (FCS) and were incubated at 37°C in a whereas the lower chamber was filled with complete humidified atmosphere containing 5% CO2 as medium containing 20% FCS. After 48 h of incubation, described[16]. the cells in the upper chamber were carefully removed with a cotton swab, and those that had Cell growth detection by MTT methods migrated through the membrane to the lower surface 4 A total of 1.5×10 Bel 7402 cells or HLE cells were fixed with 90% methanol and stained with 0.1% were plated in each well of 96-well plates and crystal violet. The number of cells that had migrated cultured in RPMI-1640 medium supplemented with through the pores was quantified by counting five 10% FCS at 37°C in a humidified atmosphere of 5% independent visual fields using a microscope CO2 for 48 h. The cells were cultured with medium (Olympus) with a 20×objective. For invasion assays, not containing FCS for another 24 h and treated with transwell chambers were covered with Matrigel (BD different concentrations of BITC (10-80µmol/L) for 48 Falcon, USA), and the experimental procedure was h. The effects of BITC(Sigma-Aldrich Company Ltd, similar to that for the migration assays. The migratory St. Louis, MO,UAS) treatment on cells growth were cell or invasive cell ratio=(numbers of untreated measured by a methylthiazolyldiphenyl-tetrazolium groups-numbers of treated groups)/ numbers of bromide(MTT) assay as previously described[17]. The untreated groups. growth ratio was calculated using the following formula: growth ratio=(control group A490-treated Gelatin zymography assays for MMP2 and group A490)/ control group A490×100% MMP9 activities Bel 7402 cells and HLE cells were treated with Cell morphology was observed by microscopy BITC (40 µmol/L or 80 µmol/L) for 48 h, and and nuclear staining with DAPI MMP-2/9 protease activities in the concentrated To observe alterations in cellular morphology supernatants of Bel 7402 cells or HLE cells were induced by BITC, Bel 7402 cells or HLE cells were detected by gelatin zymography. Briefly, SDS-PAGE 4 plated at a density of 2.0×10 /ml in 24-well plates. under non-reducing conditions was completed using The cells were treated with 40 µmol/L or 80 µmol/L gels containing 1% gelatin (Mini-PROTEAN II system; BITC. After treatment for 48 h, cellular morphology Bio-Rad), and electrophoresis was carried out at 4˚C. was observed under light microscopy, and the cells After washing with 2% Triton X-100 to remove the were stained with 4,6-diamidino-2-phenylindole http://www.jcancer.org Journal of Cancer 2017, Vol. 8 242 SDS, the gels were incubated at 37˚C with buffer microscopy using DAPI staining, where the numbers containing 50 mM Tris (pH 7.5), 5 mmol/CaCl2 and 1 of cells with cellular nuclear condensation and mmol/l ZnCl2 for 18 h. MMP2/9 activities were pyknosis were significantly increased. In addition, the visualized by staining with Coomassie Blue morphological characteristics of apoptosis, including R-250(Bio-Rad) as previously described [21]. apoptosome formation and nuclear shrinkage, were apparent in the BITC-treated Bel 7402 cells and HLE Western blotting analysis cells. The flow cytometric analysis demonstrated that To estimate the influence of BITC on the when Bel 7402 cells and HLE cells were treated with expression of apoptosis-related proteins and BITC (40 µmol/L or 80 µmol/L) for 48 h, the apoptosis metastasis-related proteins, Bel 7402 cells and HLE ratio of the cells significantly increased (Figure 2).
Recommended publications
  • Effects of Cruciferous Vegetable Consumption on Urinary
    Cancer Epidemiology, Biomarkers & Prevention 997 Effects of Cruciferous Vegetable Consumption on Urinary Metabolites of the Tobacco-Specific Lung Carcinogen 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone in Singapore Chinese Stephen S. Hecht,1 Steven G. Carmella,1 Patrick M.J. Kenney,1 Siew-Hong Low,2 Kazuko Arakawa,3 and Mimi C. Yu3 1University of Minnesota Cancer Center, Minneapolis, Minnesota; 2Department of Community, Occupational, and Family Medicine, National University of Singapore, Singapore; and 3Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California Abstract Vegetable consumption, including cruciferous vegeta- major glucosinolates in seven of the nine cruciferous bles, is protective against lung cancer, but the mechan- vegetables, accounting for 70.0% to 93.2% of all glu- isms are poorly understood. The purpose of this study cosinolates in these vegetables. There was a significant was to investigate the effects of cruciferous vegetable correlation (P = 0.01) between increased consumption consumption on the metabolism of the tobacco-specific of glucobrassicins and decreased levels of NNAL in lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1- urine after adjustment for number of cigarettes smoked butanone (NNK) in smokers. The study was carried out per day; similar trends were observed for NNAL-Glucs in Singapore Chinese, whose mean daily intake of (P = 0.08) and NNAL plus NNAL-Glucs (P = 0.03). cruciferous vegetables is three times greater than that These results are consistent with those of previous of people in the United States. Eighty-four smokers studies, which demonstrate that indole-3-carbinol de- provided urine samples and were interviewed about creases levels of urinary NNAL probably by inducing dietary habits using a structured questionnaire, which hepatic metabolism of NNK.
    [Show full text]
  • Isothiocyanates from Cruciferous Vegetables
    Isothiocyanates from Cruciferous Vegetables: Kinetics, Biomarkers and Effects Martijn Vermeulen Promotoren Prof. dr. Peter J. van Bladeren Hoogleraar Toxicokinetiek en Biotransformatie, leerstoelgroep Toxicologie, Wageningen Universiteit Prof. dr. ir. Ivonne M.C.M. Rietjens Hoogleraar Toxicologie, Wageningen Universiteit Copromotor Dr. Wouter H.J. Vaes Productmanager Nutriënten en Biomarker analyse, TNO Kwaliteit van Leven, Zeist Promotiecommissie Prof. dr. Aalt Bast Universiteit Maastricht Prof. dr. ir. M.A.J.S. (Tiny) van Boekel Wageningen Universiteit Prof. dr. Renger Witkamp Wageningen Universiteit Prof. dr. Ruud A. Woutersen Wageningen Universiteit / TNO, Zeist Dit onderzoek is uitgevoerd binnen de onderzoeksschool VLAG (Voeding, Levensmiddelen- technologie, Agrobiotechnologie en Gezondheid) Isothiocyanates from Cruciferous Vegetables: Kinetics, Biomarkers and Effects Martijn Vermeulen Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. M.J. Kropff, in het openbaar te verdedigen op vrijdag 13 februari 2009 des namiddags te half twee in de Aula. Title Isothiocyanates from cruciferous vegetables: kinetics, biomarkers and effects Author Martijn Vermeulen Thesis Wageningen University, Wageningen, The Netherlands (2009) with abstract-with references-with summary in Dutch ISBN 978-90-8585-312-1 ABSTRACT Cruciferous vegetables like cabbages, broccoli, mustard and cress, have been reported to be beneficial for human health. They contain glucosinolates, which are hydrolysed into isothiocyanates that have shown anticarcinogenic properties in animal experiments. To study the bioavailability, kinetics and effects of isothiocyanates from cruciferous vegetables, biomarkers of exposure and for selected beneficial effects were developed and validated. As a biomarker for intake and bioavailability, isothiocyanate mercapturic acids were chemically synthesised as reference compounds and a method for their quantification in urine was developed.
    [Show full text]
  • Glucosinolates As Undesirable Substances in Animal Feed1
    The EFSA Journal (2008) 590, 1-76 Glucosinolates as undesirable substances in animal feed1 Scientific Panel on Contaminants in the Food Chain (Question N° EFSA-Q-2003-061) Adopted on 27 November 2007 PANEL MEMBERS Jan Alexander, Guðjón Atli Auðunsson, Diane Benford, Andrew Cockburn, Jean-Pierre Cravedi, Eugenia Dogliotti, Alessandro Di Domenico, Maria Luisa Férnandez-Cruz, Peter Fürst, Johanna Fink-Gremmels, Corrado Lodovico Galli, Philippe Grandjean, Jadwiga Gzyl, Gerhard Heinemeyer, Niklas Johansson, Antonio Mutti, Josef Schlatter, Rolaf van Leeuwen, Carlos Van Peteghem and Philippe Verger. SUMMARY Glucosinolates (alkyl aldoxime-O-sulphate esters with a β-D-thioglucopyranoside group) occur in important oil- and protein-rich agricultural crops, including among others Brassica napus (rapeseed of Canola), B. campestris (turnip rape) and Sinapis alba (white mustard), all belonging to the plant family of Brassicaceae. They are present in all parts of these plants, with the highest concentrations often found in seeds. Several of these Brassica species are important feed ingredients and some species are also commonly used in human nutrition such as cauliflower, cabbages, broccoli and Brussels sprouts. Glucosinolates and their breakdown products determine the typical flavour and (bitter) taste of these vegetables. 1For citation purposes: Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the European Commission on glucosinolates as undesirable substances in animal feed, The EFSA Journal (2008) 590, 1- 76 © European Food Safety Authority, 2008 Glucosinolates as undesirable substances in animal feed The individual glucosinolates vary in structure and the configuration of their side chain. They are hydrophilic and rather stable and remain in the press cake of oilseeds when these are processed and de-oiled.
    [Show full text]
  • Cancer Chemoprevention by Sulforaphane, a Bioactive Compound
    Cancer Chemoprevention by Sulforaphane, a Bioactive Compound from Broccoli/Broccoli Sprouts DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yanyan Li Graduate Program in Food Science and Nutrition The Ohio State University 2011 Dissertation Committee: Dr. Steven Schwartz, Advisor Dr. Duxin Sun, Co-advisor Dr. Steven Clinton Dr. Hua Wang Dr. Earl Harrison Copyrighted by Yanyan Li 2011 Abstract Sulforaphane, a bioactive compound from broccoli and broccoli sprouts, possess potent cancer chemopreventive activity. In the current studies, we have revealed a novel molecular target of sulforaphane in pancreatic cancer, evaluated the effect of sulforaphane on breast cancer stem cells, and compared different broccoli sprout preparations for delivery of sulforaphane for future chemoprevention studies. We showed that heat shock protein 90 (Hsp90), a molecular chaperone regulating the maturation of a wide range of oncogenic proteins, as a novel target of sulforaphane. Different from traditional Hsp90 inhibitors that block ATP binding to Hsp90, sulforaphane disrupted Hsp90-p50 Cdc37 interaction, induced Hsp90 client degradation, and inhibited pancreatic cancer in vitro and in vivo . We traced its activity to a novel interaction site of Hsp90. Proteolytic fingerprinting and LC-MS revealed sulforaphane interaction with Hsp90 N-terminus and p50 Cdc37 central domain. LC-MS tryptic peptide mapping and NMR spectra of full-length Hsp90 identified a covalent sulforaphane adduct in sheet 2 and the adjacent loop in Hsp90 N-terminal domain. Furthermore, we investigated the combination efficacy of sulforaphane and 17-allylamino 17- demethoxygeldanamycin (17-AAG) in pancreatic cancer.
    [Show full text]
  • Brassica Oleracea Var. Capitata) Germplasm
    Article Profiling of Individual Desulfo-Glucosinolate Content in Cabbage Head (Brassica oleracea var. capitata) Germplasm Shiva Ram Bhandari 1, Juhee Rhee 2, Chang Sun Choi 3, Jung Su Jo 1, Yu Kyeong Shin 1 and Jun Gu Lee 1,4,* 1 Department of Horticulture, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; [email protected] (S.R.B.), [email protected] (J.S.J.), [email protected] (Y.K.S.) 2 National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; [email protected] 3 Breeding Research Institute, Koregon Co., Ltd, Gimje 54324, Korea; [email protected] 4 Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Korea * Correspondence: [email protected]; Tel.: +82-63-270-2578 Received: 24 March 2020; Accepted: 16 April 2020; Published: 17 April 2020 Abstract: Individual glucosinolates (GSLs) were assessed to select cabbage genotypes for a potential breeding program. One hundred forty-six cabbage genotypes from different origins were grown in an open field from March to June 2019; the cabbage heads were used for GSL analyses. Seven aliphatics [glucoiberin (GIB), progoitrin (PRO), epi-progoitrin (EPI), sinigrin (SIN), glucoraphanin (GRA), glucoerucin (GER) and gluconapin (GNA)], one aromatic [gluconasturtiin (GNS)] and four indolyl GSLs [glucobrassicin (GBS), 4-hydroxyglucobrassicin (4HGBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (NGBS)] were found this study. Significant variation was observed in the individual GSL content and in each class of GSLs among the cabbage genotypes. Aliphatic GSLs were predominant (58.5%) among the total GSLs, followed by indolyl GSL (40.7%) and aromatic GSLs (0.8%), showing 46.4, 51.2 and 137.8% coefficients of variation, respectively.
    [Show full text]
  • The Impacts of Imazapic on Garlic Mustard and Non- Target Forest Floor Vegetation in Central Kentucky’S Hardwood Forests
    University of Kentucky UKnowledge Theses and Dissertations--Forestry and Natural Resources Forestry and Natural Resources 2021 THE IMPACTS OF IMAZAPIC ON GARLIC MUSTARD AND NON- TARGET FOREST FLOOR VEGETATION IN CENTRAL KENTUCKY’S HARDWOOD FORESTS Pavan Kumar Podapati University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0003-3800-5774 Digital Object Identifier: https://doi.org/10.13023/etd.2021.294 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Podapati, Pavan Kumar, "THE IMPACTS OF IMAZAPIC ON GARLIC MUSTARD AND NON-TARGET FOREST FLOOR VEGETATION IN CENTRAL KENTUCKY’S HARDWOOD FORESTS" (2021). Theses and Dissertations--Forestry and Natural Resources. 62. https://uknowledge.uky.edu/forestry_etds/62 This Master's Thesis is brought to you for free and open access by the Forestry and Natural Resources at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Forestry and Natural Resources by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Characterizing the Roles of Dietary Sulforaphane in Human Health
    AN ABSTRACT OF THE DISSERTATION OF Lauren L. Atwell for the degree of Doctor of Philosophy in Nutrition presented on May 27, 2015. Title: Characterizing the Roles of Dietary Sulforaphane in Human Health Abstract approved: ______________________________________________________ Emily Ho The consumption of cruciferous vegetables is associated with several health benefits, including cancer prevention. Many of these benefits are attributed to the phytochemical, sulforaphane (SFN), which is derived from cruciferous vegetables such as broccoli and broccoli sprouts. These vegetables contain glucoraphanin (GFN), SFN’s precursor, which is converted to SFN by the plant enzyme, myrosinase. Studies have shown that SFN influences a variety of biological pathways that are thought to be critical for maintaining health and preventing disease. For example, SFN has been shown to reduce inflammation and oxidative stress, and promote cancer cell-specific cell cycle arrest and apoptosis, leaving healthy cells intact. While several of the health-promoting effects of SFN may be mediated by the Keap1/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/antioxidant response element (ARE) pathway, emerging evidence suggests that epigenetic mechanisms involving histone deacetylases (HDAC), DNA methyltransferases (DNMT) and microRNAs (miRNA) may also play a role (Chapter 1). Much of what is known about SFN comes from studies conducted in cell cultures and animal models using high doses of SFN and purified chemical forms. Observations from these studies may not reflect events that occur in humans who obtain SFN from dietary sources, such as broccoli and broccoli sprouts. Only a few studies have been conducted to evaluate the effects of SFN in humans, and results sometimes vary from those seen in preclinical studies.
    [Show full text]
  • ALLELOCHEMICALS ISOLATED from TISSUES of the INVASIVE WEED GARLIC MUSTARD (Alliaria Petiolata) I
    Joumal of Chemical Ecology. HII. 25. No. II. 1999 ALLELOCHEMICALS ISOLATED FROM TISSUES OF THE INVASIVE WEED GARLIC MUSTARD (Alliaria petiolata) I STEVEN F. VAUGHN* and MARK A. BERHOW Bio(lc/ive Agents Research USDA. ARS. Nll/ional Cemer jiJl' Agricultural Utilization Research 1815 N. University 51.. Peoria. Illinois 61604 <Received February 8. 1999: accepted June 23. 1999) Abstract-Garlic mustard (Alliaria {'etiolala) is a naturalized Eurasian species that has invaded woodlands and degraded habitats in the eastern United States and Canada. Several phytotoxic hydrolysis products of glucosinolates. principally allyl isothiocyanate (AITC) and benzyl isothiocyanate (BzITC). were isolated from dichloromethane extracts of garlic mustard tissues. AITC and BzITC were much more phytotoxic to wheat (Triticulll aestil'lllll) than their respective parent glucosinolates sinigrin and glucotropaeolin. However. garden cress (Le{'idium sativlIIn) growth was inhibited to a greater degree by glucotropaeolin than BzITC. possibly due to conversion to BzITC by endogenous myrosinase. Sinigrin and glucotropaeolin were not detected in leaf/stem tissues harvested at the initiation of flowering. but were present in leaves and stems harvested in the autumn. Sinigrin levels in roots were similar for both sampling dates. but autumn-harvested roots contained glucotropaeolin at levels over three times higher than spring-harvested roots. The dominance of garlic mustard in forest ecosystems may be attributable in part to release of these phytotoxins. especially from root tissues. Key Words-Garlic mustard. AIlia ria {'etiolala. Brassicaceae. glucosinolates. allelopathy. phytotoxins. allyl isothiocyanate. benzyl isothiocyanate. sinigrin. glucotropaeolin. "To whom correspondence should be addressed. I Names are necessary to report factually on available data; however.
    [Show full text]
  • Impact of Consumers' Bitter Taste Phenotype, Familiarity, Liking
    Impact of consumers’ bitter taste phenotype, familiarity, liking, demography and food lifestyle on the intake of bitter-tasting coarse vegetables Tove Kjær Beck PhD project thesis 2014 Food, metabolomics and Sensory Science Department of Food Science Aarhus University Kirstinebjergvej 10 DK-5792 Aarslev Denmark Main supervisor Associate professor Ulla Kidmose Food, metabolomics and Sensory Science Department of Food Science Aarhus University Co-supervisor Post doc Sidsel Jensen Food, metabolomics and Sensory Science Department of Food Science Aarhus University Opponents: Associate professor Marianne Hammershøj Food Chemistry and Technology Department of Food Science Aarhus University, Denmark Dr. Lisa Methven Food and Nutritional Sciences University of Reading, UK Professor Wender L. P. Bredie Section for Sensory and Consumer Sciences Department of Food Science University of Copenhagen, Denmark II I. Preface and acknowledgements This thesis is submitted in partly fulfilment of the requirements for the degree of Doctor of Science at Aarhus University (AU), Department of Food Science, in the research group Food, metabolomics and Sensory Science. All this work could not have been done without the financial support of The Danish Council for Strategic Research’s Programme Commission on Health, Food and Welfare (contract number: 2101-09-0109). and Graduate School of Science and Technology, Aarhus University. It is the result of inspiring work on part of the so-called MAXVEG project. “MAXVEG” stands for ‘Maximizing the taste and health value of plant food products - impact on vegetable consumption, consumer preferences and human health factors’. I am really grateful that this part of the project was appointed to me. It was a windfall and a privilege to join such a team on such fascinating work.
    [Show full text]
  • Disarming the Mustard Oil Bomb
    Disarming the mustard oil bomb Andreas Ratzka*, Heiko Vogel*†, Daniel J. Kliebenstein‡, Thomas Mitchell-Olds*, and Juergen Kroymann* *Department of Genetics and Evolution, Max Planck Institute for Chemical Ecology, Winzerlaer Strasse 10, 07745 Jena, Germany; and ‡Department of Vegetable Crops, University of California, Davis, CA 95616 Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved June 27, 2002 (received for review February 25, 2002) Plants are attacked by a broad array of herbivores and pathogens. In response, plants deploy an arsenal of defensive traits. In Bras- sicaceae, the glucosinolate–myrosinase complex is a sophisticated two-component system to ward off opponents. However, this so-called ‘‘mustard oil bomb’’ is disarmed by a glucosinolate sulfatase of a crucifer specialist insect, diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Sulfatase activity of this en- zyme largely prevents the formation of toxic hydrolysis products arising from this plant defense system. Importantly, the enzyme acts on all major classes of glucosinolates, thus enabling diamond- back moths to use a broad range of cruciferous host plants. n response to biotic challenges, plants have evolved a broad Ivariety of defense mechanisms. These include preformed physical and chemical barriers, as well as inducible defenses. A well-studied example is the glucosinolate–myrosinase system (Fig. 1A), also referred to as ‘‘the mustard oil bomb’’ (1, 2). Cruciferous plants synthesize glucosinolates, a class of plant secondary compounds that share a core consisting of a ␤-thio- Fig. 1. Reactions catalyzed by plant myrosinase and diamondback moth GSS. glucose moiety and a sulfonated oxime, but differ by a variable (A) Myrosinase removes glucose from glucosinolates (Top), leading to the side chain derived from one of several amino acids (3).
    [Show full text]
  • Determination of Goitrogenic Metabolites in the Serum of Male Wistar Rat Fed Structurally Different Glucosinolates
    Toxicol. Res. Vol. 30, No. 2, pp. 109-116 (2014) Open Access http://dx.doi.org/10.5487/TR.2014.30.2.109 plSSN: 1976-8257 eISSN: 2234-2753 Original Article Determination of Goitrogenic Metabolites in the Serum of Male Wistar Rat Fed Structurally Different Glucosinolates Eun-ji Choi1, Ping Zhang1 and Hoonjeong Kwon1,2 1Department of Food and Nutrition, Seoul National University, Seoul, Korea 2Research Institute of Human Ecology, Seoul National University, Seoul, Korea (Received June 11, 2014; Revised June 26, 2014; Accepted June 28, 2014) Glucosinolates (GLSs) are abundant in cruciferous vegetables and reported to have anti thyroidal effects. Four GLSs (sinigrin, progoitrin, glucoerucin, and glucotropaeolin) were administered orally to rats, and the breakdown products of GLSs (GLS-BPs: thiocyanate ions, cyanide ions, organic isothiocyanates, organic nitriles, and organic thiocyanates) were measured in serum. Thiocyanate ions were measured by colorimetric method, and cyanide ions were measured with CI-GC-MS. Organic isothiocyanates and their metabolites were measured with the cyclocondensation assay. Organic nitriles and organic thiocyanates were measured with EI-GC-MS. In all treatment groups except for progoitrin, thiocyanate ions were the highest among the five GLS-BPs. In the progoitrin treated group, a high concentration of organic isothiocyanates (goitrin) was detected. In the glucoerucin treated group, a relatively low amount of goitrogenic substances was observed. The metabolism to thiocyanate ions happened within five hours of the administration, and the distribution of GLSs varied with the side chain. GLSs with side chains that can form stable carbocation seemed to facilitate the degradation reaction and produce a large amount of goitrogenic thiocyanate ions.
    [Show full text]
  • Convenient Identification of Desulfoglucosinolates on the Basis
    Post-print of: Kusznierewicz B., Iori R., Piekarska A., Namieśnik J., Bartoszek-Pączkowska A.: Convenient identification of desulfoglucosinolates on the basis of mass spectra obtained during liquid chromatography-diode array-electrospray ionisation mass spectrometry analysis: Method verification for sprouts of different Brassicaceae species extracts. JOURNAL OF CHROMATOGRAPHY A. Vol. 1278, (2013), p. 108-115. DOI: 10.1016/j.chroma.2012.12.075 Convenient identification of desulfoglucosinolates on the basis of mass spectra obtained during liquid chromatography–diode array–electrospray ionisation mass spectrometry analysis: Method verification for sprouts of different ଝ Brassicaceae species extracts ∗ Barbara Kusznierewicz a, , Renato Iori b, Anna Piekarska c, Jacek Namiesnik´ c, Agnieszka Bartoszek a a Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk´ University of Technology, G. Narutowicza 11/12 St. 80-233 Gdansk,´ Poland b Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per le Colture Industriali (CRA-CIN), Via di Corticella, 133, 40129 Bologna, Italy c Department of Analytical Chemistry, Chemical Faculty, Gdansk´ University of Technology, G. Narutowicza 11/12 St. 80-233 Gdansk,´ Poland a b s t r a c t Over the past decade, glucosinolates (GLs) present in different tissues of Brassicaceae and their breakdown products, especially isothiocyanates formed after myrosinase catalyzed hydrolysis, have been regarded as not only environment friendly biopesticides for controlling soilborne pathogens, but most impor-tantly as promising anticarcinogenic compounds. For these reasons, the identification and quantitative determination of the content of individual glucosinolates in plant material is of great interest. Among the different analytical approaches available today for determining GLs in brassica plant samples, HPLC analysis of their desulfo derivatives (DS–GLs) according to ISO 9167-1, 1992, method is the most widely used.
    [Show full text]