Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11 -
Bioavailability of Sulforaphane from Two Broccoli Sprout Beverages: Results of a Short-Term, Cross-Over Clinical Trial in Qidong, China
Cancer Prevention Research Article Research Bioavailability of Sulforaphane from Two Broccoli Sprout Beverages: Results of a Short-term, Cross-over Clinical Trial in Qidong, China Patricia A. Egner1, Jian Guo Chen2, Jin Bing Wang2, Yan Wu2, Yan Sun2, Jian Hua Lu2, Jian Zhu2, Yong Hui Zhang2, Yong Sheng Chen2, Marlin D. Friesen1, Lisa P. Jacobson3, Alvaro Muñoz3, Derek Ng3, Geng Sun Qian2, Yuan Rong Zhu2, Tao Yang Chen2, Nigel P. Botting4, Qingzhi Zhang4, Jed W. Fahey5, Paul Talalay5, John D Groopman1, and Thomas W. Kensler1,5,6 Abstract One of several challenges in design of clinical chemoprevention trials is the selection of the dose, formulation, and dose schedule of the intervention agent. Therefore, a cross-over clinical trial was undertaken to compare the bioavailability and tolerability of sulforaphane from two of broccoli sprout–derived beverages: one glucoraphanin-rich (GRR) and the other sulforaphane-rich (SFR). Sulfor- aphane was generated from glucoraphanin contained in GRR by gut microflora or formed by treatment of GRR with myrosinase from daikon (Raphanus sativus) sprouts to provide SFR. Fifty healthy, eligible participants were requested to refrain from crucifer consumption and randomized into two treatment arms. The study design was as follows: 5-day run-in period, 7-day administration of beverages, 5-day washout period, and 7-day administration of the opposite intervention. Isotope dilution mass spectrometry was used to measure levels of glucoraphanin, sulforaphane, and sulforaphane thiol conjugates in urine samples collected daily throughout the study. Bioavailability, as measured by urinary excretion of sulforaphane and its metabolites (in approximately 12-hour collections after dosing), was substantially greater with the SFR (mean ¼ 70%) than with GRR (mean ¼ 5%) beverages. -
Inhibitory Properties of Saponin from Eleocharis Dulcis Peel Against Α-Glucosidase
RSC Advances View Article Online PAPER View Journal | View Issue Inhibitory properties of saponin from Eleocharis dulcis peel against a-glucosidase† Cite this: RSC Adv.,2021,11,15400 Yipeng Gu, a Xiaomei Yang,b Chaojie Shang,a Truong Thi Phuong Thaoa and Tomoyuki Koyama*a The inhibitory properties towards a-glucosidase in vitro and elevation of postprandial glycemia in mice by the saponin constituent from Eleocharis dulcis peel were evaluated for the first time. Three saponins were isolated by silica gel and HPLC, identified as stigmasterol glucoside, campesterol glucoside and daucosterol by NMR spectroscopy. Daucosterol presented the highest content and showed the strongest a-glucosidase inhibitory activity with competitive inhibition. Static fluorescence quenching of a-glucosidase was caused by the formation of the daucosterol–a-glucosidase complex, which was mainly derived from hydrogen bonds and van der Waals forces. Daucosterol formed 7 hydrogen bonds with 4 residues of the active site Received 19th March 2021 and produced hydrophobic interactions with 3 residues located at the exterior part of the binding Accepted 9th April 2021 pocket. The maltose-loading test results showed that daucosterol inhibited elevation of postprandial Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/d1ra02198b glycemia in ddY mice. This suggests that daucosterol from Eleocharis dulcis peel can potentially be used rsc.li/rsc-advances as a food supplement for anti-hyperglycemia. 1. Introduction a common hydrophytic vegetable that -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
Download Product Insert (PDF)
PRODUCT INFORMATION Glucoraphanin (potassium salt) Item No. 10009445 Formal Name: 1-thio-1-[5-(methylsulfinyl)-N- O (sulfooxy)pentanimidate]-β-D- OH O- glucopyranose, potassium salt O S MF: C H NO S • XK O 12 22 10 3 OH FW: 436.5 O N Purity: ≥95% UV/Vis.: λmax: 225 nm OH S S Supplied as: A crystalline solid OH O Storage: -20°C • XK+ Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Glucoraphanin (potassium salt) is supplied as a crystalline solid. A stock solution may be made by dissolving the glucoraphanin (potassium salt) in the solvent of choice. Glucoraphanin (potassium salt) is soluble in the organic solvent DMSO, which should be purged with an inert gas, at a concentration of approximately 1 mg/ml. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of glucoraphanin (potassium salt) can be prepared by directly dissolving the crystalline solid in aqueous buffers. The solubility of glucoraphanin (potassium salt) in PBS, pH 7.2, is approximately 10 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description Glucoraphanin is a natural glycoinsolate found in cruciferous vegetables, including broccoli.1 It is converted to the isothiocyanate sulforaphane by the enzyme myrosinase.1 Sulforaphane has powerful antioxidant, anti-inflammatory, and anti-carcinogenic effects.1,2 It acts by activating nuclear factor erythroid 2-related factor 2 (Nrf2), which induces the expression of phase II detoxification enzymes.3,4 References 1. -
Glucosinolates and Their Important Biological and Anti Cancer Effects: a Review
Jordan Journal of Agricultural Sciences, Volume 11, No.1 2015 Glucosinolates and their Important Biological and Anti Cancer Effects: A Review V. Rameeh * ABSTRACT Glucosinolates are sulfur-rich plant metabolites of the family of Brassicace and other fifteen families of dicotyledonous angiosperms including a large number of edible species. At least 130 different glucosinolates have been identified. Following tissue damage, glucosinolates undergo hydrolysis catalysed by the enzyme myrosinase to produce a complex array of products which include volatile isothiocyanates and several compounds with goitrogenic and anti cancer activities. Glucosinolates are considered potential source of sulfur for other metabolic processes under low-sulfur conditions, therefore the breakdown of glucosinolates will be increased under sulfur deficiency. However, the pathway for sulfur mobilization from glucosinolates has not been determined.Glucosinolates and their breakdown products have long been recognized for their fungicidal, bacteriocidal, nematocidal and allelopathic properties and have recently attracted intense research interest because of their cancer chemoprotective attributes. Glucosinolate derivatives stop cancer via destroying cancer cells, and they also suppress genes that create new blood vessels, which support tumor growth and spread. These organic compounds also reduce the carcinogenic effects of many environmental toxins by boosting the expression of detoxifying enzymes. Keywords: Brassicace, dicotyledonous, mobilisation, myrosinase,sulfur. INTRODUCTION oxazolidinethiones and nitriles (Fenwick et al., 1983). Glucosinolates can be divided into three classes based on Glucosinolates are sulfur- and nitrogen-containing the structure of different amino acid precursors(Table 1): plant secondary metabolites common in the order 1. Aliphatic glucosinolates derived from methionine, Capparales, which comprises the Brassicaceae family isoleucine, leucine or valine, 2. -
Defence Mechanisms of Brassicaceae: Implications for Plant-Insect Interactions and Potential for Integrated Pest Management
Agron. Sustain. Dev. 30 (2010) 311–348 Available online at: c INRA, EDP Sciences, 2009 www.agronomy-journal.org DOI: 10.1051/agro/2009025 for Sustainable Development Review article Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review Ishita Ahuja,JensRohloff, Atle Magnar Bones* Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway (Accepted 5 July 2009) Abstract – Brassica crops are grown worldwide for oil, food and feed purposes, and constitute a significant economic value due to their nutritional, medicinal, bioindustrial, biocontrol and crop rotation properties. Insect pests cause enormous yield and economic losses in Brassica crop production every year, and are a threat to global agriculture. In order to overcome these insect pests, Brassica species themselves use multiple defence mechanisms, which can be constitutive, inducible, induced, direct or indirect depending upon the insect or the degree of insect attack. Firstly, we give an overview of different Brassica species with the main focus on cultivated brassicas. Secondly, we describe insect pests that attack brassicas. Thirdly, we address multiple defence mechanisms, with the main focus on phytoalexins, sulphur, glucosinolates, the glucosinolate-myrosinase system and their breakdown products. In order to develop pest control strategies, it is important to study the chemical ecology, and insect behaviour. We review studies on oviposition regulation, multitrophic interactions involving feeding and host selection behaviour of parasitoids and predators of herbivores on brassicas. Regarding oviposition and trophic interactions, we outline insect oviposition behaviour, the importance of chemical stimulation, oviposition-deterring pheromones, glucosinolates, isothiocyanates, nitriles, and phytoalexins and their importance towards pest management. -
Indole Carbinol: a Glucosinolate Derivative from Cruciferous
Research Indole-3-carbinol: A glucosinolate derivative from cruciferous vegetables for prevention and complementary treatment of breast cancer Ben L. Pfeifer1, Theodor Fahrendorf2 Summary spect seem to be secondary plant sub- stances from cruciferous vegetables, Breast cancer is the most common malignancy in women today. Despite such as indole 3-carbinol (I3C). This is a improved therapies, only every second woman with breast cancer can ex- glucosinolate derivative containing sul- pect cure. If cancer is metastatic at diagnosis, or recurs with metastases, phur whose metabolic products are then treatment is limited to palliative measures only, and cure is usually not widely known for their anti-cancer expected. Under these circumstances, quality of life as well as overall surviv- effects [34-36, 44, 46]. Detailed studies al of the patient is significantly reduced. It is therefore advisable for pa- have been carried out regarding their tients, their physicians, and the entire society at large, to search for more preventive and therapeutic effectiveness effective and less toxic treatment methods and develop better prevention in treating breast cancer and other types strategies that can reduce the burden of this cancer on the individual pa- tient and society as a whole. Indole-3-carbinol, a glucosinolate derivative of cancer [7, 12, 18, 30, 62, 79]. Labora- from cruciferous vegetables, seems to be a strong candidate to achieve tory tests on cell cultures and animal ex- these goals. It is abundantly available, well tolerated and non-toxic. Suffi- periments showed that I3C prevents the cient amounts for prevention of breast cancer can be taken up by daily con- development of cancer in various organs sumption of cruciferous vegetables. -
MINI-REVIEW Cruciferous Vegetables: Dietary Phytochemicals for Cancer Prevention
DOI:http://dx.doi.org/10.7314/APJCP.2013.14.3.1565 Glucosinolates from Cruciferous Vegetables for Cancer Chemoprevention MINI-REVIEW Cruciferous Vegetables: Dietary Phytochemicals for Cancer Prevention Ahmad Faizal Abdull Razis1*, Noramaliza Mohd Noor2 Abstract Relationships between diet and health have attracted attention for centuries; but links between diet and cancer have been a focus only in recent decades. The consumption of diet-containing carcinogens, including polycyclic aromatic hydrocarbons and heterocyclic amines is most closely correlated with increasing cancer risk. Epidemiological evidence strongly suggests that consumption of dietary phytochemicals found in vegetables and fruit can decrease cancer incidence. Among the various vegetables, broccoli and other cruciferous species appear most closely associated with reduced cancer risk in organs such as the colorectum, lung, prostate and breast. The protecting effects against cancer risk have been attributed, at least partly, due to their comparatively high amounts of glucosinolates, which differentiate them from other vegetables. Glucosinolates, a class of sulphur- containing glycosides, present at substantial amounts in cruciferous vegetables, and their breakdown products such as the isothiocyanates, are believed to be responsible for their health benefits. However, the underlying mechanisms responsible for the chemopreventive effect of these compounds are likely to be manifold, possibly concerning very complex interactions, and thus difficult to fully understand. Therefore, -
Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1]. -
Volume 73 Some Chemicals That Cause Tumours of the Kidney Or Urinary Bladder in Rodents and Some Other Substances
WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS VOLUME 73 SOME CHEMICALS THAT CAUSE TUMOURS OF THE KIDNEY OR URINARY BLADDER IN RODENTS AND SOME OTHER SUBSTANCES 1999 IARC LYON FRANCE WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS Some Chemicals that Cause Tumours of the Kidney or Urinary Bladder in Rodents and Some Other Substances VOLUME 73 This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 13–20 October 1998 1999 IARC MONOGRAPHS In 1969, the International Agency for Research on Cancer (IARC) initiated a programme on the evaluation of the carcinogenic risk of chemicals to humans involving the production of critically evaluated monographs on individual chemicals. The programme was subsequently expanded to include evaluations of carcinogenic risks associated with exposures to complex mixtures, life-style factors and biological agents, as well as those in specific occupations. The objective of the programme is to elaborate and publish in the form of monographs critical reviews of data on carcinogenicity for agents to which humans are known to be exposed and on specific exposure situations; to evaluate these data in terms of human risk with the help of international working groups of experts in chemical carcinogenesis and related fields; and to indicate where additional research efforts are needed. The lists of IARC evaluations are regularly updated and are available on Internet: http://www.iarc.fr/. -
Secondary Successions After Shifting Cultivation in a Dense Tropical Forest of Southern Cameroon (Central Africa)
Secondary successions after shifting cultivation in a dense tropical forest of southern Cameroon (Central Africa) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich 15 der Johann Wolfgang Goethe University in Frankfurt am Main von Barthélemy Tchiengué aus Penja (Cameroon) Frankfurt am Main 2012 (D30) vom Fachbereich 15 der Johann Wolfgang Goethe-Universität als Dissertation angenommen Dekan: Prof. Dr. Anna Starzinski-Powitz Gutachter: Prof. Dr. Katharina Neumann Prof. Dr. Rüdiger Wittig Datum der Disputation: 28. November 2012 Table of contents 1 INTRODUCTION ............................................................................................................ 1 2 STUDY AREA ................................................................................................................. 4 2.1. GEOGRAPHIC LOCATION AND ADMINISTRATIVE ORGANIZATION .................................................................................. 4 2.2. GEOLOGY AND RELIEF ........................................................................................................................................ 5 2.3. SOIL ............................................................................................................................................................... 5 2.4. HYDROLOGY .................................................................................................................................................... 6 2.5. CLIMATE ........................................................................................................................................................