IDL-1111.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Laboratory Safety Manual
LABORATORY SAFETY MANUAL Environment, Health & Safety 1120 Estes Drive Extension CB# 1650 TABLE OF CONTENTS Section or Chapter Page Introduction i Emergency Telephone Numbers ii EHS – Scope of Service iii Condensed Laboratory Safety Information for New Research Personnel v Chapter 1 – Laboratory Safety at the University of North Carolina at Chapel Hill 1-1 Chapter 2 – Laboratory Safety Plan 2-1 Chapter 3 – General Safety Principles and Practices 3-1 Chapter 4 – Proper Storage of Chemicals in Laboratories 4-1 Chapter 5 – Protective Clothing and Equipment 5-1 Chapter 6 – Safe Handling of Chemicals 6-1 Chapter 7 – Highly Toxic Chemicals and Select Carcinogens 7-1 Chapter 8 – Reproductive Health 8-1 Chapter 9 – Controlled Substances 9-1 Chapter 10 – Fire Safety 10-1 Chapter 11 – Explosive and Reactive Chemical Hazards 11-1 Chapter 12 – Management of Laboratory Wastes 12-1 Chapter 13 – Safe Handling of Peroxidizable Compounds 13-1 Chapter 14 – Safe Handling of Laboratory Animals 14-1 Chapter 15 – Safe Handling of Biological Hazards 15-1 Chapter 16 – Biological Safety Cabinets 16-1 Chapter 17 – Laboratory Hoods 17-1 Chapter 18 – Safe Use of Nanomaterials 18-1 Revisions to Laboratory Safety Manual REV-1 Laboratory Safety Manual – the University of North Carolina at Chapel Hill INTRODUCTION This manual is a safety reference document for laboratory personnel at the University of North Carolina at Chapel Hill. The University’s Department of Environment, Health & Safety prepared this manual, followed by review and approval from both the University’s Laboratory and Chemical Safety Committee (LCSC) and the University Safety and Security Committee (USSC). -
Food, Food Chemistry and Gustatory Sense
Food, Food Chemistry and Gustatory Sense COOH N H María González Esguevillas MacMillan Group Meeting May 12th, 2020 Food and Food Chemistry Introduction Concepts Food any nourishing substance eaten or drunk to sustain life, provide energy and promote growth any substance containing nutrients that can be ingested by a living organism and metabolized into energy and body tissue country social act culture age pleasure election It is fundamental for our life Food and Food Chemistry Introduction Concepts Food any nourishing substance eaten or drunk to sustain life, provide energy and promote growth any substance containing nutrients that can be ingested by a living organism and metabolized into energy and body tissue OH O HO O O HO OH O O O limonin OH O O orange taste HO O O O 5-caffeoylquinic acid Coffee taste OH H iPr N O Me O O 2-decanal Capsaicinoids Coriander taste Chilli burning sensation Astray, G. EJEAFChe. 2007, 6, 1742-1763 Food and Food Chemistry Introduction Concepts Food Chemistry the study of chemical processes and interactions of all biological and non-biological components of foods biological substances areas food processing techniques de Man, J. M. Principles of Food Chemistry 1999, Springer Science Fennema, O. R. Food Chemistry. 1985, 2nd edition New York: Marcel Dekker, Inc Food and Food Chemistry Introduction Concepts Food Chemistry the study of chemical processes and interactions of all biological and non-biological components of foods biological substances areas food processing techniques carbo- hydrates water minerals lipids flavors vitamins protein food enzymes colors additive Fennema, O. R. Food Chemistry. -
Effects of Cruciferous Vegetable Consumption on Urinary
Cancer Epidemiology, Biomarkers & Prevention 997 Effects of Cruciferous Vegetable Consumption on Urinary Metabolites of the Tobacco-Specific Lung Carcinogen 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone in Singapore Chinese Stephen S. Hecht,1 Steven G. Carmella,1 Patrick M.J. Kenney,1 Siew-Hong Low,2 Kazuko Arakawa,3 and Mimi C. Yu3 1University of Minnesota Cancer Center, Minneapolis, Minnesota; 2Department of Community, Occupational, and Family Medicine, National University of Singapore, Singapore; and 3Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California Abstract Vegetable consumption, including cruciferous vegeta- major glucosinolates in seven of the nine cruciferous bles, is protective against lung cancer, but the mechan- vegetables, accounting for 70.0% to 93.2% of all glu- isms are poorly understood. The purpose of this study cosinolates in these vegetables. There was a significant was to investigate the effects of cruciferous vegetable correlation (P = 0.01) between increased consumption consumption on the metabolism of the tobacco-specific of glucobrassicins and decreased levels of NNAL in lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1- urine after adjustment for number of cigarettes smoked butanone (NNK) in smokers. The study was carried out per day; similar trends were observed for NNAL-Glucs in Singapore Chinese, whose mean daily intake of (P = 0.08) and NNAL plus NNAL-Glucs (P = 0.03). cruciferous vegetables is three times greater than that These results are consistent with those of previous of people in the United States. Eighty-four smokers studies, which demonstrate that indole-3-carbinol de- provided urine samples and were interviewed about creases levels of urinary NNAL probably by inducing dietary habits using a structured questionnaire, which hepatic metabolism of NNK. -
Association of Three Biomarkers of Nicotine As Pharmacogenomic Indices of Cigarette Consumption in Military Populations DISSERTA
Association of Three Biomarkers of Nicotine as Pharmacogenomic Indices of Cigarette Consumption in Military Populations DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By William Arthur Matcham Graduate Program in Nursing The Ohio State University 2014 Dissertation Committee: Professor Karen L. Ahijevych, PhD, Advisor Professor Donna L. McCarthy, PhD Professor Kristine Browning, PhD Professor Yvette Conley, PhD Copyright by William Arthur Matcham 2014 ABSTRACT Tobacco-related diseases have reached epidemic proportions. There is no risk-free level of tobacco exposure. In the United States, tobacco use is the single largest preventable cause of death and disease in both men and women. Cigarette smoking alone accounts for approximately 443,000 deaths per year (one fifth of total US deaths) costing a staggering $193 billion per year in avoidable healthcare expenses and lost productivity. Literature shows military populations have rates of tobacco use two to three times higher than the civilian population. Military personnel returning from deployment in conflict areas can exceed 50% smoking prevalence. Research shows that genetic factors account for 40-70% of variation in smoking initiation and 50-60% of variance in cessation success. In the U.S., tobacco is responsible for more deaths than alcohol, AIDS, car accidents, illegal drugs, murders and suicides combined. This descriptive, cross-sectional study examined three of the biological markers used in tobacco research: the α4β2 brain nicotinic receptors (nAChR) that contribute to genetic risk for nicotine dependence, nicotine metabolite ratio (NMR) as a phenotypic marker for CYP2A6 activity, and bitter taste phenotype (BTP) to determine their impact on cigarette consumption in military populations. -
Taste Sensibility to Phenylthiocarbamide and Its Relationship to Food Preferences
127 ORIGINAL ARTICLE Taste sensibility to phenylthiocarbamide and its relationship to food preferences Sensibilidade à feniltiocarbamida e sua relação com a preferência alimentar Marcela Maria Pandolfi1. Charles Yea Zen Chow2. Luciana Sayumi Fugimoto Higashi2. Ana Thamilla Fonseca2. Myllena de Andrade Cunha2. Carolina Nunes França1,3. Patrícia Colombo-Souza1. 1 Post Graduation Program on Health Sciences, Santo Amaro University (UNISA). 2 Medicine Students, Santo Amaro University (UNISA). 3 Cardiology Division, Federal University of São Paulo (UNIFESP). ABSTRACT Introduction: Foods like cabbage, broccoli, pepper and wine, containing proteins such as phenylthiocarbamide (PTC), cause a bitter taste in some people. Studies showed the relation between tasting profile and the development of obesity, and consequently leading to cardiovascular disease. Objective: Compare the differences in the taste sensibility to PTC present in some foods in individuals classified according to the nutritional status. Methods: One hundred fifty-three patients classified as eutrophic, overweight or obese received one drop of each PTC solution in the tongue, since the most diluted to the individual perception to bitter taste, in a total of 15 increasing grades. Results: Participants were predominantly middle-aged females, eutrophics and supertasters. It was found a correlation between PTC solution and red wine in the three groups evaluated (eutrophic, obese and overweight). Besides, eutrophic and obese that disliked wine had more sensibility to PTC. Conclusion: Our main finding showed that eutrophic and obese that disliked red wine had more sensibility to PTC. We did not find differences in the sensitivity to PTC for the other foods analyzed (fried foods, fruit and vegetables). Keywords: Taste sensibility. -
Isothiocyanates from Cruciferous Vegetables
Isothiocyanates from Cruciferous Vegetables: Kinetics, Biomarkers and Effects Martijn Vermeulen Promotoren Prof. dr. Peter J. van Bladeren Hoogleraar Toxicokinetiek en Biotransformatie, leerstoelgroep Toxicologie, Wageningen Universiteit Prof. dr. ir. Ivonne M.C.M. Rietjens Hoogleraar Toxicologie, Wageningen Universiteit Copromotor Dr. Wouter H.J. Vaes Productmanager Nutriënten en Biomarker analyse, TNO Kwaliteit van Leven, Zeist Promotiecommissie Prof. dr. Aalt Bast Universiteit Maastricht Prof. dr. ir. M.A.J.S. (Tiny) van Boekel Wageningen Universiteit Prof. dr. Renger Witkamp Wageningen Universiteit Prof. dr. Ruud A. Woutersen Wageningen Universiteit / TNO, Zeist Dit onderzoek is uitgevoerd binnen de onderzoeksschool VLAG (Voeding, Levensmiddelen- technologie, Agrobiotechnologie en Gezondheid) Isothiocyanates from Cruciferous Vegetables: Kinetics, Biomarkers and Effects Martijn Vermeulen Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. M.J. Kropff, in het openbaar te verdedigen op vrijdag 13 februari 2009 des namiddags te half twee in de Aula. Title Isothiocyanates from cruciferous vegetables: kinetics, biomarkers and effects Author Martijn Vermeulen Thesis Wageningen University, Wageningen, The Netherlands (2009) with abstract-with references-with summary in Dutch ISBN 978-90-8585-312-1 ABSTRACT Cruciferous vegetables like cabbages, broccoli, mustard and cress, have been reported to be beneficial for human health. They contain glucosinolates, which are hydrolysed into isothiocyanates that have shown anticarcinogenic properties in animal experiments. To study the bioavailability, kinetics and effects of isothiocyanates from cruciferous vegetables, biomarkers of exposure and for selected beneficial effects were developed and validated. As a biomarker for intake and bioavailability, isothiocyanate mercapturic acids were chemically synthesised as reference compounds and a method for their quantification in urine was developed. -
PHENYLTHIOCARBAMIDE NON-TASTING AMONG CONGENITAL ATHYROTIC CRETINS: FURTHER STUDIES in an ATTEMPT to EXPLAIN the INCREASED INCIDENCE * by THOMAS H
PHENYLTHIOCARBAMIDE NON-TASTING AMONG CONGENITAL ATHYROTIC CRETINS: FURTHER STUDIES IN AN ATTEMPT TO EXPLAIN THE INCREASED INCIDENCE * By THOMAS H. SHEPARD, IIt (From the Department of Pediatrics, University of Washinigton, Seattle, Wash.) (Submitted for publication March 17, 1961; accepted May 18, 1961) Phenylthiocarbamide (PTC) is a chemical com- quently numbered solution is one-half the strength of pound which is bitter-tasting to approximately 70 the preceding concentration. If a subject is able to taste (1). The only one of the concentrated solutions (1 through 4), he per cent of white North Americans is designated a non-taster, whereas if his threshold is at remaining 30 per cent has a discrete reduction in dilution 5 through 14, he is a taster. Plastic squirt bottles taste threshold. This non-tasting trait is inherited facilitated the procedure. By testing the parents first, as a probable mendelian autosomal recessive the interest and cooperation of the child was often stimu- (2-4). A common thiionamide group structurally lated. For the adults, the taste threshold was deter- relates phenylthiocarbamide to thiourea, propyl- mined by finding the weakest concentration at which they could differentiate 4 beakers of water from 4 beakers of thiouracil and goitrin (see Figure 1). These four substances are also similar in their ability to in- Thiourea terfere with the synthesis of thyroid hormone, an H2N-C -NH2 action which leads to thyroid hypertrophy. PTC non-tasting has been shown to be more Propylthiouracil S common in adult euthyroid patients with goiters CH3-CH2-CH2- CH-CH2--C=O I I (5, 6). -
Glucosinolates As Undesirable Substances in Animal Feed1
The EFSA Journal (2008) 590, 1-76 Glucosinolates as undesirable substances in animal feed1 Scientific Panel on Contaminants in the Food Chain (Question N° EFSA-Q-2003-061) Adopted on 27 November 2007 PANEL MEMBERS Jan Alexander, Guðjón Atli Auðunsson, Diane Benford, Andrew Cockburn, Jean-Pierre Cravedi, Eugenia Dogliotti, Alessandro Di Domenico, Maria Luisa Férnandez-Cruz, Peter Fürst, Johanna Fink-Gremmels, Corrado Lodovico Galli, Philippe Grandjean, Jadwiga Gzyl, Gerhard Heinemeyer, Niklas Johansson, Antonio Mutti, Josef Schlatter, Rolaf van Leeuwen, Carlos Van Peteghem and Philippe Verger. SUMMARY Glucosinolates (alkyl aldoxime-O-sulphate esters with a β-D-thioglucopyranoside group) occur in important oil- and protein-rich agricultural crops, including among others Brassica napus (rapeseed of Canola), B. campestris (turnip rape) and Sinapis alba (white mustard), all belonging to the plant family of Brassicaceae. They are present in all parts of these plants, with the highest concentrations often found in seeds. Several of these Brassica species are important feed ingredients and some species are also commonly used in human nutrition such as cauliflower, cabbages, broccoli and Brussels sprouts. Glucosinolates and their breakdown products determine the typical flavour and (bitter) taste of these vegetables. 1For citation purposes: Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the European Commission on glucosinolates as undesirable substances in animal feed, The EFSA Journal (2008) 590, 1- 76 © European Food Safety Authority, 2008 Glucosinolates as undesirable substances in animal feed The individual glucosinolates vary in structure and the configuration of their side chain. They are hydrophilic and rather stable and remain in the press cake of oilseeds when these are processed and de-oiled. -
The Population Structure of Ukraine in Relation to the Phenylthiocarbamide Sensitivity
The Egyptian Journal of Medical Human Genetics (2015) 16, 135–139 HOSTED BY Ain Shams University The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com ORIGINAL ARTICLE The population structure of Ukraine in relation to the phenylthiocarbamide sensitivity O.V. Filiptsova a,*, I.A. Timoshyna b, Yu. N. Kobets c, M.N. Kobets c, I.S. Burlaka a, I.A. Hurko a a Biology Department, National University of Pharmacy, Kharkov, Ukraine b Human Anatomy and Physiology Department, National University of Pharmacy, Kharkov, Ukraine c Pharmaceutical Marketing and Management Department, National University of Pharmacy, Kharkov, Ukraine Received 26 November 2014; accepted 8 December 2014 Available online 6 January 2015 KEYWORDS Abstract Background: The taste sensitivity to phenylthiocarbamide (PTC) is one of the classical Phenylthiocarbamide; genetic markers in human studies. PTC is of great interest from the medical point of view since Taste sensitivity; a number of associations of the taster status with human diseases have been found. The aim of Tasters/non-tasters for the our study was to evaluate the population structure of Ukraine in relation to PTC sensitivity. bitter taste; Methods: The study involved 533 people (78 males and 455 females) aged from 16 to 25 years. Genetic marker; The PTC solution in the concentration of 0.13% was prepared according to the method of Harris Population of Ukraine and Kalmus. The participants of the study analyzed the taste of the filter paper impregnated with PTC. If the trial subjects tasted PTC as ‘‘bitter’’, ‘‘very bitter’’, ‘‘bitterish’’, the phenotype was defined as a taster. -
Investigating the Role of Human Genome- Wide Heterozygosity As a Health Risk Factor
INVESTIGATING THE ROLE OF HUMAN GENOME- WIDE HETEROZYGOSITY AS A HEALTH RISK FACTOR Ozren Polasek PhD Thesis The University of Edinburgh 2009 i TABLE OF CONTENTS ABSTRACT...............................................................................................................iv FOREWORD.............................................................................................................. v DECLARATION......................................................................................................vii NOTES .....................................................................................................................viii GLOSSARY...............................................................................................................ix 1. INTRODUCTION.................................................................................................. 1 1.1. Prologue ............................................................................................................ 1 1.2. Background ...................................................................................................... 3 1.2.1. Inbreeding depression ................................................................................ 4 1.2.2. Inbreeding vigour ....................................................................................... 6 1.2.3. Outbreeding depression ............................................................................. 7 1.2.4. Heterosis ................................................................................................... -
Cancer Chemoprevention by Sulforaphane, a Bioactive Compound
Cancer Chemoprevention by Sulforaphane, a Bioactive Compound from Broccoli/Broccoli Sprouts DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yanyan Li Graduate Program in Food Science and Nutrition The Ohio State University 2011 Dissertation Committee: Dr. Steven Schwartz, Advisor Dr. Duxin Sun, Co-advisor Dr. Steven Clinton Dr. Hua Wang Dr. Earl Harrison Copyrighted by Yanyan Li 2011 Abstract Sulforaphane, a bioactive compound from broccoli and broccoli sprouts, possess potent cancer chemopreventive activity. In the current studies, we have revealed a novel molecular target of sulforaphane in pancreatic cancer, evaluated the effect of sulforaphane on breast cancer stem cells, and compared different broccoli sprout preparations for delivery of sulforaphane for future chemoprevention studies. We showed that heat shock protein 90 (Hsp90), a molecular chaperone regulating the maturation of a wide range of oncogenic proteins, as a novel target of sulforaphane. Different from traditional Hsp90 inhibitors that block ATP binding to Hsp90, sulforaphane disrupted Hsp90-p50 Cdc37 interaction, induced Hsp90 client degradation, and inhibited pancreatic cancer in vitro and in vivo . We traced its activity to a novel interaction site of Hsp90. Proteolytic fingerprinting and LC-MS revealed sulforaphane interaction with Hsp90 N-terminus and p50 Cdc37 central domain. LC-MS tryptic peptide mapping and NMR spectra of full-length Hsp90 identified a covalent sulforaphane adduct in sheet 2 and the adjacent loop in Hsp90 N-terminal domain. Furthermore, we investigated the combination efficacy of sulforaphane and 17-allylamino 17- demethoxygeldanamycin (17-AAG) in pancreatic cancer. -
Brassica Oleracea Var. Capitata) Germplasm
Article Profiling of Individual Desulfo-Glucosinolate Content in Cabbage Head (Brassica oleracea var. capitata) Germplasm Shiva Ram Bhandari 1, Juhee Rhee 2, Chang Sun Choi 3, Jung Su Jo 1, Yu Kyeong Shin 1 and Jun Gu Lee 1,4,* 1 Department of Horticulture, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; [email protected] (S.R.B.), [email protected] (J.S.J.), [email protected] (Y.K.S.) 2 National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; [email protected] 3 Breeding Research Institute, Koregon Co., Ltd, Gimje 54324, Korea; [email protected] 4 Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Korea * Correspondence: [email protected]; Tel.: +82-63-270-2578 Received: 24 March 2020; Accepted: 16 April 2020; Published: 17 April 2020 Abstract: Individual glucosinolates (GSLs) were assessed to select cabbage genotypes for a potential breeding program. One hundred forty-six cabbage genotypes from different origins were grown in an open field from March to June 2019; the cabbage heads were used for GSL analyses. Seven aliphatics [glucoiberin (GIB), progoitrin (PRO), epi-progoitrin (EPI), sinigrin (SIN), glucoraphanin (GRA), glucoerucin (GER) and gluconapin (GNA)], one aromatic [gluconasturtiin (GNS)] and four indolyl GSLs [glucobrassicin (GBS), 4-hydroxyglucobrassicin (4HGBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (NGBS)] were found this study. Significant variation was observed in the individual GSL content and in each class of GSLs among the cabbage genotypes. Aliphatic GSLs were predominant (58.5%) among the total GSLs, followed by indolyl GSL (40.7%) and aromatic GSLs (0.8%), showing 46.4, 51.2 and 137.8% coefficients of variation, respectively.