3.0 Academic Programs: Undergraduate Education

Total Page:16

File Type:pdf, Size:1020Kb

3.0 Academic Programs: Undergraduate Education 3.0 Academic Programs: Undergraduate Education The Faculty of Applied Science & Engineering at the University of Toronto is Canada’s leading teaching and research-intensive engineering school, with a calibre of undergraduate programs that are commensurate with the quality of the diverse student body we attract from around the world. This section highlights the current state of our undergraduate programs and admissions. The supporting data stem from our own records, as well as a thorough self-study consultation process which included focus groups, surveys, course evaluations and data from National Survey of Student Engagement (NSSE), a poll for first- and senior-year students that is conducted every three years by the Indiana University Bloomington. All NSSE data in this chapter compare U of T Engineering students to those at peer engineering institutions, which include 22 Ontario universities, the U15 groups of research-intensive Canadian universities, and select U.S. institutions chosen as comparators by U of T. (Note that U.S. comparators are chosen on a university-wide basis and do not necessarily reflect comparable engineering programs in the U.S. A complete list of peer institutions is available in Appendix C.)1 3.1 Overview of Programs and Governance Structure U of T Engineering students pursue either a Bachelor of Applied Science (BASc) or a Bachelor of Applied Science in Engineering Science (BASc Engineering Science). Students interested in the BASc can enroll in any of the Core 8 programs or the General First Year (Section 3.1.1), while students pursuing the BASc Engineering Science can choose from one of eight majors (Section 3.1.2) offered through the Division of Engineering Science. Under the portfolio of the Vice-Dean, Undergraduate Studies, the Faculty’s Chair, First Year coordinates and oversees all Year 1 programming with the support of the Director, First Year Curriculum. Second- through fourth-year programming is supported at the department or division level under the direction of each unit’s Associate Chair, Undergraduate Studies. All four years of the Engineering Science program are coordinated through the division, with overall support from the division’s chair. 3.1.1 Core 8 Programs and General First Year Our Core 8 programs and the departments in which they’re offered are: chemical (Department of Chemical Engineering & Applied Chemistry), civil and mineral (Department of Civil Engineering), computer and electrical (The Edward S. Rogers Sr. Department of Electrical & Computer Engineering), industrial and mechanical (Department of Mechanical & Industrial Engineering), and materials (Department of Materials Science & Engineering). 1 Standard error values for NSSE scores give 95% confidence intervals ranging from ± 0.5 to ± 1.5, therefore only differences greater than these are considered statistically significant. 1 Figure 3.1 Core 8 Programs Students who are unready to select a discipline can complete a General First Year (also known as TrackOne) and enter one of the Core 8 disciplines in second year. General First Year students made up 17 per cent of incoming 2016 undergraduates, compared with 9 per cent in 2007-2008, the first year the program was offered. TrackOne students with a sessional average of 60 per cent or higher in both the fall and winter terms are guaranteed their first program choice for second year. Students in any Core 8 program can request a transfer into any other Core 8 program at the end of first year. This transfer is guaranteed for students whose sessional average is 80 per cent or above in both terms. For those who do not meet this requirement, the granting of their transfer request depends on the availability of space in that particular program. For the past four years, the Faculty and departments have worked together to approve all transfer requests, regardless of standing. Students in any of the Core 8 programs may also pursue Engineering minors or certificates in select cross-disciplinary areas, or minors in programs offered by the Faculty of Arts & Science. In 2013, we struck a task force to review the content and delivery of the first-year curriculum in the Core 8 and General First Year programs. The task force delivered its report in 2015 and a committee was created to oversee the implementation of its recommendations, which are referenced in the following sections. 3.1.2 Engineering Science Engineering Science is a unique program designed to challenge students at the highest academic level. It is distinguished by its focus on deriving results from first principles, and thus includes a strong focus on mathematics, science and foundational engineering principles and models. Approximately 40 to 50 per cent of Engineering Science graduates continue their engineering education with post-graduate studies at U of T and other top-ranked institutions around the world. Many students are now pursuing entrepreneurship rather than aspiring to be professors. Engineering Science is structured on two years of foundation curriculum, followed by a two-year specialization in one of eight majors (also called options). These majors, and their respective founding year, are: 2 Aerospace (1963) Biomedical Systems (2012) Electrical and Computer (2009, previously offered as two separate majors) Energy Systems (2009) Infrastructure (2001) Engineering Mathematics, Statistics and Finance (2010) Engineering Physics (1961) Robotics Engineering (2015) 3.1.3 Accreditation and External Reviews The Faculty’s nine undergraduate programs (Core 8 plus Engineering Science) are evaluated for accreditation by the Canadian Engineering Accreditation Board (CEAB) on a six-year cycle. Graduation from the Faculty therefore provides students with the education necessary to begin working as an engineer-in-training and, after four years of accumulated experience, apply for professional licensure (PEng) anywhere in Canada in accordance with individual provincial and territorial policies. The criteria set out by CEAB are designed to ensure that each graduate has a minimum foundation in mathematics and natural sciences, a broad preparation in engineering sciences and engineering design, and exposure to non-technical subjects (complementary studies) that complement the technical aspects of the curriculum. Since 2014, the criteria have also included the requirement for an outcome-based assessment of 12 graduate attributes identified by Engineers Canada2, which include problem analysis, communication skills, ethics, equity and others. Canadian engineering schools, including U of T, must implement and employ processes to demonstrate that program outcomes are being assessed in the context of these attributes, and that the results of such assessments are applied to the further development of programs. All nine of our Faculty’s undergraduate programs are fully accredited and the next review visit is scheduled for the 2018-2019 academic year. Another method of ensuring quality education is the provincial requirement for institutions to implement periodic external reviews of their academic programs and the units in which they reside. This is achieved through the implementation of institution-specific quality assurance processes, such as the University of Toronto Quality Assurance Process (UTQAP), whereby each of the Faculty’s departments, divisions and institutes and their undergraduate and/or graduate programs undergo an external review on an five-year cycle. In addition to reviewing each unit’s programs, external reviewers consider the scope, quality and relevance of its research, internal and external relationships, organizational and financial structure, long-range planning challenges, and international comparators. As a measure of the university’s commitment to quality assurance, review reports are taken forward to university governance and are summarized for the Ontario Universities Council on Quality Assurance. 3.1.4 Academic Approvals: Governance The development of academic degrees is governed by the University of Toronto Quality Assurance Process (UTQAP) through the office of the Vice-Provost, Academic Programs. Proposals are approved by both the Faculty’s and university’s governance committees, and at the provincial level. 2 Engineers Canada, 2015 Accreditation Criteria and Procedures. https://www.engineerscanada.ca/sites/default/files/Accreditation_Criteria_Procedures_2015.pdf 3 Our Faculty’s Council has overall responsibility for curriculum change within degree programs, which are normally initiated and developed by the department, institute or division and reviewed by their respective curriculum committees. Faculty-wide changes, such as new minors or changes to the first year curriculum, are generally initiated through the Faculty’s Cross-Disciplinary Programs Office or task force or working group. All curriculum changes are approved by Faculty Council through its Undergraduate Curriculum Committee, a standing committee with faculty representatives from each program and the undergraduate student body. When considering changes or new programs, the committee will analyze the implications for CEAB accreditation. Major program modifications, such as the introduction of new minors or Engineering Science majors, are also approved by Faculty Council and reported to university governance for information. 3.1.5 Student Governance: Engineering Society Undergraduate student governance in the Faculty of Applied Science & Engineering is overseen by the Engineering Society, or “EngSoc”. EngSoc represents all full- and
Recommended publications
  • ANNUM: Year in Review 2012
    YEAR IN REVIEW ANNUM 2012 Table of Contents Welcome from the Department Chair 1 Our Story 2 Undergraduate Studies 4 Empowering a Passion for Power 6 Today’s Research Challenges Create Tomorrow’s Opportunities 8 High-tech Signing 10 From Research to Real-world Problems 12 Graduate Studies 14 Harnessing the Wind 16 Breaking Boundaries to Reach New Frontiers 18 How to Harvest the Sun with Photovoltaics Research 20 Innovative Technology Lends an Ear to Silenced Voices 22 Research 24 The Allure of Control Systems Research — Bewitching and Bewildering 26 The Power and Powering of Computers 28 Internet Networks — The Next Generation 30 Big Solutions in Little Packages 32 The Power of Collaboration 34 Community 36 Innovative Entrepreneurial Thinking: Creating a Culture 38 Research Directory 40 Quick Search Colour-coded Listing by Category and Lead Researcher 42 | | ANNUM 2012 | b Directory Alphabetical Listing by Lead Researcher 48 s Department Chair, I am delighted to share with you our annually, the department buzzes with innovative research ideas and annual report for The Edward S. Rogers Sr. Department of projects. This creative energy, in turn, benefits our undergraduate Electrical & Computer Engineering (ECE) at the University programs enormously, enriching the course content and providing Aof Toronto. Founded in 1909, our department has a long and proud valuable research experience. history of education, research and service. Over the past century, it has evolved to meet the changing needs of society and the changing As a result, ECE is engaged in the dissemination and creation of role of a large research university, with a mission that includes knowledge across a wide range of areas of engineering and applied not only education and training but also research, innovation and science — from the fabrication of atomic-level structures with special knowledge creation.
    [Show full text]
  • The History of Solar
    Solar technology isn’t new. Its history spans from the 7th Century B.C. to today. We started out concentrating the sun’s heat with glass and mirrors to light fires. Today, we have everything from solar-powered buildings to solar- powered vehicles. Here you can learn more about the milestones in the Byron Stafford, historical development of solar technology, century by NREL / PIX10730 Byron Stafford, century, and year by year. You can also glimpse the future. NREL / PIX05370 This timeline lists the milestones in the historical development of solar technology from the 7th Century B.C. to the 1200s A.D. 7th Century B.C. Magnifying glass used to concentrate sun’s rays to make fire and to burn ants. 3rd Century B.C. Courtesy of Greeks and Romans use burning mirrors to light torches for religious purposes. New Vision Technologies, Inc./ Images ©2000 NVTech.com 2nd Century B.C. As early as 212 BC, the Greek scientist, Archimedes, used the reflective properties of bronze shields to focus sunlight and to set fire to wooden ships from the Roman Empire which were besieging Syracuse. (Although no proof of such a feat exists, the Greek navy recreated the experiment in 1973 and successfully set fire to a wooden boat at a distance of 50 meters.) 20 A.D. Chinese document use of burning mirrors to light torches for religious purposes. 1st to 4th Century A.D. The famous Roman bathhouses in the first to fourth centuries A.D. had large south facing windows to let in the sun’s warmth.
    [Show full text]
  • Blue Sky Solar Racing Places fi Rst Among Canadian Teams with DS PLM
    DS PLM SUCCESS STORY Blue Sky Solar Racing Places fi rst among Canadian teams with DS PLM Overview Challenge Crossing a continent powered are committed to demonstrating Evaluate a large number of designs only by the sun the viability of alternative energy to reduce drag and weight while Every two years, a special fi eld of cars technology and the practical benefi ts increasing power, and ultimately competes in the Panasonic World Solar of a multidisciplinary approach to optimize the solar car. Challenge, crossing the Australian solving problems. Dassault Systèmes continent powered by nothing but the is a sponsor of the Blue Sky Solar Solution sun. Teams research, build and design Racing team. Blue Sky Solar Racing used CATIA vehicles capable of completing the and ENOVIA Digital Mock-Up (DMU) 3000 km journey from tropical Darwin in Evaluating 60 designs in a to evaluate many design iterations the Northern Territory to cosmopolitan few hours and quickly generate models for Adelaide in South Australia. computational fl uid dynamics, and The critical challenge in developing a to defi ne wiring requirements early. competitive solar vehicle is optimizing CATIA Composite Design was used The University of Toronto Blue Sky its power-to-drag ratio. The solar to optimize composite parts. Solar Racing team’s fi fth-generation panels are arrayed across the top car, Cerulean, competed in the 2007 of the body to maximize sunlight Benefi ts challenge, fi nishing fi rst among all collection. They must be oriented Canadian entries and fi fth overall in Blue Sky decreased drag by 22% directly toward the sun to increase and increased the power of the solar its class.
    [Show full text]
  • Sevscience - Physical Science Summer Series #1
    SevScience - Physical Science Summer Series #1 Message from Mr. Severino: CK-12 Welcome to your study of Physical Science! This course serves as a solid foundation for courses in Jeanphysics, Brainard, chemistry, Ph.D. technology, and design-process learning. Through these introductory readings, you will gain insight into some of the careers and fields of human endeavor characterized by the physical sciences. For your summer assignment, please complete the following points: 1) Thoroughly read each chapter. 2) Complete the review questions at the end of each chapter.These review questions are to be completed electronically. To share your answers with me, you may use Google Docs, your Microsoft Office school account, or email. 3) Later this summer, you will receive links for online quizzes related to the readings in this textbook. These quizzes will be compiled as a major test grade. 4) The due date for all summer assignments is Tuesday, September 1, 2020. Say Thanks to the Authors If you have any questionsClick about http://www.ck12.org/saythanks this assignment, please do not hesitate to contact me at [email protected].(No sign in required) I look forward to seeing you in the Fall. Have a safe, enjoyable Summer! Contents www.ck12.org Contents 1 Introduction to Physical Science1 1.1 Nature of Science.......................................... 2 1.2 Scientific Theory .......................................... 6 1.3 Scientific Law............................................ 9 1.4 History of Science.......................................... 11 1.5 Ethics in Science .......................................... 15 1.6 Scope of Physical Science...................................... 18 1.7 Scope of Chemistry......................................... 20 1.8 Scope of Physics........................................... 23 1.9 Physical Science Careers .....................................
    [Show full text]
  • Introduction to Physical Science
    Introduction to Physical Science Jean Brainard, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) AUTHOR Jean Brainard, Ph.D. To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook®, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform®. Copyright © 2014 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]
  • CC MSI Annreport
    Annual Progress Report Date submitted (dd/mm/yyyy): 20/09/2013 Project no.: 30198 Institution: University of Western Ontario Title of the Major Science Initiative (MSI): Compute Canada / Calcul Canada Signatures: By signing below, you acknowledge having received and read a copy of this report and further certify that all information incorporated in the document is true, accurate, and complete, and that MSI Board members have seen and approved the report. Chair of the MSI Board Name: Donald Hathaway Signature: Date: September 20, 2013 President or authorized signatory of MSI lead institution Name: Jill Kowalchuk Signature: Date: September 20, 2013 NSERC/MRS principal investigator, where applicable Name: David Sénéchal Signature: Date: September 20, 2013 1 Part 1 – Performance report 1. Summary of performance indicators for the MSI Standard indicator Target for 2012 Value of indicator Target for 2013 for 2012 Number of Users (1) 1,200 1,452 1,500 Number of HQP (2) 4,000 3,408 3,850 Number of scientific contributions 1,500 1,411 1,550 (e.g., journal publications, conference proceedings, etc.) linked to the use of the MSI. See Appendix A Number of technical contributions 500 943 950 (e.g., patents filed, spin offs, etc.), where applicable, linked to the use of the MSI. See Appendix B Level of use (of all compute 75% 81.76% 80% systems in Compute Canada) User satisfaction (based on a 5 3.5 4.13 4 point scale with 5 being very satisfied) (3) MSI specific indicators Target for 2012 Value of indicator Target for 2013 for 2012 Up time of compute systems (4) 98% 98.45% 98% Number of HQP who completed 500 467 500 training (graduated in the specified time period) (5) Number of people trained/reached 3,000 4,802 5,400 through training or outreach activities.
    [Show full text]
  • Skulematters from Concept to Marketplace by LAND, by AIR Innovative Partnerships with Industry and Government Are Improving the Way We Travel
    FACULTY OF APPLIED SCIENCE & ENGINEERING ALUMNI MAGAZINE University of Toronto Fall 2014 FOSTERING ENGINEERING ENTREPRENEURS Empowering students to take their ideas Skulematters from concept to marketplace BY LAND, BY AIR Innovative partnerships with industry and government are improving the way we travel ENGINEERING YOUR HEALTH Commercializing cutting-edge technology and revolutionizing health care FROM BRIGHT IDEAS TO GLOBAL IMPACT How U of T engineers are embracing entrepreneurship and commercialization This issue / A MESSAGE FROM DEAN CRISTINA AMON / ALUMNI MAGAZINE 2014 Advisor Features Cristina Amon, Dean Editor Jamie Hunter On behalf of the Faculty of Applied Science Managing Editor & Engineering, it is my privilege to present RJ Taylor Skulematters alumni magazine 2014. Art Direction, Design & Illustration Luke Pauw Our cover image, the universal symbol of bright ideas, is Photography no ordinary light bulb. Created by three U of T Engineering Roberta Baker alumni in a startup branded Nanoleaf, this innovative Contributors device is the most energy-efficient bulb in the world. And Colin Anderson Christina Heidorn Patchen Barss Emily Meyertholen its technology and business success also tells another story, Althea Blackburn- Marit Mitchell one that is closer to home. When we encourage a culture Evans Zahra Murji of entrepreneurship and commercialization across our Raymond Cheah Megan Murphy community, we can advance our reach and impact globally. Joan DaCosta Cynthia Nevins 12 18 Christina da Rocha- Luke Y. H. Ng This is a theme
    [Show full text]
  • UTSC from St
    THE VARSITY STUDENT HANDBOOK VOL. XXXV LETTER FROM 21 Sussex Avenue, Suite 306 Toronto, ON, M5S 1J6 THE EDITOR Phone: 416-946-7600 thevarsity.ca YOU’VE ARRIVED. are part of the journey; take advantage of the resources to help you along the way, Editorial Board Your first steps on campus are the beginning from your college registrar to the many Editor-in-Chief of a journey. As in any adventure, there will available accessibility services (p. 21). Put [email protected] Danielle Klein be frustrations, excitement, and — whether yourself out there; join a club; make a few Handbook Editor they be the product of an amazing night mistakes. Soon enough, the confusion and Samantha Relich [email protected] out or a procrastinated term paper — some uncertainty of the first few months will Production Manager sleepless nights. fade into memory, and you will discover [email protected] Catherine Virelli Perhaps the most remarkable things that you really can do this. Managing Online Editor about starting university are the opportu- This guide is the product of our discoveries Shaquilla Singh [email protected] nities available to you and the chances you and journeys, and we hope it helps you find Design Editors have to push your boundaries and shape your own niche. It’s far from comprehensive, Kawmadie Karunanayake your experiences. You may be an aspiring but, hopefully, it will serve as a launch pad for Mari Zhou [email protected] scientist (p. 16), or maybe your dream is your own investigation — compiled by stu- Photo Editor to finally take centre stage (p.
    [Show full text]
  • Paul B. Maccready Papers, Date (Inclusive): Ca
    http://oac.cdlib.org/findaid/ark:/13030/c87d2xcp Online items available Finding Aid for the Paul B. MacCready Papers ca. 1931-2002 Processed by Kristen Abraham, Kevin Knox, Mariella Soprano. Caltech Archives Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 395-4073 Email: [email protected] URL: http://archives.caltech.edu/ ©2014 California Institute of Technology. All rights reserved. Finding Aid for the Paul B. 10220-MS 1 MacCready Papers ca. 1931-2002 Descriptive Summary Title: Paul B. MacCready Papers, Date (inclusive): ca. 1931-2002 Collection number: 10220-MS Creator: MacCready, Paul B. 1925-2007 Extent: 56.5 linear feet (113 archival boxes) Repository: California Institute of Technology. Caltech Archives Pasadena, California 91125 Abstract: Arriving on December 30th 2003, the collection documents most aspects of MacCready's career and many features of his individual character. Constituted within the papers is a diverse array of documents, media, objects, manuscripts and printed material; awards; videos and film; photographs and slides, diaries and notebooks; memorabilia, biographical material and ephemera. While the collection spans over seventy years (ca. 1930-2002), the bulk of material dates from the mid 1960s to the mid '90s. Especially prevalent within the collection are papers and ephemera from 1977 to 1985 during which time MacCready was working on his Gossamers and interest in human-powered flight was at its peak. Physical location: Archives, California Institute of Technology. http://maccready.library.caltech.edu/ Access The collection is open for research. Researchers must apply in writing for access.
    [Show full text]
  • 2.626 Fundamentals of Photovoltaics Fall 2008
    MIT OpenCourseWare http://ocw.mit.edu ��2.626 Fundamentals of Photovoltaics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. PV4EV: An assessment of photovoltaic energy to meet personal transportation demand December 4, 2008 Table of Contents Introduction ..................................................................................................................................................6 Project Summary.......................................................................................................................................6 Personal Transportation and Electric Vehicles .............................................................................................7 Daily Vehicle Use.......................................................................................................................................7 Electric Vehicles ........................................................................................................................................ 7 Integrated PV-EV.......................................................................................................................................9 Solar EV Energy Flow.............................................................................................................................9 Range of the Aptera Typ1-e Solar EV..................................................................................................10 PV for Electric Vehicles ...............................................................................................................................11
    [Show full text]
  • Directory Ece Research Research Ece 3
    SECTION SECTION SECTION 24 ELECTRIC CHARGE 30 UNDERGRADUATE 38 RESEARCH 45 ALUMNI 2017 A YEAR An industry partnership PROJECT WHERE PROGRAMMER JUST LIKE IN REVIEW is leading the charge towards PROJECTION MEETS MACHINE COMING HOME Undergraduates Machine learning Alumna receives developing the vehicles of create an augmented hardware acceleration a Doctor of Laws, the future reality system honoris causa 10 KING’S COLLEGE ROAD, TORONTO ON M5S 3G4 / PUBLICATION MAIL AGREEMENT NUMBER: 42887022 NUMBER: AGREEMENT MAIL PUBLICATION / 3G4 M5S ON TORONTO ROAD, COLLEGE KING’S 10 ENGINEERING COMPUTER & ELECTRICAL OF DEPARTMENT SR. ROGERS S. EDWARD THE THE EDWARD S. ROGERS SR. DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING DIRECTORY ECE RESEARCH RESEARCH ECE 3 CONNECT NETWORK Electrical and computer engineers LEARN are changing the world (as we know it) MENTOR Some of engineering’s greatest achievements have been accomplished by creating new and better ways to move people and goods — as well as data and information — and here in The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), we are doing just that. The driving force, so to speak, of the next revolution of transportation is electrification — moving people and goods by electric motor instead of by in-vehicle combustion. Just a decade ago, the widespread adoption of electric cars seemed a long way away — there were only hundreds of them on roads and highways around the globe. Today, there are more than two million electric vehicles worldwide, and growth continues to accelerate. Electric vehicles are not just poised to change our commute; they have the potential to significantly impact both our environment and our economy.
    [Show full text]
  • A New Magazine. a New Energy Degree. New Sections: It Is My Pleasure to Share with You Our Revamped Alumni Magazine
    skulematters layout final 10/22/07 3:08 PM Page 1 DEAN’S MESSAGE MESSAGE FROM THE DEAN ABOUT THE NEW SKULEMATTERS A new magazine. A new energy degree. New Sections: It is my pleasure to share with you our revamped alumni magazine. As a result of • My Favourite Skule™ Memory (write in with your feedback, we have made substantial changes. Everything is new (with the yours) – p.15 exception of a few of your favourites, including the Dean’s Message and Faculty/ • In Memoriam – p.25 • Class Notes – p.14 Alumni/Student News Pages). I would like to draw your attention in particular to • Department, Division, Institute Updates – p.16-24 the “Class Notes” section on page 14. We very much hope that you will send us your important updates and keep this section growing with each issue. Now Arriving in Your Mailbox in November and May For the inaugural issue of our transformed magazine, we have focused on ground- breaking research in energy. Everything in life touches on this important topic WITH SPECIAL THANKS TO 2006-2007 and, not unintentionally, so does much of what we as Engineers do every day. SKULEMATTERS EDITORIAL BOARD In the pages that follow, we illustrate important examples of how our alumni are making a significant impact on the world through their leading energy research. • Barry Levine (Ind 8T4), Alumni Representative From revolutionizing the oil industry by reducing energy consumption by 50 per • Cristina Amon, Dean cent, to finding a low-cost and environmentally friendly way to harvest sunlight • Greg Evans (Chem 8T2; MASc 8T4; PhD 8T8), and convert it into electricity, Skule™ alumni from around the globe are answering former Vice-Dean of Undergraduate Studies the world’s most pressing energy and sustainability questions.
    [Show full text]