<<

06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page57

STILBENOID CHEMISTRY FROM AND THE GENUS , A REVIEW Alison D. PAWLUS, Pierre WAFFO-TÉGUO, Jonah SHAVER and Jean-Michel MÉRILLON*

GESVAB (EA 3675), Université de Bordeaux, ISVV Bordeaux - Aquitaine, 210 chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon cedex, France

Abstract Résumé are of great interest on account of their many promising Les stilbénoïdes présentent un grand intérêt en raison de leurs nombreuses biological activities, especially in regards to prevention and potential activités biologiques prometteuses, en particulier dans la prévention et le treatment of many chronic diseases associated with aging. The simple traitement de diverses maladies chroniques liées au vieillissement. Le monomer, -, has received the most attention due to -resvératrol, monomère stilbénique, a suscité beaucoup d'intérêt de par E E early and biological activities in anti-aging assays. Since ses activités biologiques et . Une des principales sources in vitro in vivo in vitro in vivo , primarily in the form of wine, is a major dietary source of alimentaires en stilbénoïdes est , principalement sous forme Vitis vinifera these compounds, there is a tremendous amount of research on resveratrol de vin. De nombreux travaux de recherche ont été menés sur le resvératrol in wine and . Relatively few biological studies have been performed dans le vin et le raisin. À ce jour, relativement peu d'études ont été réalisées on other stilbenoids from , primarily due to the lack of commercial sur les stilbènes du genre autre que le resvératrol, principalement en Vitis Vitis sources of many of these compounds. The diverse stilbenoids from this raison de leur absence de commercialisation. Ce genre est une source economically important genus are an untapped source of health promoting inexploitée de stilbénoïdes d'intérêt potentiel pour la santé et c'est pourquoi compounds and because of this, numerous efforts for isolation, identification de nombreux efforts pour l'isolement, l'identification et la quantification and quantification of additional stilbenoids have been ongoing. Additionally, d'autres stilbénoïdes sont en cours. Comme les espèces proches sont due to their role as , stilbenoids play an important role in the susceptibles de présenter des voies métaboliques similaires, une meilleure defense against pathogens. Therefore, the compounds produced by highly connaissance de la diversité chimique du genre peut être utile dans Vitis resistant strains are of great interest for the development of resistant crops, cette tâche. Nous avons effectué une revue bibliographie des stilbénoïdes natural spray reagents, and as new dietary supplements or pharmaceuticals. de ce genre économiquement important afin de promouvoir la chimie des Since closely related species are likely to have similar metabolic pathways, stilbénoïdes du vin et des espèces de , plus particulièrement . Vitis V. vinifera a more thorough understanding of the chemical diversity of stilbenoids En outre, nous abordons la quantification et la distribution de tous ces within is useful in this endeavor. In this review, we focus on stilbenoids stilbénoïdes. Vitis found in the genus with the aim of aiding future stilbenoid chemistry, Vitis particularly in and wine. Additionally, we discuss the efforts : oligostilbénoïde, resvératrol, , , vin V. vinifera Mots clés Vitis Vitis vinifera to quantify stilbenoids in , with a focus on non-resveratrol stilbenoid Vitis compounds.

: , resveratrol, s, , wine Key words Viti Vitis vinifera

manuscript received 13 July 2012 - revised manuscript received 24th October 2012 , 2012, , n°2, 57-111 *Corresponding author: [email protected] J. Int. Sci. Vigne Vin 46 - 57 - ©Vigne et Vin Publications Internationales (Bordeaux, France) 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page58

A.D. PAWLUS et al.

(Bavaresco and Fregoni, 2001). Stilbenoids are, therefore, INTRODUCTION of great interest due to their activity against many Epidemiological studies have attributed moderate devastating vine diseases and pests. Multiple avenues consumption of to numerous health benefits to exploit this activity are being investigated. One potential such as the prevention of age-related diseases, including use of stilbenoids is as a naturally occurring pesticide for some cancers, neurodegenerative diseases, and most non-resistant species, such as L., the major strongly, cardiovascular diseases (Anstey , 2009; Vitis vinifera et al. wine . Such usage could reduce reliance on traditional Chao , 2008; Larrieu , 2004; Orgogozo , et al. et al. et al. pesticides. In addition to producing stilbenoid rich products 1997; Renaud and de Lorgeril, 1992; Wang , 2006). et al. such as natural spray reagents, wine, or dietary What accounts for such activity? A single glass of wine supplements, another avenue of research involves the use contains the fermented extract of 100 to 140 grape berries, of known induction mechanisms to promote disease which produces, depending on variety and vinification resistance (Cantos , 2003). There is also interest in et al. methods, up to 500 mg of polyphenolic compounds selectively breeding high stilbenoid producing species Vitis (Lopez , 2001; Stervbo , 2007; Waterhouse and by crossing with disease resistant, wild et al. et al. V.vinifera Vitis Teissedre, 1997). These include a number (Malacarne , 2011). of known beneficial compounds, the majority being et al. , such as anthocyanins and , phenolic In all, a more thorough knowledge of the chemistry acids and stilbenoids. While many of these compounds and biology of these molecules can provide multiple are found in widely consumed fruits and vegetables, wine health, environmental, and economic benefits. In this is the dominant dietary source of stilbenoids. review we summarize the current knowledge of stilbenoids found in the genus in addition to recent data on Vitis Stilbenoids have received considerable attention due stilbenoid quantitation in and wine. to their promising biological activities. The stilbenoid Vitis monomer, resveratrol , 3,5,4'-trihydroxy- -stilbene, (1) trans in particular, has undergone extensive biological testing. STILBENOIDS IN THE VITIS GENUS Both in vitro and in vivo animal studies of resveratrol Over 1000 stilbenoids have been structurally have demonstrated promising activities in regards to characterized throughout the plant kingdom and their disease prevention, progression, and treatment (Baur and distribution and structural variations have been reviewed Sinclair, 2006; Howitz , 2003; Jang , 1997; (Cichewicz and Kouzi, 2002; Lin and Yao, 2006; Shen et al. et al. , 2009; Sotheeswaran and Pasupathy, 1993). They Pezzuto, 2011). Due to these biological activities, it has et al. been concluded that resveratrol could be part of the are found in a number of plant families, including explanation for the and other Celastraceae, Cyperaceae, Dipterocarpaceae, Fabaceae, epidemiological studies supporting the moderate Gnetaceae, Iridaceae, Moraceae, Paeoniaceae and consumption of red wine for the prevention of diseases Vitaceae. The Vitaceae family encompasses approximately such as cardiovascular disease (Renaud and de Lorgeril, 900 species within 14 to 17 genera, primarily in tropical 1992; Renaud , 1998; Sun , 2002). Since the regions (Keller, 2010; Soejima and Wen, 2006). Of these et al. et al. numerous biological activities reported for resveratrol are genera, stilbenoids have been found primarily in only five, the , , , outside the scope of this article, we refer the reader to Ampelopsis Cissus Cyphostemma Parthenocissus and genera. Due to their economic importance as the existing biologically focused reviews (Anekonda, 2006; Vitis Bishayee, 2009; Szkudelska and Szkudelski, 2010). More major table and wine making grape around the world, the species in the genus have been studied the most. recently, promising biological activities have been shown Vitis Species from also have a long history of use as with other stilbenoids found in species, including Vitis Vitis medicinal plants, particularly , , , , , scirpusin A V. amurensis V.coignetiae (2) (3) (4) and , the later also being used by the modern , vaticanol C, α-viniferin , and . These V.vinifera (5) (6) (7) nutraceutical and cosmeceutical industries. has, until activities include mechanisms related to the prevention Vitis of cancers, neurological diseases, and cardiovascular recently, been divided into two subgenera, the Euvitis and diseases (Chung , 2010; Joseph , 2008; Oshima the Muscadinia. Muscadinia is composed of three et al. et al. , 1995b; Richard , 2011; Shibata , 2007; American species, including the species formerly known et al. et al. et al. Son , 2010; Tsukamoto , 2010), demonstrating as , the most important economic species et al. et al. V. rotundifolia potential health benefits of additional stilbenoids, many of Muscadinia. Due to differences in chromosome number of which are known constituents of wine. and other characteristics, Muscadinia is now considered its own genus and is now named V. rotundifolia As phytoalexins, stilbenoids are induced by infections (Michx.) Small (Bouquet , Muscadinia rotundifolia et al. and mechanical stress, such as that caused by UV damage 2008; Keller, 2010; Péros , 2011). Since it is still et al. or insects. Their production affords protection against of interest in the wine industry, we included this species many pathogens, such as in our review. Vitis Plasmopara viticola

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 58 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page59

Within , stilbenoids have been identified in around susceptible species have shown that disease resistant Vitis Vitis 20 species, including hybrid species, of the approximate species produce stilbenoids more readily and in higher 60 to 70 species found in . In table 1, we have listed concentration when exposed to pathogens such as downy Vitis the species and the specific plant parts the stilbenoids mildew, , and gray mold, Vitis Plasmopara viticola Botrytis were isolated from. The remaining two-thirds of the (Bavaresco , 1997; Bavaresco and Fregoni, Vitis cinerea et al. 2001; Pezet , 2004). Stilbenoid production can also species most likely contain stilbenoids, but have yet to be et al. examined for these compounds. Despite this lack of be induced by abiotic stress such as UV irradiation, research in all species, approximately 100 stilbenoid mechanical injury, and certain chemicals (Bavaresco and Vitis Fregoni, 2001; Bavaresco , 2009). In fact, the major monomers, dimers, and oligomers have been found, and et al. stilbenoids from were first identified in leaves nearly 20 are known constituents of wine. V.vinifera after induction by abiotic and biotic stresses (Langcake and Pryce, 1976; Langcake and Pryce, 1977a; Langcake STILBENOID PRODUCTION and Pryce, 1977b; Langcake and McCarthy, 1979; The metabolism of stilbenoids and regulatory Langcake, 1981). The production of stilbenoids is highly interactions are complex and not all mechanisms are variable among the different plant parts in regards to types currently understood. However, we do know that produced, concentrations, and response to outside stimuli. stilbenoids are downstream secondary metabolic products For example, resveratrol is induced in both leaves and of the pathway and diverge from the berries in response to external stimuli, but is constitutively pathway through the stilbene synthase (STS) expressed and accumulated in stems and roots where it, . According to recent analysis of the grapevine along with other stilbenoids, are believed to protect against genome, there is an estimated 20 to 40 STS genes, many rot. Other stilbenoids, such as piceid, have been of which have shown to be expressed when exposed to shown to be constitutively expressed in various tissues, biotic stress (Chong , 2009). including berries (Gatto , 2008). et al. et al. Since a number of stilbenoids are induced by infections Due to their biological activities, both in the plant and and have antifungal activity, they are considered to be in humans, the possibility to artificially manipulate phytoalexins. Comparisons between disease resistant and stilbenoid levels is of great interest. Research into post-

Table 1. Vitis species and plant part where stilbenoids have been reported. References are found in Table 2. aPlant Species Plant Part(s) Studied Muscadinia rotundifolia (Michx.) Small Berries and wine (previously V. rotundifolia Michx.) V. acerifolia Raf. (reported as V. longii) Roots V. amurensis Rupr. Leaves, stems and roots V. berlandieri Planch. Roots V. betulifolia Diels & Gilg Stems V. chunganensis Hu Whole plant V. cinerea (Engelm.) Engelm. ex Millard Roots V. coignetiae Pulliat ex Planch. Berries, leaves, stems, and whole plant V. davidii (Rom. Caill.) Foëx Stems V. flexuosa Thunb. Stems V. heyneana Roem. & Schult. (also includes V. Stems pentagona Diels & Gilg) V. labrusca L. () Berries, stems, leaves and wine V. riparia Michx. Leaves and roots V. riparia x V. berlandieri SO4 (Oppenheim Roots selection no. 4) V. rupestris Scheele Roots V. solonis longii Roots V. solonis richter Roots V. thunbergii Sieb. & Zucc. Roots and stems V. vinifera L. Berries, cell suspension cultures, leaves, roots, stems and wine V. wilsoniae H. J. Veitch Stems ! aThis table is to meant to provide an up-to-date survey of which species stilbenoids have been reported from. In these studies, many Vitis different clones, cultivars, and hybrids have been used, particularly with . This information can be found in the original manuscript, V. vinifera however, in many studies, this information was lacking.

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 59 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page60

A.D. PAWLUS et al.

abiotic stresses, such as UV irradiation and ozone while only nine are currently known in wine. Among treatment, is currently ongoing for the production of high- these is the more unusual 2,4,6-trihydroxyphenanthrene stilbenoid containing and grape-derived products 2- -glucoside , isolated from a wine O (10) (Cantos , 2003; Gonzalez-Barrio , 2006; (Baderschneider and Winterhalter, 2000). There are et al. et al. Guerrero , 2010). Efforts are also being made to 35 reported dimers in , 24 having been identified in et al. Vitis utilize stilbenoid induction as natural pesticides through and its cell cultures, and nine in wine. The V. vinifera known elicitors, such as ethephon and methyl jasmonate dimers found in wine are mostly resveratrol dimers, (Belhadj , 2008a; Belhadj , 2008b; Faurie et al. et al. et derivatives of viniferin and , with ε-viniferin , 2009). This research could lead ways to safely induce (8) al. being the most common. naturally occurring stilbenoids on an industrial scale or There are 16 known trimers in species. Six of use them as spray reagents against disease, which could Vitis these trimers have been reported in various help reduce or eliminate the need for the currently used V. vinifera pesticides. plant parts, including the roots, leaves, and stems, although, to date, none of these have been reported in wine. The presence of trimers, based on molecular weight using STRUCTURAL DIVERSITY HPLC-MS-MS, has, however, been suggested in grapes OF VITIS STILBENOIDS treated with UV light and ozone (Gonzalez-Barrio , et al. Structural variations in stilbenoids typically involve 2006). Additionally, there are a total of 26 known stilbenoid monomer polymerization, glycosylation, tetramers, including a tetramer breakdown product, (-)- l . While only one of these compounds, prenylation, methoxylation, and various hydroxylation vinifera (11) , has been reported in wine, 14 others patterns. There have been several attempts to delineate (12) are known plant part constituents. Finally, there and improve the classification of these various derivatives V.vinifera (Lin and Yao, 2006; Shen , 2009; Sotheeswaran and are two known stilbenoid pentamers and one et al. Vitis Pasupathy, 1993). The proposed classification initially hexamer, none of which have been found in wine or any separates the monomers from the oligomers. Oligomers plant part. V.vinifera undergo further classifications based on their monomer unit composition and heterogeneous coupling, i. e. Several notable points exist in the literature, relating resveratrol , piceatannol , gnetol (2,3', 5',6- to stilbenoid nomenclature and structure, which complicate (1) (2) tetrahydroxy- -stilbene), (3,4', 5- matters of identification and classification. There are a trans trihydroxy-3'-methoxy- -stilbene), and . number of instances where common names given to trans These are further separated into groups with oxygen particular stilbenoids can lead to confusion. In 2009, two independent research groups published the isolation and containing heterocycles (group A), such as ε-viniferin , or those without (group B), such as pallidol . The identification of two new different stilbenoid dimers, one (8) (9) from stembark and one from roots. few remaining compounds that do not fit within this V.vinifera V.thunbergii scheme are assigned to a small miscellaneous category. These groups published concurrently and chose the same Resveratrol is the predominant monomer subunit in , name for their newly identified compounds, vitisinol E Vitis (Chiou , 2009; Choi , 2009). The with multiple patterns of oligomerization and (13,14) et al. et al. glycosylation. The resveratrol dimer, -viniferin , is opposite situation occurred in 1999, when two groups ε (8) considered the major oligomer intermediate in isolated the same stilbenoid dimer but gave it two different Vitis common names, amurensin H and viniferifuran species. (15) (Huang , 1999a; Ito , 1999). Another area of et al. et al. In order to better understand the chemical diversity confusion with nomenclature comes from the use of the of stilbenoids in species, we have delineated the Vitis common name “vitisin” », which refers to either the well- known stilbenoid compounds with their plant name and characterized pyranoanthocyanin pigments in wine, vitisin part, including those found in wine, in Table 2. Of the A and B, or to a series of stilbenoid oligomers, vitisins A approximately 100 stilbenoids identified in , 18 are Vitis through E. monomers. These are primarily methoxylated and glycosylated derivatives of resveratrol and piceatannol Another potential point of confusion lies in the along with their (c ) and ( ) isomers. A large structure and naming of the -viniferins. The compound Z is E trans ε portion of these monomers are glycosides, many of which itself is a simple resveratrol dimer, however, there are two were isolated and identified in cell culture stereochemical centers, at positions 7a and 8a on the V. vinifera studies, a method developed in our laboratory for further dihydrofuran ring, allowing for four potential biological studies and potential industrial production of stereoisomers (see compound 8 in Table 2 for numbering). these compounds (Krisa , 1999; Waffo-Téguo , The configuration of the two hydrogens in this et al. et al. trans 1996a). Seventeen of these 18 monomers have been saturated ring system, meaning one alpha and one identified in parts of the vine or in cell cultures, hydrogen, is most common in . V.vinifera Vitis

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 60 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page61

Table 2. Compounds reported in Vitis species.

Monomers

Compound aStructure M.W. Plant Name bReferences Name and Part Z- HO 406.38 V. vinifera cell (Buiarelli et al., suspension 2007; Waffo-Téguo cultures and et al., 1998) wine OGlc OH OH E-Astringin (18) OH 406.38 V. coignetiae (Buiarelli et al., OH berries 2007; Carando et al., V. vinifera cell 1999; Kim et al., HO suspension 2009; Krisa et al., cultures, and 1999; Naugler et al., red and white 2007; Ribeiro de wine Lima et al., 1999; OGlc Vitrac et al., 2002; Vitrac et al., 2005; Waffo-Téguo et al., 1996a; Waffo-Téguo et al., 1998) E-Piceatannol (astringinin) (2) OH 244.24 V. amurensis (Bavaresco et al., OH leaves and 2002; Buiarelli et stems al., 2007; Delaunay HO V. coignetiae et al., 2002; Ha et berries al., 2009b; Kim et V. vinifera al., 2009; Kulesh et stems, berries, al., 2006; Zga et al., OH and wine 2009) Z-Piceid HO 390.38 V. labrusca (Adrian et al., 2000; berries Baderschneider and M. rotundifolia Winterhalter, 2000; berries Buiarelli et al., OGlc V. vinifera 2007; Krisa et al., berries, leaves, 1999; Larronde et OH cell cultures al., 2005; Leblanc et and red and al., 2008; Mattivi et al., 1995; Naugler et al., 2007; Pezet et al., 2003; Ribeiro de Lima et al., 1999; Santamaria et al., 2010; Vitrac et al., 2001; Vitrac et al., 2002; Waffo-Téguo et al., 1998)

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 61 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page62

A.D. PAWLUS et al.

E-Piceid (3) OH 390.38 V. amurensis (Adrian et al., 2000; leaves and Baderschneider and HO stems Winterhalter, 2000; V. coignetiae Buiarelli et al., berries 2007; Guebailia et V. labrusca al., 2006; Ha et al., OGlc berries 2009a; Ha et al., M. rotundifolia 2009b; Jean-Denis et berries al., 2006; Kim et al., V. vinifera 2009; Krisa et al., berries, cell 1999; Landrault et suspension al., 2002; Larronde cultures, et al., 2005; Leblanc leaves, stems et al., 2008; Mattivi and red and et al., 1995; Naugler white wine et al., 2007; Ribeiro de Lima et al., 1999; Santamaria et al., 2010; Vitrac et al., 2001; Vitrac et al., 2002; Vitrac et al., 2005; Waffo-Téguo et al., 1996a; Waffo- Téguo et al., 1996b; Waffo-Téguo et al., 1998; Waterhouse and Lamuela- Raventós, 1994; Yan et al., 2001)

E-Pterostilbene (4) OH 256.30 V. coignetiae (Adrian et al., 2000; berries Kim et al., 2009; H3CO V. vinifera Langcake et al., leaves and 1979; Pezet and berries Pont, 1988; Pezet et OCH3 al., 2003) Z-Resveratrol HO 228.24 V. labrusca (Buiarelli et al., wine 2007; Delaunay et M. rotundifolia al., 2002; Jeandet et wine al., 1995; Krisa et OH V. vinifera al., 1999; Lamikanra leaves, stems, et al., 1996; Mattivi OH cell suspension et al., 1995; Naugler cultures and et al., 2007; Pezet et red and white al., 2003; Ribeiro de wine Lima et al., 1999; Vitrac et al., 2001; Vitrac et al., 2002; Vitrac et al., 2005)

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 62 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page63

E-Resveratrol (1) OH 228.24 V. amurensis (Adrian et al., 2000; leaves, stems, Amico et al., 2009; HO and roots Baderschneider and V. betulifolia Winterhalter, 2000; stems Barjot et al., 2007; V. Bisson et al., 2011; OH chunganensis Buiarelli et al., whole plant 2007; Dourtoglou et V. coignetiae al., 1999; Ector et berries and al., 1996; Gambuti leaves et al., 2004; V. davidii Gerogiannaki- stems Christopoulou et al., V. labrusca 2006; Guebailia et berries, leaves, al., 2006; Ha et al., stems, and 2009a; Ha et al., wine 2009b; He et al., V. pentagona 2009; Huang and stems Lin, 1999; Jean- V. riparia Denis et al., 2006; leaves Jeandet et al., 1991; V. riparia x V. Jeandet et al., 1995; berlandieri Krisa et al., 1999; roots Kulesh et al., 2006; M. rotundifolia Lamikanra et al., berries and 1996; Landrault et wine al., 2002; Langcake V. thunbergii and Pryce, 1976; stems Langcake, 1981; V. vinifera Leblanc et al., 2008; berries, cell Li et al., 1996; Li et suspension al., 1998a; Lou et cultures, stems, al., 2004; Mattivi et leaves, and red al., 1995; Naugler et and white wine al., 2007; Pezet et al., 2003; Ribeiro de Lima et al., 1999; Siemann and Creasy, 1992; Vitrac et al., 2001; Vitrac et al., 2002; Vitrac et al., 2005; Wang et al., 2011; Waterhouse and Lamuela-Raventós, 1994)

Z-Resveratrol-3,4'-O-!- HO 552.52 V. vinifera cell (Decendit et al., diglucoside suspension 2002; Larronde et cultures al., 2005)

OGlc

OGlc

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 63 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page64

A.D. PAWLUS et al.

E-Resveratrol-3,4!-O-!- OGlc 552.52 V. vinifera cell (Decendit et al., diglucoside suspension 2002; Larronde et (mulberroside E) HO cultures al., 2005)

OGlc E-Resveratrol 2-C-glucoside OH 390.38 V. vinifera (Baderschneider and stems and Winterhalter, 2000; HO wine, Riesling Yan et al., 2001)

Glc OH Z-Resveratrol GlcO 552.52 V. vinifera cell (Larronde et al., 3,5-O-!-diglucoside suspension 2005) cultures

OGlc

OH E-Resveratrol OH 552.52 V. vinifera cell (Larronde et al., 3,5-O-!-diglucoside suspension 2005) GlcO cultures

OGlc Z-Resveratrol GlcO 714.67 V. vinifera cell (Larronde et al., 3,5,4'-O-!-triglucoside suspension 2005) cultures OGlc

OGlc Z- HO 390.38 V. vinifera cell (Krisa et al., 1999; suspension Waffo-Téguo et al., cultures 1998) OH

OGlc E-Resveratroloside OGlc 390.38 V. vinifera cell (Krisa et al., 1999; suspension Waffo-Téguo et al., HO cultures 1998)

OH E- OH 258.27 V. coignetiae (Adrian et al., 2000)

OCH3 berries

HO

OH 2,4,6-Trihydroxyphenanthrene OH 388.37 V. vinifera (Baderschneider and 2-O-glucoside (10) wine, Riesling Winterhalter, 2000) OH

OGlc

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 64 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page65

!

Dimers

Compound aStructure M.W. Plant Name bReferences Name and Part

(+)- HO 470.47 V. amurensis (Chen and Wang, H leaves, stems, and 2009; Chiou et al., O OH roots 2009; Ha et al., V. betulifolia stems 2009a; Ha et al., HO V. coignetiae 2009b; Huang and H whole plant Lin, 1999; Kulesh et OH V. heyneana stems al., 2006; Li et al., V. thunbergii roots 1996; Li et al., OH and stems (var. 1998b; Lou et al., taiwaniana) 2004; Oshima et al., V. vinifera stems 1995b; Reniero et al., 1996; Wang et OH al., 2011; Yan et al., 2001; Zga et al., 2009)

Ampelopsin D OH 454.47 V. amurensis roots (Huang and Lin, V. vinifera leaves 1999; Mattivi et al., OH 2011) H HO

OH H HO

HO (+)-Ampelopsin F 454.47 V. amurensis (Chiou et al., 2009; HO OH leaves and stems Ha et al., 2009a; Ha V. coignetiae et al., 2009b; whole plant Oshima et al., HO OH V. thunbergii roots 1995b; Yan et al., V. vinifera stems 2001)

OH OH Amurensin A HO 472.49 V. amurensis roots (Huang and Lin, HO OH 1999) H H H HO HO

OH OH

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 65 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page66

A.D. PAWLUS et al.

Betulifol A OH 452.45 V. betulifolia stems (Li et al., 1998b) H O HO

H H OH O H HO Gnetin A OH 454.47 V. flexuosa stems (Li et al., 1998c; Li V. wilsoniae stems et al., 1998d)

OH

H HO O

H O HO Isoampelopsin F HO OH 454.47 V. amurensis stems (Kulesh et al., 2006)

HO OH H

OH OH (-)-Malibatol A HO 468.45 V. vinifera stems (Yan et al., 2001)

H OH OH HO

O HO

HO Pallidol (9) OH 454.47 cV. amurensis (Delaunay et al., OH stems 2002; Guebailia et V. vinifera cell al., 2006; Kulesh et H suspension al., 2006; Landrault HO cultures, leaves, et al., 2002; Mattivi OH stems and red wine et al., 2011; Naugler H (Bergerac) et al., 2007; Vitrac et al., 2001; Vitrac et al., 2002; Waffo- HO OH Téguo et al., 2001)

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 66 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page67

Pallidol 3,3!- OH 778.75 V. vinifera wine, (Baderschneider and OGlc diglucoside Riesling Winterhalter, 2000)

HO OH

HO OGlc Pallidol 3-O- OH 616.61 V. vinifera wine, (Baderschneider and OH glucoside Riesling Winterhalter, 2000)

HO OH

HO OGlc Parthenocissin A HO 454.47 V. vinifera wine, (Vitrac et al., 2001) OH H red Bergerac

HO OH H H OH

OH HO 454.47 V. vinifera leaves (Mattivi et al., 2011) OH H

HO OH H H OH

HO Scirpusin A (5) OH 470.47 V. vinifera stems (Kong et al., 2010) HO

O OH

HO

OH

OH

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 67 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page68

A.D. PAWLUS et al.

(+)-Viniferether A OH 486.51 V. vinifera roots (Fujii et al., 2005)

OH H HO

OH H H HO H3CO H OH (+)-Viniferether B OH 486.51 V. vinifera roots (Fujii et al., 2005) OH H HO

OH H H HO H H3CO OH Viniferifuran (15) HO 452.45 V. amurensis roots (Chiou et al., 2009; (Amurensin H) V. thunbergii roots Huang et al., 1999a; O OH V. vinifera stems Ito et al., 1999) HO

OH

OH

E-"-Viniferin (19) HO 454.47 V. vinifera cell (Breuil et al., 1998; (E-Resveratrol suspension Jean-Denis et al., dehydrodimer) O cultures, leaves, 2006; Pezet et al., and wine 2003; Vitrac et al., HO 2005; Waffo-Téguo OH et al., 2001)

OH OH E-"-Viniferin 11- HO 616.61 V. vinifera cell (Waffo-Téguo et al., H suspension cultures 2001) O-!-D- O glucopyranoside (resveratrol HO OH dehydrodimer 11- H O-!-D- glucopyranoside) OGlc OH E-"-Viniferin 11!- HO 616.61 V. vinifera cell (Waffo-Téguo et al., H suspension cultures 2001) O-!-D- O glucopyranoside (E-Resveratrol HO OH dehydrodimer 11!- H O-!-D- glucopyranoside) OH OGlc

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 68 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page69

Z-"-Viniferin HO 454.47 V. vinifera leaves (Pezet et al., 2003) after UV- O irradiation HO HO

OH OH Z-#-Viniferin HO 454.47 V. vinifera leaves (Amira-Guebailia et H and wine al., 2009; Mattivi et O OH al., 2011; Pezet et HO OH al., 2003) H

OH (+)-E-#-Viniferin HO 454.47 V. heyneana stems (Huang and Lin, H V. vinifera stems 1999; Ito and Niwa, O OH and leaves 1996; Li et al., 1996; HO Mattivi et al., 2011) H

OH

OH

E-#-Viniferin (8) HO 454.47 V. amurensis (Amico et al., 2009; leaves, stems, Amira-Guebailia et O OH and roots al., 2009; Barjot et V. berlandieri roots al., 2007; Bisson et HO V. betulifolia stems al., 2011; Chiou et V. chunganensis al., 2009; Guebailia whole plant et al., 2006; Ha et OH V. cinerea roots al., 2009b; He et al., V. coignetiae 2009; Huang et al., whole plant 2005; Jean-Denis et V. davidii stems al., 2006; Kulesh et OH V. flexuosa stems al., 2006; Landrault V. longii roots et al., 2002; V. riparia leaves Langcake and Pryce, and roots 1977a; Langcake, V. riparia x V. 1981; Li et al., berlandieri roots 1998a; Li et al., V. rupestris roots 1998b; Li et al., V. solonis longii 1998c; Li et al., roots 1998d; Mattivi and V. solonis richter Reniero, 1992; roots Oshima et al., V. thunbergii roots 1995b; Ourtoule et and stems (var. al., 1996; Pezet et taiwaniana) al., 2003; Vitrac et V. vinifera leaves, al., 2005; Wang et roots, stems, and al., 2011; Yan et al., red wine 2001; Zga et al., V. wilsoniae stems 2009)

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 69 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page70

A.D. PAWLUS et al.

Z-$-Viniferin HO 454.47 V. vinifera leaves (Mattivi et al., 2011) (7a,8a-cis-Z-#- H viniferin 17) O OH HO H OH OH E-$-Viniferin HO 454.47 V. vinifera leaves (Mattivi et al., 2011) (7a,8a-cis-E-#- viniferin 16) H O OH

HO H

OH

OH Z-#-Viniferin HO 778.75 V. vinifera wine, (Baderschneider and diglucoside Riesling Winterhalter, 2000) O OH

GlcO OH

OGlc E-#-Viniferin HO 778.75 V. vinifera wine, (Baderschneider and diglucoside Riesling Winterhalter, 2000) O OH

GlcO

OGlc

OH #-Viniferin diol HO 488.49 V. betulifolia stems (Li et al., 1998b; (Betulifol B) H V. coignetiae stems Oshima et al., O OH 1995a) HO H HO OH OH

OH

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 70 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page71

Vitisinol A HO H H OH 452.45 V. thunbergii roots (Huang et al., 2005) O

H H

HO OH

O Vitisinol B HO 574.58 V. thunbergii roots (Huang et al., 2005) H O OH

HO OH H

OH CHO

OH Vitisinol C HO 428.48 V. thunbergii roots (Huang et al., 2005) O

H H

HO OH OH Vitisinol D HO 454.47 V. thunbergii roots (Huang et al., 2005) O

O HO

OH

OH (+)-Vitisinol E O 486.51 V. vinifera (Choi et al., 2009) (13) HO H stembark

H HO O OCH 3 OH OH Vitisinol E (14) OH 444.48 V. thunbergii roots (Chiou et al., 2009)

HO O HO

OH

OH

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 71 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page72

A.D. PAWLUS et al.

Vitisinol G 452.45 V. thunbergii roots (Chiou et al., 2009) HO O OH

HO

OH OH !

Trimers

Compound aStructure M.W. Plant Name bReferences Name and Part Ampelopsin C OH OH 680.70 V. betulifolia stems (Chiou et al., HO V. coignetiae 2009; Huang et HO whole plant al., 2005; Li et H V. davidii stems al., 1996; Li et V. heyneana stems al., 1998a; Li et H H HO V. thunbergii roots al., 1998b; OH and stems (var. Oshima et al., H H taiwaniana) 1995b; Wang et al., 2011) HO O H

HO Ampelopsin E HO OH 680.70 V. amurensis roots (Huang and Lin, H H V. davidii stems 1999; Li et al., O O V. wilsoniae stems 1998a; Li et al., 1998d) HO OH H H

OH OH

OH OH Z-Ampelopsin E HO 680.70 V. thunbergii roots (Chiou et al., 2009) H H O O OH HO H H OH OH OH

Z-Amurensin B HO OH 680.70 V. amurensis (Ha et al., H H leaves and stems 2009a) O O

HO OH H H

OH OH OH

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 72 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page73

E-Amurensin B HO OH 680.70 V. amurensis (Ha et al., H H leaves, stems, and 2009a; Ha et al., O O roots 2009b; He et V. chunganensis al., 2009; HO OH whole plant Huang and Lin, H H 1999)

OH OH

OH Amurensin C HO OH 678.68 V. amurensis roots (Huang et al., H 2000) O O

HO OH H

OH OH

OH Amurensin D OH 678.68 V. amurensis roots (Huang et al., OH 2000) H O O HO OH H HO OH

OH Amurensin G HO OH 680.70 V. amurensis (Ha et al., leaves, stems, and 2009b; He et OH roots al., 2009; V. chunganensis Huang et al., OH H whole plant 1999b) H H H OH HO OH H O H HO

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 73 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page74

A.D. PAWLUS et al.

Gnetin H HO OH 680.70 V. amurensis (Ha et al., H H leaves and stems 2009a; Ha et al., O O V. berlandieri 2009b; He et roots al., 2009; HO OH V. chunganensis Mattivi and H H whole plant Reniero, 1992) V. cinerea roots OH OH V. longii roots V. riparia roots V. rupestris roots V. solonis longii OH roots V. solonis richter roots V. vinifera roots E-trans- OH 680.70 V. vinifera leaves (Barjot et al., and stems 2007; Mattivi et HO al., 2011) H O OH

HO H H

HO O OH H HO E-cis- OH 680.70 V. vinifera leaves (Mattivi et al., Miyabenol C 2011) HO H O OH

HO H H

OH O OH H HO ! Z-trans- HO 680.70 V. vinifera leaves (Mattivi et al., Miyabenol C H 2011) O OH

HO H H OH

HO O OH H HO

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 74 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page75

%-Viniferin (6) OH 678.68 V. riparia leaves (Langcake, V. vinifera leaves 1981; Mattivi et al., 2011; Pryce H and Langcake, O OH 1977) H HO H O H HO H H O

OH OH (+)-Viniferol D OH 680.70 V. vinifera stems (Takaya et al., 2003) OH

OH H H H OH H HO H O OH OH H HO Vitisin E OH 680.70 V. coignetiae (Shinoda et al., stems 1997)

OH OH H H H HO OH

O O H H HO OH Vitisinol F HO 654.70 V. thunbergii roots (Chiou et al., H 2009) O OH OH

HO H H H OH O

OH

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 75 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page76

A.D. PAWLUS et al.

!

Tetramers

Compound aStructure M.W. Plant Name bReferences Name and Part Ampelopsin H OH 906.93 V. vinifera leaves (Mattivi et al., H HO HO O 2011) H OH OH H H H H HO H HO O OH OH H

HO Amurensin I HO H 902.89 V. amurensis roots (Huang et al., O OH HO 2001)

HO H H O H H H HO OH HO OH HO HO Amurensin J HO OH 906.93 V. amurensis roots (Huang et al., H H 2001) O O

HO OH H H

H OH HO O H

OH OH OH Amurensin K OH 920.91 V. amurensis roots (Huang et al., 2001) H HO O

OH O H

OH OH HO H H HO O H HO H

OH OH

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 76 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page77

Amurensin L HO 904.91 V. amurensis roots (Huang et al., 2001) O OH HO

OH OH HO HO H H H O O H

OH OH Amurensin M OH 902.89 V. amurensis roots (Huang et al., 2001)

HO

OH

HO HO O O OH OH HO

OH

OH OH HO Davidol A O O 906.93 V. davidii stems (Li et al., (hypothesized HO OH 1998a) structure)

HO OH HO OH

OH OH Flexuosol A OH 906.93 V. flexuosa stems (Li et al., 1998c) HO H HO O OH

HO H OH H H

OH O O H H HO OH

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 77 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page78

A.D. PAWLUS et al.

Heyneanol A OH 906.93 V. amurensis roots (Huang et al., HO H HO O H V. betulifolia stems 2001; Jang et O OH OH V. heyneana stems al., 2007; Li et HO H al., 1996; Li et H H al., 1998b; Li et OH OH al., 2000) H O HO Hopeaphenol HO 906.93 V. amurensis roots (Guebailia et (12) H OH V. betulifolia stems al., 2006; He et O OH V. chunganensis al., 2009; whole plant Huang et al., HO H HO V. flexuosa stems 2001; Ito et al., H V. vinifera leaves, 1997; Li et al., H stems, roots, and 1998b; Li et al., OH OH H red wine 1998c; Reniero et al., 1996; OH Yan et al., HO O H 2001) OH Isohopeaphenol HO 906.93 V. amurensis roots (Huang et al., H OH V. vinifera leaves 2001; Ito et al., O OH and stems 1997; Mattivi et al., 2011; Yan HO H et al., 2001) H HO H OH OH H

OH HO O H OH Miyabenol A HO 922.92 V. thunbergii roots (Chiou et al., 2009; Huang et HO al., 2005) H H O OH O OH HO H H H

OH HO H O OH

OH Vaticanol C HO 906.93 V. vinifera leaves (Mattivi et al., OH isomer 2011) HO H (tentative O structure) OH H OH H H H H HO H OH O OH H OH HO

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 78 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page79

(+)-Viniferol A OH 906.93 V. vinifera stems (Yan et al., OH 2001)

HO H OH O H

OH H H OH H

H H HO OH

O OH H HO (+)-Viniferol B OH 906.93 V. vinifera stems (Yan et al., OH HO 2002)

OH OH H H OH H H HO H H H O

O OH H HO OH (+)-Viniferol C HO 906.93 V. vinifera stems (Yan et al., H 2002) O OH

HO OH H H H OH O HO H H H H OH HO HO OH (+)-Viniferol E HO OH 924.94 V. vinifera roots (Fujii et al., OH H H OH O 2005) H H HO H H OH O OH HO O H H HO OH (+)-Vitisifuran HO 904.91 V. amurensis roots (Huang et al., A O OH V. vinifera stems 2001; Ito et al., 1999) HO OH

OH HO H H

H OH OH

HO O H OH

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 79 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page80

A.D. PAWLUS et al.

(-)-Vitisifuran B HO 904.91 V. vinifera stems (Ito et al., 1999) O OH

HO OH HO OH

OH H H H O O H

OH

OH Vitisin A (r-2- HO 906.93 V. amurensis (Chen and H Viniferin) (7) O OH leaves, roots, and Wang, 2009; stems Chiou et al., HO V. betulifolia stems 2009; Ha et al., H OH V. chunganensis 2009b; He et whole plant al., 2009; OH V. coignetiae Huang et al., OH H stems and whole 2001; Huang et H plant al., 2005; Ito et H OH V. davidii stems al., 1998; Jang HO V. flexuosa stems et al., 2007; O OH V. thunbergii roots Korhammer et H and stems al., 1995; Li et HO V. vinifera stems al., 1998a; Li et V. wilsoniae stems al., 1998b; Li et al., 1998c; Li et al., 1998d; Oshima et al., 1993; Oshima et al., 1995b; Wang et al., 2011; Yan et al., 2001)

Z-Vitisin A HO OH 906.93 V. coignetiae (Ito et al., 1998; OH stems and whole Oshima et al., H plant 1993; Oshima et al., 1995b) OH H O

OH H H OH H OH HO

O OH H HO

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 80 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page81

E- HO 906.93 V. amurensis roots (dBisson et al., H (r-Viniferin) O OH V. berlandieri 2011; Chen and HO roots Wang, 2009; Ito dV. riparia x V. and Niwa, 1996; H berlandieri roots Korhammer et OH HO OH V. cinerea roots al., 1995; Lou et V. coignetiae al., 2004; H OH stems Mattivi and H O V. longii roots Reniero, 1992; H H O V. riparia roots Oshima et al., V. rupestris roots 1995a; Wang et HO V. solonis longii al., 2011; Zga et roots al., 2009) OH V. solonis richter roots V. thunbergii var. taiwaniana stems and roots V. vinifera stems and roots Z-Vitisin B OH 906.93 V. amurensis roots (Lou et al., HO OH V. coignetiae 2004; Oshima et H O OH stems al., 1995a) H HO HO H O H H OH OH O H OH E-Vitisin C HO 906.93 V. thunbergii roots (Huang et al., H O OH V. vinifera stems 2005; Ito and HO Niwa, 1996)

H

HO HO OH

H OH H O H H O

HO OH

However, a recent study found the configuration dihydrobenzofuran form were isolated with both ( ) cis cis Z in infected leaves, meaning and ( )-double bond configurations. The authors V. vinifera trans E both hydrogens arein the alpha or both in the beta position named these two -dihydrobenzofuran forms, - - cis E ω (Mattivi , 2011). This naming of and viniferin and - -viniferin , despite having et al. cis trans (16) Z ω (17) conformation for these hydrogens is an area of confusion the same planar structure as ε-viniferin, while other authors when dealing with stilbenoids, which often contain a trans have referred to this compound as 7a, 8a- -ε-viniferin ( ) or ( ) double bond as well. The nomenclature, cis E cis Z E/Z (Huang , 2000; Lin and Yao, 2006; Mattivi , for the and double bond, respectively, is more et al. et al. trans cis 2011). It should also be noted that in the relative precise, yet less commonly used in stilbenoid literature. conformation, the difference between the - The study by Mattivi (2011) illustrates this problem, cis et al. dihydrobenzofuran form and the -dihydrobenzofuran where both the - -viniferin and the - trans trans ε cis form can be determined by comparison of their NMR

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 81 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page82

A.D. PAWLUS et al.

Vitisin D OH 906.93 V. coignetiae (Shinoda et al., H stems 1997) HO O

OH H OH H OH

OH H OH H HO

O OH H HO !

Breakdown Product from Tetramer

Compound aStructure M.W. Plant Name bReferences Name and Part (-)- HO 574.58 V. thunbergii roots (Chiou et al., (11) V. vinifera stems 2009; Huang et H O OH al., 2005; Ito and Niwa, HO 1996) OH H H

H OH O

OHC !

data. Determining the absolute configuration, however, is more challenging, i. e. the difference between (+) and QUANTIFICATION OF STILBENOIDS (-)-ε-viniferin. For known compounds, their [α]D values 1 Quantification methods can be compared with the literature. Currently, only the Numerous techniques have been used for the (+)- -viniferin form has been proven to be in Vitaceae, ε quantification of stilbenoids with varying degrees of whereas (-)-ε-viniferin can be found in other plant families (Lin and Yao, 2006). Nevertheless, there have been success. The primary techniques used include liquid isolated reports of (-)- -viniferin in , though the chromatography with ultraviolet detection (LC-UV), LC- ε Vitis complete spectroscopic data set was not provided (Amico fluorescence detection, gas chromatography-mass , 2009; Kulesh , 2006). A careful discussion on spectrometry (GC-MS) and LC-MS, in conjunction with et al. et al. the difficulties in determining the relative and absolute numerous sample preparation techniques, see Table 3. configurations of the viniferins and other stilbenoids, is The majority of the initial studies utilized GC-MS, provided in the publication by Mattivi (2011). Due however, this method has drawbacks, such as derivation et al. to the difficulties in assigning absolute configurations to requirements and destruction of oligomers and glycosides stilbenoid oligomers, many compounds have been prior to detection. These properties have a tendency to reported with only their relative configurations assigned. promote artificially high aglycone monomer levels and to -isomer conversions (Flamini, 2003; Soleas , However, since (+)-ε-viniferin is considered a major E Z et al. stilbenoid intermediate for larger oligomers, the structures 1997). While HPLC-UV analysis does not have the same containing viniferin moieties are normally presented as problems as GC-MS, other problems such as lack of containing the same configuration when not otherwise baseline resolution, leading to overestimation of individual determined. In the reports of many complex oligomers, stilbenoid levels, may exist, along with poor sensitivity. only the relative configuration has been assigned. More selective techniques such as fluorescence detection

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 82 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page83

!

Pentamers

Compound aStructure M.W. Plant Name bReferences Name and Part

Amurensin E OH 1132.14 V. amurensis roots (Huang et al., OH 2000) H O O HO OH H HO HO OH

H H OH HO OH H

HO O H

HO Amurensin F OH 1132.14 V. amurensis roots (Huang et al., OH 2000) H O O HO OH H HO OH OH

HO H O H H HO H O

OH OH !

can help overcome these drawbacks, whereas the high incomplete extraction due to poor solvent choice. selectivity of LC-MS techniques can eliminate this Comparisons of multiple solvent extraction efficiencies problem. However, matrix effects offer a particular have shown that 50 to 60 % in was more effective for -resveratrol and - -viniferin extraction in challenge in the quantitation of individual compounds in E E ε complex samples such as wine. This may be overcome vine canes than a wide-range of other solvent systems and ratios tested (Karacabey and Mazza, 2008; Rayne by sample cleaning techniques such as solid phase et , 2008). In another study, comparing extraction rates extraction (SPE), sample dilution, selective extraction, or al. use of stable isotopes (Careri , 2004; Stark , of solvents with grape skins, a different set of solvents et al. et al. 2011; Zotou and Frangi, 2008). The comparison of LC- was tested and acidified methanol was shown to be most effective for resveratrol and piceid extraction (Sun , UV with LC-MS-MS has shown the later to have higher et al. sensitivity and selectivity (Careri , 2004). 2006). Higher temperatures and ultrasonication also et al. improve extraction efficiencies, but decomposition or We have compiled quantitation studies of stilbenoids isomer conversion may occur more readily. Therefore, in species, including wine, in Table 3. While useful, Vitis differences between studies may represent differences in comparison between quantitation studies has some extraction efficiencies or changes occurring during the drawbacks since additional, non-detector variables exist, extraction procedures. Additionally, there are variations particularly when comparing solid materials such as grape in the preparation of plant material that need to be skins or stems. One important problem may involve considered when comparing mul≤tiple studies. Some

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 83 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page84

A.D. PAWLUS et al.

!

Hexamer

Compound aStructure M.W. Plant Name bReferences Name and Part

Chunganenol HO HO 1372.40 V. chunganensis (He et al., 2009) OH whole plant HO OH H HO H H H HO H OH O H HO H

O HO HO H H HO O H HO

OH

OH

!aMany reports of previously isolated known compounds were not confirmed using all spectroscopic techniques required for unambiguous assignments. We included these to have a more complete list where stilbenoids have been identified. Additionally, due to the challenge of assigning absolute stereochemistry to complex oligomers, only the relative configuration was reported in some cases. We drew the structures as reported, but these may only reflect relative configurations. In the case of common compounds such as - -viniferin, we attempted to E ε differentiate between reports where the configuration was determined from those where only the planar structure was determined. bAll or most of the spectroscopic information can be found in underlined references. cThis report of pallidol from (Kulesh ., 2006) has recently been disputed due to discrepancies in NMR data (Mattivi , V. amurensis et al et al. 2011). dThis report of vitisin B had an error in the original publication, the name of the structure was erroneously given as vitisin C.

researchers have used the fresh weight of the plant material isomer, -resveratrol, in addition to their glycosides, - Z Z whereas others have used the dry weight, making and -piceid, have become more common. The majority E comparison between these studies difficult. Using the of research has been performed on wine made from fresh weight for quantitation studies may also be different cultivars of , including comparisons V.vinifera complicated by amount of rainfall or lack of rainfall levels of wines made in different years, geographic locations, immediately prior to collection. Due to the role of micro-climates, and using different methods of vinification, stilbenoids as phytoalexins, quantitation of stilbenoids see Table 3 (Bavaresco, 2003; Moreno-Labanda , et al. has been performed on different parts of infected 2004). A 2007 review by Stervbo summarized the et al. grapevines. However, even within these studies, variations findings from 31 papers on the quantitation of -resveratrol E exist in sample material. For example, some studies levels in a total of 511 individual monovarietal red wines, examined only the infected parts of the leaves and others including 21 different varieties from 18 regions around extracted the entire leaf that showed some degree of the world. Not all of these studies examined -resveratrol Z infection. We have therefore attempted to include all and the , but the authors included these data when relevant information available in Table 2. available. The overall levels of -resveratrol ranged from E undetectable levels to 14.3 mg/l, with an average of 2 Quantitation results 1.9 mg/L. In this review no variety or region was found A tremendous effort has been made to quantify levels to be clearly superior. Interestingly, varieties such as Pinot of stilbenoids in wine of multiple varieties, , noir tend to have higher levels, though this higher level , and growth conditions. Since the initial quantitation was not ubiquitous with every tested. No distinct trends were observed with -resveratrol, which ranged of resveratrol in wine by Siemann and Creasy in 1992, Z the quest to find which variables may produce wines with from undetectable levels to 5.1 mg/L, averaging 1.0 mg/L. high concentrations has been ongoing (Siemann and The piceid isomers, which were typically higher than Creasy, 1992). While -resveratrol concentrations have resveratrol levels, averaged 5.4 and 1.4 mg/L for - and E E been the most widely reported, efforts to quantify its -piceid, respectively. A slight trend appeared when Z

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 84 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page85

Table 3 - Summary of recent quantitation studies of different stilbenoids, in Vitis species. !"#$%& -./(.0$1& !"#$%&!#2%3&4#2+)%5672+8+$3&-.$*)$%2#%+.$3& #=+$)& F);)2)$*),& '()*+),& 9)%:.1&.;&<0#$%+%#%+.$& -.$*)$%2#%+.$,3& +$&/86>& ?@A)2#8),3& B:)$&#A#+"#C")3& #$1&,#/(")& ,+D)E& !"#$%&'()*+*# ,-!"#$"%&'%()* '%)/,+*&$"%&,"*(-*.&'&*-%(/*!"#$%&'()*+**&0.* * CDE&0,#(0#$1"+* !"#$%&'()*+**1*!"#.+)+/('$+*23456789* ?FGGH* ::;<=±>?

!"#1$3'&*4$# 56!"#$"%&'%()* =+$)+*K56LM* GH*

,6!"#$"%&'%()# >)#A),+#/,@,*.B+*23456789* * CR&0P#(0#$1"+* F<=GI±F?±F

=+$)+*K56LM* GH*

3PQ"P.* QG)225&,H+$,+*23456789* * CS&'"%E(T#"* VR* &0.*4&/T")&6 !&$"0'U#+* G;;IH*

!"# ,-!"#$"%&'%()# '%)/,+*5EP0"#"+*.P--"%"0'*%",P(0#*"$&)T&'".+* * CDE&0,#(0#$1"+* 6()0$78)$# 23456789* ?FGGH* =FF<>±>I<;6:J:<:±JF<;*/,@A,*-B# 9"# 5-!"#$"%&'%()* =+$)+*W/"%PQ&0+*K56LM9* ;H* C/T#Q&.P0"H* LT#Q&.P0"*Y(%'* JH* G)22+),9*:>F<=±GINFG<=±GI><>* #AP00".H* '))1,9*?N;* J#2HI,H+$$)19* G)22+),9*GI:GH* LT#Q&.P0"*Y(%'* J<>+*0OG*CY(%'H* !"#.+)+/('$* W/Y")(Y#P0*R*^* >)#A),+*:"#.+0+481$*P0-"Q'".+*&$"%&,".*($"%*J* * C8%E($#"A#(0# CY)T#*E]X%P.* _T&.%&0,T)&%P0* ]"&%#+*>*.&]#*Y(#'6P0-"Q'P(0+*Z,@,*-B9* $1"+*?FGGH* #Y"QP"#*&#* W*C_T&0'P-P".*&#* `G*,"0(']Y"*?G@GFJ9*?G)#A),+*:"#.+0+481$*P0-"Q'".+*&$"%&,".*($"%*J* * C8%E($#"A#(0# $&'PQ&0()656)PA"* ]"&%#+*>*.&]#*Y(#'6P0-"Q'P(0+*Z,@,*-B9* $1"+*?FGGH* P#(/"%* `G*,"0(']Y"*?G@GFJ9*GIJ<>*CGNF<>*MRH* C_T&0'P-P".*&#* `G*,"0(']Y"*?G@=I9*JJ

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 85 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page86

A.D. PAWLUS et al.

,6W#'%P0,P0* =+$)+*`%"0QE*Ca"%,"%&QH+*%".*&0.*BEP'"+*45* !".9*VR6J:H* =+$)+*5&0&.P&0+*23456789* F6F*C0OGH* 4"(0*LP))('9*F*C0OGH* =+$)+*e'&)P&0+*456LM6LM9* !".9*VR6G<:* CaTP&%"))P#(0# !".9* C0OG;H* $1"+*?FF=H* a&%X&%&9*VR*C0O?H* SEP'"9*VR*C0OJH* 5"#&0"#"^M&0,P($"#"^L"%)('^L(0'"YT)QP&0(9* VR* M&0,P($"#"9*VR6F?* SEP'"9* 5E&%.(00&]*C>FgH9*VR* 3P0('*K%P,P(9*VR* M&T$P,0(0*a)&0Q*C>FgH^K%"QE"''(9*VR* =+$)+*3(%'T,T"#"*&0.*`%"0QE+*23456789* !".9*VR6JN<;* C!PX"P%(*."* !".9* C0OI>H* 4P/&#(0#$1"+* 3(%'T,T"#"+*/(0($&%P"'&)9*VR6JN<;*CGF* G;;;H* 0OJIH* C0O=IH* 3(%'T,T"#"+*X)"0.".9*VR6?I<:*CGF*CN<:+* 0ONFH* 3(%'T,T"#"+*X)"0.".9*?* CaTP&%"))P#(0# !".9* C0OG;H* $1"+*?FF=H* a&%X&%&9*VR*C0O?H* SEP'"9*VR*C0OJH* 5"#&0"#"^M&0,P($"#"^L"%)('^L(0'"YT)QP&0(9* VR* M&0,P($"#"9*VR*C0O?H* L(0'"YT)QP&0(9*VR6F

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 86 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page87

V"%(*.fW$()&9*VR* L"%)('9*'%&Q"* V"%(*.fW$()&^V"%"))(^L&#Q&)"#"^3P,0&'"))(9* VR* W,)P&0PQ(9*GFgH9*VR* 3P0('*K%P,P(9*VR* M&T$P,0(0*a)&0Q*C>FgH^K%"QE"''(9*VR* 2(Y"&YE"0()* =+$)+*`%"0QE*CaT%,T0.]H+*3P0('*V(P%+*73456 '%&Q"*C0OIH* Ca(T'",%&X"'# * 78* (0#$1"+*?FGGH* * =+$)+*V(%'E*W-%PQ&0+*23456789* VR6?<=*C0O=H* CKT"X&P)P&#(0# L(0($&%P"'&)*%".9* $1"+*?FF>H* L"%)('9*?:* MP.P6a%&EP/9*F<>G* b"%%&)"9*VR* e#(E(Y"&YE"0()* >)#A),+*:"#.+0+481$*P0-"Q'".+*&$"%&,".*($"%*J* * C8%E($#"A#(0# ]"&%#+*>*.&]#*Y(#'6P0-"Q'P(0+*Z,@,*-B9* $1"+*?FGGH* `G*,"0(']Y"*?G@GFJ9*G?GI<:*CG;I:)#A),+*:"#.+0+481$*P0-"Q'".+*&$"%&,".*($"%*J* * C8%E($#"A#(0# /P]&X"0()*5* ]"&%#+*>*.&]#*Y(#'6P0-"Q'P(0+*Z,@,*-B9* $1"+*?FGGH* C_T&0'P-P".*&#* `G*,"0(']Y"*?G@GFJ9*I?)#A),+*:"#.+0+481$*P0-"Q'".+*&$"%&,".*($"%*J* * C8%E($#"A#(0# 5** ]"&%#+*>*.&]#*Y(#'6P0-"Q'P(0+*Z,@,*-B9* $1"+*?FGGH* `G*,"0(']Y"*?G@GFJ9*IN

=+$)+*V(%'E*W-%PQ&0+*23456789* !".9*VR6=H* L"%)('9*IJ* MP.P6a%&EP/9*N

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 87 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page88

A.D. PAWLUS et al.

=+$)+*5&0&.P&0+*23456789* F6F*C0O?H* 4"(0*LP))('@4TQP"*dTE)/&009*F6F*C0OGH* 4"(0*LP))('9*F*C0OGH* !"#.+)+/('$*$&%P"'P"#9* DB"P,")'@5&X"%0"'9*FH* $1"+*?FF?H* 5&X"%0"'*M&T$P,0(09*VR6?H* \,P(.()&9*G)#A),+*:"#.+0+481$*P0-"Q'".+*&$"%&,".*($"%*J* * C8%E($#"A#(0# ]"&%#+*>*.&]#*Y(#'6P0-"Q'P(0+*Z,@,*-B9* $1"+*?FGGH* `G*,"0(']Y"*?G@GFJ9*??

,63PQ"&'&00()* =+$)+*e'&)P&0+*456LM6LM9* !".9*'%&Q"6N6F<:F*C0O?H* L(0'"YT)QP&0(*F<;J6N=*C0O?H* V"%(*.fW$()&9*GI* 5&00(0&T9*FFgH9*VR* 3P0('*K%P,P(9*VR* M&T$P,0(0*a)&0Q*C>FgH^K%"QE"''(9*VR* G)22+),&BP'E(T'*#"".#+*23456789* * Ca&$&%"#Q(#(0# 5&X"%0"'*M&T$P,0(09*F

L(T%$j.%"*CL(0&#'%"))H+*MY&0P#E+*2345678* FJ±F:±F*CN?±F±F

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 88 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page89

>)),9*F

=+$)+*`%"0QE*Ca"%,"%&QH+*%".*&0.*BEP'"+*45* !".9*VR6?I*C0O;H* C0O?GH* 5E&%.(00&]9*VR6G<:;*C0OGIH* !P"#)P0,9*VR*C0O=H* =+$)+*e'&)P&0+*456LM6LM9* !".9*?<:6J:*C0O?H* V"%(*.fW$()&9*G:<=:* L"%)('9*J<:G* V"%(*.fW$()&^V"%"))(^L&#Q&)"#"^3P,0&'"))(9* >FgH9*GFgH^K%"QE"''(9*>H* 4P/&#(0#$1"+* 3(%'T,T"#"+*/(0($&%P"'&)9*VR6G=<;*C0OJIH* SEP'"9*VR6I

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 89 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page90

A.D. PAWLUS et al.

=+$)+*MY&0P#E+*L(T%$j.%"*CL(0&#'%"))H+* VR6GI<:F* CL(%"0(6 23456789* C0OINH* 4&X&0.&#(0#$1"+* k(T0,9*VR6=*C0OG?H* MB""'9*VR*C0OJH* l%,&0PQ9*J<=?6GG<=*C78+*?IEON<:+*I:EOG>H* 5E&%.(00&]9* V(0P0-"Q'".9*N*C78+*?IEOF<;H* 3P0('*V(P%9* VR*P0*&0]*)"$")*(-*P0-"Q'P(0* >)#A),+*5E&##")&#+*P0-"Q'".*BP'E*:"#.+0+481$*-(%* * C3"["'#(0#$1"+* =*.&]#*(%*=?*E(T%#*&-'"%*7865*P%%&.P&'P(0+* ?FFJH* /,@,*-B9* :"#.+0+481$9*G?<:NnG;nF)#A),9** GGF<;*.B*CP0-"Q'".H* G)22+),9** F<>6?<;*-%(["0* G6;;<=*.B* =+$)+*`%"0QE*CaT%,T0.]H+*3P0('*V(P%+*73456 VR6GI

=+$)+*`%"0QE*Ca"%,"%&QH+*%".*&0.*BEP'"+*45* !".9*FH* *

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 90 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page91

=+$)+*V(%'E*W-%PQ&0+*23456789* ;H* L"%)('9*GI* KT"%%(T&0"9*GN* b"%%&)"9*GFN+*0OG?H* 5E&%.(00&]9*VR6G<;G*CFI6=6?<:I*C0O?H** L&%"QE&)*`(QE9*F<>I6?<::*CG<;?+*0OIH* 4TQP"*dTE)/&009*G<>I*C0*OGH* 4"(0*LP))('9*F<;>6G*C0OGH* 3P0('*V(P%9*G<=?*C0OGH* =+$)+*e'&)P&0+*456LM6LM9* !".9*F<=:6=<;=+*0OJH* 4&/X%T#Q(9*G* M&0,P($"#"^5P)P",P()(^5&0&P()(9*J<>:* 5&00(0&T9*F<==* 3%P/P'P$(9*?;* M]%&E9*FFgH9*'%&Q"* 3P0('*K%P,P(9*'%&Q"* M&T$P,0(0*a)&0Q*C>FgH^K%"QE"''(9*F+*0OI>H* 4P/&#(0#$1"+* 3(%'T,T"#"+*/(0($&%P"'&)9*VR6NF<:*CGG<:+* SEP'"9*VR6=+*0ONFH* 3(%'T,T"#"+*X)"0.".9*G6=

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 91 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page92

A.D. PAWLUS et al.

=+$)+*MY&0P#E+*L(T%$j.%"*CL(0&#'%"))H+* VR6?;>+*0O?GH* ?FFIH* l&A6&,".9*>G+*0OG?H* MB""'9*VR6><::*CGG* 7$&*.P*b%(P&9*GN<:+*0OJH* !&$"0'U#+* G;;IH*

G)225&,H+$,+*`%"0QE+*BP'E*$&%]P0,*.",%""#*(-* * CW.%P&0#(0#$1"+* ;"#4+)('($*P0-"Q'P(0+*?I*&0.*I:*E(T%#*&-'"%*78* ?FFFH* )P,E'*'%"&'/"0'+*2345*BP'E*-)T(%"#Q"0Q"* ."'"Q'P(0+*/,@A,*-B9* K&/&]9* V(0P0-"Q'".9*J=<=*C78+*?IEO=;<=+*I:EO=NF)#A),+*5E&##")&#+*P0-"Q'".*BP'E*:"#.+0+481$*-(%* * C3"["'#(0#$1"+* =*.&]#*(%*=?*E(T%#*&-'"%*7865*P%%&.P&'P(0+* ?FFJH* /,@,*-B9* :"#.+0+481$9*>I<;JnF<;N* 78*P%%&.P&'".9*G:<=InJ<>;* 5(0'%()9*VR*

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 92 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page93

>)#A),+*:"#.+0+481$*P0-"Q'".+*&$"%&,".*($"%*J* * C8%E($#"A#(0# ]"&%#+*>*.&]#*Y(#'6P0-"Q'P(0+*Z,@,*-B9* $1"+*?FGGH* `G*,"0(']Y"*?G@GFJ9*N

3'"%(#'P)X"0"* G)225&,H+$,+*`%"0QE+*BP'E*$&%]P0,*.",%""#*(-* * CW.%P&0#(0#$1"+* ;80'<0+*#4+)('($*P0-"Q'P(0+*?I*&0.*I:*E(T%#* ?FFFH* &-'"%*78*)P,E'*'%"&'/"0'+*2345*BP'E* -)T(%"#Q"0Q"*."'"Q'P(0+*/,@A,*-B9* K&/&]9* V(0P0-"Q'".9*F*C78+*?IEOF)#A),+*5E&##")&#+*P0-"Q'".*BP'E*:"#.+0+481$*-(%* * C3"["'#(0#$1"+* =*.&]#*(%*=?*E(T%#*&-'"%*7865*P%%&.P&'P(0+* ?FFJH* /,@,*-B9* :"#.+0+481$9*N* 78*P%%&.P&'".9*VR* 5(0'%()9*VR* 56!"#$"%&'%()* a(E"/P&0*&0.*L(%&$P&0*,%&Y"$P0"#+*2345* * CL")[(QE#(0#$1"+* BP'E*")"Q'%(QE"/PQ&)*."'"Q'P(0=#/,@A,*.B9# ?FFGH* >)#A),L& !".*$&%P"'P"#9* 5&X"%0"'*M&T$P,0(09*GF* bP0'"'9*'%&Q"* V"%(0"'9*'%&Q"* L"%)('9*JF* 2PX"%0&)9*G<:F* V"%(0"'9*?

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 93 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page94

A.D. PAWLUS et al.

=+$)+*`%"0QE*Ca"%,"%&QH+*%".*&0.*BEP'"+*45* !".9*VR6F<;*CFH* =+$)+*W/"%PQ&0+*2345678*BP'E*LM* !".*&0.*BEP'"9* C4""*&0.* Q(0-P%/&'P(09* VR6'%&Q"*C0OI?H* !"00&A"%+* 5&X"%0"'*M&T$P,0(09*VR6'%&Q"*C0OG?H* ?FF=H* 5E&%.(00&]9*VR*C0OGIH* L"%)('9*VR6'%&Q"*C0O;H* !P"#)P0,9*VR*C0O=H* =+$)+*5&0&.P&0+*456-)T(%"#Q"0Q"*."'"Q'P(09* F:*C0O?H* 4"(0*LP))('@4TQP"*dTE)/&009*GN6G<=>*CG:*C0OGH* 4"(0*LP))('9*F*C0O?H* SEP'"9*'%&Q"6F*C0O?H* V"%(*.fW$()&9*G<:N* L"%)('9*?FgH9*'%&Q"* 3P0('*K%P,P(9*'%&Q"* M&T$P,0(0*a)&0Q*C>FgH^K%"QE"''(9*F9*'%&Q"* 5&X"%0"'*M&T$P,0(0+*?FF:9*'%&Q"* a&%X"%&+*?FFN9*F

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 94 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page95

4"/X"%,"%+*?FF:9*F<=:nF

=+$)+*MY&0P#E+*2345*BP'E*-)T(%P/"'%PQ* !".9*VR6F+*0O?IH* ?FF:H* * SEP'"9*VR6F6F*CF+*J*"&QE*]"&%*-(%* 'B(*]"&%#H* L"%"0[&(*,%&Y"*#"".#9* VR*-(%*"&QE*B""A* >)#A),+*5E&##")&#+*P0-"Q'".*BP'E*:"#.+0+481$*-(%* * C3"["'#(0#$1"+* =*.&]#*(%*=?*E(T%#*&-'"%*7865*P%%&.P&'P(0+* ?FFJH* /,@,*-B9* :"#.+0+481$9*>)#A),9** ?*.B* =+$)+*`%"0QE*Ca"%,"%&QH+*%".*&0.*BEP'"+*45* !".9*F<;6J<:*C?)#A),9* !".*$&%P"'P"#9* 5&X"%0"'*M&T$P,0(09*NF** 4&T%('9*I

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 95 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page96

A.D. PAWLUS et al.

bP0'"'9*J<>F* V"%(0"'9*;<;F* L"%)('9*=F* 2PX"%0&)9*NJ

=+$)+*W/"%PQ&0+*2345678*BP'E*LM* !".9*VR6J* ?FF=H* 5E&%.(00&]9*VR6'%&Q"*C0OGJH* C0O?FH* L"%)('9*VR6?*CFH* L"%)('9*J>I<=6G+=NG<>*/,@A,*-B* ?FGGH*

'%)/,+*3P0('*V(P%+*23456789** * C!&]0"#(0#$1"+* J

'%)/,+*45678*_T&0'P'&'P(0*BP'E*456LM* * C3r##&#(0#$1"+* ."'"Q'P(0+*/,@,*.B9* ?FF>H* 2&#&P0"*M)&.AP9*JH* DP),&9*?H* kTXP)"P*V($,(%(.&9*GH*

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 96 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page97

'%)/,+&\#'(0P&0+&45678*_T&0'P'&'P(0*BP'E*456 * CW&$PA#&&%#(0# LM*."'"Q'P(0+*/,@,*.B9& $1"+*?FFJH* !"#.+)+/('$*Q$<+*0('*#Y"QP-P".9*G* DP),&9*FN*C0OGH* !"#.+)+/('$*$&%P"'P"#9* DB"P,")'@5&X"%0"'9*F*C0OGH* 3P0('*V(P%@5&X"%0"'9*F*C0OGH* 3P0('*V(P%9*F<>?*C0OGH* =+$)+*K%""A+*23456789* !".9*FJ* SEP'"9*FH* tP0P/&$%(9*F<=FnFnGnFJ* !(.P'P#9*F* M&0,P($"#"9*F<>=6GJ6F<;>*CF<:+*0O?H*

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 97 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page98

A.D. PAWLUS et al.

V"%(*.fW$()&9*G;* M&0,P($"#"^5P)P",P()(^5&0&P()(9*?* 3%P/P'P$(9*F<:?* V",%(&/&%(9*F<>J* M]%&E9*'%&Q"* SEP'"9* 5E&%.(00&]*C>FgH9*'%&Q"* 3P0('*K%P,P(9*'%&Q"* M&T$P,0(0*a)&0Q*C>FgH^K%"QE"''(9*'%&Q"* =+$)+*B(%).6BP."+*MeRW673456pT&06bl`6LM9* F<>6;nFGnFInFGnF9*F<=;nF6J>N6:nFJFnF* L&)$&#P&*V"%&9*I:GnFF* G)22+),+*5&X"%0"'*M&T$P,0(0+*BP'E(T'*#"".#+* * Ca&$&%"#Q(#(0# /,@A,*-B9* $1"+*?FF?H* F

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 98 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page99

G#'*B""A9*F*CF6?*CG:*CF<>G+*0O;+*J*"&QE*]"&%H* ?0.*B""A9*F<=:6G*CF<=I+*0O;+*J*"&QE*]"&%H* L"%"0[&(*,%&Y"*#AP0#9* G#'*B""A9*F+*J*"&QE*]"&%*-(%* 'B(*]"&%#H* L"%"0[&(*,%&Y"*#"".#9* G#'*B""A9*F+*J*"&QE*]"&%*-(%* 'B(*]"&%#H* *G)225&,H+$,+*/,@A,*.B9* * CS&'"%E(T#"* M]%&E9*GG

'%)/,+*bT%AP#E*'&X)"*,%&Y"#+*2345678+*/,@A,* * Cu"'P0#(0#$1"+* .B9* ?FGGH* W)YE(0#"*4&$&))h"9*?nFnF* e'&)P&9*G?nF* b%&A]&*w)A"%"09*G<::nFF±I<=*CN>±G)),9*F±F?±F

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 99 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page100

A.D. PAWLUS et al.

LP).)]*P0-"Q'".9*J><=*C78+*?IEOJ=)#A),+*5E&##")&#+*P0-"Q'".*BP'E*:"#.+0+481$*-(%* * C3"["'#(0#$1"+* =*.&]#*(%*=?*E(T%#*&-'"%*7865*P%%&.P&'P(0+* ?FFJH* /,@,*-B9* :"#.+0+481$9*NF<;>*C?<>FnG<>+*0OJ;H* R(T%(9*F?nF<=+*0O=H* >)#A),+*:"#.+0+481$*P0-"Q'".+*&$"%&,".*($"%*J* * C8%E($#"A#(0# ]"&%#+*>*.&]#*Y(#'6P0-"Q'P(0+*Z,@,*-B9* $1"+*?FGGH* `G*,"0(']Y"*?G@GFJ9*GG)#A),+*:"#.+0+481$*P0-"Q'".+*&$"%&,".*($"%*J* * C8%E($#"A#(0# ]"&%#+*>*.&]#*Y(#'6P0-"Q'P(0+*Z,@,*-B9* $1"+*?FGGH* `G*,"0(']Y"*?G@GFJ9*II

=+$)+*a%&[P)P&0+*23456789* FI*C0OGH* L"%)('9*FH** =+$)+*V(%'E*W-%PQ&0+*2345678L& !".9*VR6GH* L"%)('9*G;nF* C4&0.%&T)'#(0# !".9* CF<:G+*0O>H* $1"+*?FF?H* 5&X"%0"'*M&T$P,0(09*FJ*CGH*

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 100 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page101

b"/Y%&0P))(9*FH* 2&#&P0"*M)&.AP9*G<=±FH* DP),&9*GH* kTXP)"P*V($,(%(.&9*F<=±FH* '%)/,+*3P0('*V(P%+*23456789** * C!&]0"#(0#$1"+* G

'%)/,+*3P0('*V(P%+*23456789** * Cd&%&Q&X"]* ?

L(T%$j.%"*CL(0&#'%"))H+*MY&0P#E+*2345678* * C5&0'(##(0#$1"+* BP'E*LM*P."0'P-PQ&'P(0+*Y%"*&0.*Y(#'*7865* ?FFJH* P%%&.P&'P(09* M()P.#*P0*/,@A,*-B*C0OJH9* G)22+),9*>+*Y(#'*7865H* 'H+$,9*>F±?)),9*F*C78+*?IEOG;H* 2P,E)]*P0-"Q'".9*J*C78+*?IEO?*C78+*?IEOI<;+*I:EO?J<>H* 3P0('*V(P%9* V(0P0-"Q'".9*F*C78+*?IEO?

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 101 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page102

A.D. PAWLUS et al.

>)#A),+*5E&##")&#+*P0-"Q'".*BP'E*:"#.+0+481$*-(%* * C3"["'#(0#$1"+* =*.&]#*(%*=?*E(T%#*&-'"%*7865*P%%&.P&'P(0+* ?FFJH* /,@,*-B9* :"#.+0+481$9*:><:GnG:JnG)#A),+*:"#.+0+481$*P0-"Q'".+*&$"%&,".*($"%*J* * C8%E($#"A#(0# ]"&%#+*>*.&]#*Y(#'6P0-"Q'P(0+*Z,@,*-B9* $1"+*?FGGH* `G*,"0(']Y"*?G@GFJ9*J?*C?F<:*MRH* 5-"68P0P-"%P0# =+$)+*V(%'E*W-%PQ&0+*23456789* !".9*VR6G* 5T$h"*.T*3%h#P."0'9*F* W/i&.9*F)#A),+*5E&##")&#+*P0-"Q'".*BP'E*:"#.+0+481$*-(%* * C3"["'#(0#$1"+* =*.&]#*(%*=?*E(T%#*&-'"%*7865*P%%&.P&'P(0+* ?FFJH* /,@,*-B9* :"#.+0+481$9*=*CNH* >)#A),+*5E&##")&#+*P0-"Q'".*BP'E*:"#.+0+481$#-(%* * C3"["'#(0#$1"+* =*.&]#*(%*=?*E(T%#*&-'"%*7865*P%%&.P&'P(0+* ?FFJH* /,@,*-B9* :"#.+0+481$9*GNN<>:n?F* 78*P%%&.P&'".9*G>N<=GnG:)#A),+*5E&##")&#+*P0-"Q'".*BP'E*:"#.+0+481$*-(%* * C3"["'#(0#$1"+* =*.&]#*(%*=?*E(T%#*&-'"%*7865*P%%&.P&'P(0+* ?FFJH* /,@,*-B9* :"#.+0+481$9*VR* 78*P%%&.P&'".9*J)#A),+*:"#.+0+481$*P0-"Q'".+*&$"%&,".*($"%*J* * C8%E($#"A#(0# 8P0P-"%P0* ]"&%#+*>*.&]#*Y(#'6P0-"Q'P(0+*Z,@,*-B9* $1"+*?FGGH* C_T&0'P-P".*&#* `G*,"0(']Y"*?G@GFJ9*IFrosé production.

looking at latitude in the northern hemisphere, where also ambiguous, since levels between thin and thick varied more northern locations contained higher resveratrol unpredictably (Stervbo , 2007). content. One example of this is the higher concentrations et al. in Canadian red wines than those found in Greece or Additional efforts to quantify resveratrol in wine have Japan. The authors also looked to see if a trend was occurred, which we included in Table 3. In addition to apparent with thick and thin skinned grapes. This was examining wine samples, studies have quantified

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 102 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page103

stilbenoids in separate plant parts, the berries themselves, - and -resveratrol concentration in the berries of E Z and wine during the vinification process in order to gain Mencia, Albarello and Merenzao grapes. In this study, a better understanding of the stilbenoid level dynamics. Mencia berry skins had approximately 10 times the For example, in a study by Gatto (2008), the et al. concentrations of -resveratrol than the other two varieties -resveratrol and - and -piceid levels were examined E E Z E tested (Moreno , 2008). These high levels of - in 78 white and red grape varieties grown in et al. E V.vinifera resveratrol in Mencia wine and grapes warrant further the same research station in three different years. This investigation. It would also be interesting to determine if study controlled for influences such as climate variability the levels of other stilbenoids were also high in this variety and differences in vinification methods by studying the or if this monomer dominates. berries directly, allowing genetic influences and ripening phases on stilbenoid levels to be examined. The authors The main purpose of these quantitation studies has evaluated the grapes at three different time points to generally been to determine the amount of these determine the levels of the three different stilbenoids at biologically important molecules in wines and grapes , at technological ripeness, and at a post-ripening currently being consumed. Additional studies have aimed phase, 20 days later. They simultaneously monitored at determining which factors, such as specific vinification genetic expression between high and low resveratrol processes, variety used, and location, may contribute to producers. The authors demonstrated that in high higher levels. However, this has proved challenging since resveratrol producers, such as Pinot noir, Tarrango, stilbenoid content varies significantly in wines, even the Franconia, Alicante Bouquette, and Carmenere, there was same types of wine produced in the same region can stilbenoid accumulation in the berries throughout contain nontrivial differences. Numerous studies have development. Both - and -piceid were constitutively found that stilbenoid levels in grapes and leaves are E Z expressed, whereas resveratrol was confirmed to be an influenced by a number of factors, including genetic, inducible stilbenoid (Gatto , 2008). They also nutritional, climatic, disease status, altitude, and latitude et al. (Bavaresco, 2003; Bavaresco , 2007; Deluc , supported the reoccurring finding that Pinot noir is one et al. et al. of the varieties with higher levels of resveratrol (Lamuela- 2011; Tinttunen and Lehtonen, 2001). For example, since Raventos , 1997; Melzoch , 2001). In another resveratrol is induced in berries, levels of disease pressure et al. et al. recent study, 186 Portuguese red wines of different varieties in the may influence resveratrol levels. This and vintages were evaluated for their - and -resveratrol relationship is not linear however, as a small amount of E Z content using HPLC-UV. -resveratrol levels ranged from disease pressure increases stilbenoid production, while E 0.05 to 10.9 mg/L, while the concentrations of - highly infected berries have lower levels (Adrian , Z et al. resveratrol ranged from 0.04 to 8.7 mg/L. The identity of 2000). Similar non-linearity has been seen in resveratrol levels and increasing altitudes (Bavaresco , 2007). all the varieties tested was not provided, since many were et al. blended wines, but wine made from In other studies, incubation of resveratrol and pterostilbene with , the causative organism of gray variety in the Beira Interior denomination of origin Botrytis cinerea contained the highest resveratrol content (Paulo , mold, showed oxidative dimerization of both compounds, et al. 2011). demonstrating disease status may also influence overall stilbenoid profiles (Breuil , 1998; Breuil , 1999). et al. et al. Most studies have not been able to single out a wine Controlled studies using infected leaves showed P. viticola variety with consistently higher stilbenoid levels, with the high year-to-year variability of a number of stilbenoids, possible exception of Pinot noir, which many studies have demonstrating a need for multi-year studies (Vrhovsek shown to have the highest average, and a lesser known , 2011). These factors, that play a role in stilbenoid et al. variety, Mencia. In a recent study focusing on resveratrol synthesis, have been reviewed and updated by Bavaresco isomers, involving wines from 5 different Galician (Bavaresco and Fregoni, 2001; Bavaresco , et al. et al. Controlled Denomination of Origin regions in 2009). Other factors such as influence of phylloxera Northwestern Spain, the Mencia variety from Valdeorras resistant rootstock have yet to be evaluated. Furthermore, had one of the highest -resveratrol concentrations E the process of vinification has influences on wine currently known. In one monovarietal wine sample, the stilbenoids, both qualitatively and quantitatively. Known -resveratrol concentration was 36.1 mg/L. Mencia E influential factors include and fermentation containing wines from Ribeira Sacra also contained high time and temperature, yeast and bacteria used for alcoholic levels, up to 31.4 mg/L. However, the Mencia grown in and , and post-processsing factors Ribeiro CDO were much lower, with levels ranging from such as aging (Monagas , 2005; Poussier 2.5 to 5.8 mg/L. The concentration of -resveratrol in all et al. Z , 2003; Vitrac , 2005). wines was very low, with a maximum -resveratrol et al. et al. Z concentration of 0.25 mg/L (Feijóo , 2008). The To further complicate matters, there is an observable, et al. relatively high concentration of resveratrol in Mencia dynamic relationship between the resveratrol monomers berries was also demonstrated in a study comparing the with their corresponding glycosides and oligomers. For

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 103 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page104

A.D. PAWLUS et al.

example, a study involving the UV irradiation of leaf Burgundy and a range of North African wines, with discs showed resveratrol levels peaking at 18 hours, then concentrations up to 2.1 mg/L. Taken together, these decreasing as ε-viniferin levels increased, peaking at studies show that the range of concentrations among and 36 hours (Langcake and Pryce, 1977b). This gradual between these compounds in different wines varies accumulation of viniferins after exogenous induction has significantly, from below detectable levels to tens of been confirmed in grape skins as well (Gonzalez-Barrio mg/mL, see Table 3 for references. , 2006). During the wine making process itself, et al. glycoside levels typically fall while monomer levels rise. In addition to studies involving the quantitation of This is due to the alcoholic and, to a lesser extent, the stilbenoids in wine and berries, there is a growing interest malolactic fermentation processes, causing a decrease in in evaluating the stilbenoids in other parts of the grapevine. glycoside levels via deglycosylation reactions, in addition Since roots, stems, canes, and rachis are a byproduct of to increases in extraction efficiency of the aglycones from the wine industry, they are an untapped source of these the grape skins as levels increase (Bavaresco biologically active molecules (Bisson , 2011; Rayne et et al. , 1999; Vian , 2005; Vrhovsek , 1997). , 2008; Zhang , 2011). A recent comparison al. et al. et al. et al. et al. However, as seen in the review article by Stervbo of plant parts, examining resveratrol levels in et al. V.vinifera (2007), many wines still contain high levels of glycosides the shoot tips, petiole, leaves, stem phloem, stem xylem, and low levels of aglycones. In the 2005 study by Vitrac and roots demonstrated highest levels in the stem phloem, , a 1999 Brazilian contained 23 mg/L of axillary bud, and roots (Wang , 2010). Additionally, et al. et al. -astringin, a glycoside of piceatannol, and no detectable species other than have different stilbenoid E Vitis V.vinifera quantities of -resveratrol (Vitrac , 2005). This profiles and may be rich sources of biologically active E et al. suggests that in studies where only the levels of resveratrol stilbenoids. For example, in our laboratory, we found the aglycones in wines have been determined, a substantial roots of a phylloxera resistant grapevine rootstock, x SO4A, had significant levels amount of glycosides may exist, however the reason is V.riparia V. berlandieri not known (Goldberg , 1995; Waterhouse and of the stilbenoid tetramer, -vitisin B. The levels of et al. E Lamuela-Raventós, 1994). In another example, wine stilbenoids in stems and roots also appear to be seasonally made from has been reported in several dependent. For example, a 2002 study comparing the studies to have one of the lowest levels of -resveratrol concentrations of -viniferin and -resveratrol in the stems E ε E when compared to others such as Pinot noir, Cabernet- showed that there were significantly higher levels of these Sauvignon, and Merlot (Gatto , 2008; Nikfardjam two compounds in October than in July and January et al. , 2006). However, in a study comparing several (Aaviksaar , 2003). Plant part, variety, and disease et al. et al. Merlot and Cabernet-Sauvignon wines with a Cabernet pressure can influence the type and quantity of stilbenoids Franc, -astringin (18) was highest in Cabernet Franc, at E found. a concentration of 23.1 mg/L, which made its overall stilbenoids quantity comparable to the other wines (Vitrac , 2005). This demonstrates the usefulness of CONCLUSION et al. We have reviewed the current state of stilbenoid quantifying a greater range of stilbenoids in wine when Vitis trying to determine stilbenoid levels. chemistry and show that it is a very active area of research. Eighteen of the approximately 60 species in have at Vitis So far, of the 19 currently known stilbenoids in wine, least one reported study with a current 12 have been quantified in at least one study, as referenced total of around 100 known stilbenoids. The most studied in Table 3. These compounds include the and forms species is the primary wine producing species, E Z Vitis of astringin, piceid, resveratrol, and ε-viniferin, in addition , followed by other minor species used for wine, to hopeaphenol, pallidol, -piceatannol, and - -viniferin V.vinifera E E δ species used as phylloxera resistant rootstock for (19). The piceatannol glycoside, -astringin, was , and species used as medicinal plants. Sixty- E V.vinifera quantified in wines from France, Brazil, Canada, Italy, one stilbenoids have been identified in various plant and Portugal, where levels ranged from undetectable to tissues, cell cultures, and wine of with only 19 V.vinifera 38.1 mg/L, in a French . Its isomer, currently known constituents of wine. The isolation and -astringin was quantified in a number of Italian wines Z structure elucidation of stilbenoids is not trivial, particularly where it was found to have levels up to 1.3 mg/L, similar as the determination of absolute configurations becomes to -astringin levels which ranged from undetectable to E more difficult as oligomer sizes and complexities increase. 1.8 mg/L. Several dimers, including pallidol, - and Z - -viniferin, and - and - -viniferin were also Due to the interest in the health promoting and E ε Z E δ examined, of these, δ-viniferin was found to have the antifungal properties of stilbenoids, we summarized recent highest levels, 22.4 mg/L in a Brazilian Merlot. The only studies pertaining to their quantitation in different plant known tetramer to be unambiguously identified in wine, parts and wine. The majority of studies have focused on hopeaphenol, was quantified in Pinot noir wines from resveratrol and piceid levels, with more recent research

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 104 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page105

Anstey K.J., Mack H.A. and Cherbuin N., 2009. Alcohol quantifying additional monomers, dimers and complex consumption as a risk factor for dementia and cognitive decline: Meta-analysis of prospective studies. oligomers. The metabolic pathways for stilbenoid synthesis Am. J. Geriatr. , , 542-555. are complex and the relationship between stilbenoids is Psychiatry 17 dynamic since they are influenced by multiple Baderschneider B. and Winterhalter P., 2000. Isolation and environmental and genetic factors. Wine presents an even characterization of novel stilbene derivatives from Riesling wine. ., , 2681-2686. more complex case as viticultural and vinification J. Agric. Food Chem 48 techniques may vary widely between varieties and regions. Balík J., Kyselákova M., Vrchotová N., Tríska J., Kumsta M., Therefore, studies quantifying only a small number of Veverka J., Híc P., Totusek J. and Lefnerová D., 2008. stilbenoids may be misleading in regards to overall Relations between polyphenols content and antioxidant activity in vine grapes and leaves. , , stilbenoid content. Czech J. Food Sci. 26 S25-S32. The multiple techniques for quantitation studies, Barjot C., Tournaire M., Castagnino C., Vigor C., Vercauteren J. pertaining to the plant preparation, extraction, and and Rossi J.-F., 2007. Evaluation of antitumor effects of experimental methods, vary considerably in the literature, two vine stalk oligomers of resveratrol on a panel of complicating comparisons between studies. A uniform lymphoid and myeloid cell lines: Comparison with resveratrol. ., , 1565-1574. examination of plant material, including wine, using Life Sci 81 validated, rigorous methods for a complete stilbenoid Baur J.A. and Sinclair D.A., 2006. Therapeutic potential of resveratrol: The evidence. , profile will provide useful information in regards to in vivo Nat. Rev. Drug Discov. , 493-506. stilbenoid levels and allow better comparisons between 5 species and varieties. Bavaresco L., Petegolli D., Cantü E., Fregoni M., Chiusa G. and Vitis Trevisan M., 1997. Elicitation and accumulation of stilbene phytoalexins in grapevine berries infected by A more thorough understanding of the stilbenoid Botrytis profile within individual economically valuable . , , 77-83. Vitis cinerea Vitis 36 species, in addition to wine, will be extremely valuable Bavaresco L., Fregoni C., Cantu E. and Trevisan M., 1999. Stilbene compounds: From the grapevine to wine. in elucidating their biological importance, both in humans Drugs Exp. Clin. ., , 57-63. and the plants themselves. Since the majority of stilbenoids, Res 25 particularly those found in wine, have not undergone Bavaresco L. and Fregoni C., 2001. Physiological role and extensive biological testing, some may be found to have molecular aspects of grapevine stilbenic compounds, 153- 182. . an even greater biological importance as they become Molecular biology & biotechnology of the grapevine known and available for testing. An increased knowledge Kluwer Academic Publishers, The Netherlands 500 p. of stilbenoids found in will facilitate this endeavor. Bavaresco L., Fregoni M., Trevisan M., Mattivi F., Vrhovsek U. Vitis and Falchetti R., 2002. The occurrence of the stilbene : The authors wish to thank the William piceatannol in grapes. , , 133-136. Acknowledgements Vitis 41 J. Fulbright Commission and the Region Aquitaine for the grant Bavaresco L., 2003. Role of viticultural factors on stilbene concentrations of grapes and wine. ., provided to Alison D. Pawlus. Drugs Exp. Clin. Res , 181-187. 29 Bavaresco L., Pezzutto S., Gatti M. and Mattivi F., 2007. Role of REFERENCES the variety and some environmental factors on grape Aaviksaar A., Haga M., Püssa T., Roasto M. and Tsoupras G., stilbenes. , , 57-61. 2003. Purification of resveratrol from vine stems. Vitis 46 Proc. Bavaresco L., Fregoni C., Macedo Basto Gonçalves M. and ., , 155-164. Estonian Acad. Sci. Chem 54 Vezzulli S., 2009. Physiology & molecular biology of Adrian M., Jeandet P., Douillet-Breuil A., Tesson L. and Bessis grapevine stilbenes: An update, 341-364. R., 2000. Stilbene content of mature berries Grapevine Vitis vinifera . Springer, Dordrecht in response to UV-C elicitation. , , molecular physiology & biotechnology J. Agric. Food Chem. 48 646 p. 6103-6105. Belhadj A., Telef N., Saigne C., Cluzet S., Barrieu F., Hamdi S. Amico V., Barresi V., Chillemi R., Condorelli D., Sciuto S., and Mérillon J.-M., 2008a. Effect of methyl jasmonate in Spatafora C. and Tringali C., 2009. Bioassay-guided isolation combination with on gene expression of PR of antiproliferative compounds from grape ( ) Vitis vinifera , stilbene and anthocyanin accumulation in grapevine stems. ., , 27-34. cell cultures. , , 493-499. Nat. Prod. Commun 4 Plant Physiol. Biochem. 46 Amira-Guebailia H., Valls J., Richard T., Vitrac X., Monti J.-P., Belhadj A., Telef N., Cluzet S., Bouscaut J., Corio-Costet M.-F. Delaunay J.-C. and Mérillon J.-M., 2009. Centrifugal and Mérillon J.-M., 2008b. Ethephon elicits protection partition chromatography followed by HPLC for the isolation against in grapevine. , Erysiphe necator J. Agric. Food Chem. of - -viniferin, a resveratrol dimer newly extracted from , 5781-5787. cis ε 56 a red Algerian wine. ., , 320-324. Food Chem 113 Bishayee A., 2009. Cancer prevention and treatment with Anekonda T.S., 2006. Resveratrol - A boon for treating Alzheimer's resveratrol : From rodent studies to clinical trials. Cancer disease? ., , 316-326. , , 409-418. Brain Res. Rev 52 Prev. Res. 2

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 105 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page106

A.D. PAWLUS et al.

Bisson J., Poupard P., Pawlus A.D., Pons A., Darriet P., Mérillon Choi Y., Yoo M., Choi C., Cha M., Yon G., Kwon D., Kim Y., J.-M. and Waffo-Téguo P., 2011. Development of hybrid Park W. and Ryu S., 2009. A new specific BACE-1 inhibitor from the stembark extract of . , elution systems for efficient purification of stilbenoids using Vitis vinifera Planta Med. , 537-540. centrifugal partition chromatography coupled to mass 75 spectrometry. , , 6079-6084. J. Chromatogr. A 1218 Chong J., Poutaraud A. and Hugueney P., 2009. Metabolism and roles of stilbenes in plants. ., , 143-155. Bouquet A., Torregrosa L., Iocco P. and Thomas M.R., 2008. Plant Sci 177 Grapes, 189-231. Compendium of transgenic crop plants: Chung E.Y., Roh E., Kwak J.-A., Lee H.-S., Lee S.H., Lee C.-K., . Wiley-Blackwell, Transgenic temperate fruits and nuts Han S.-B. and Kim Y., 2010. α-Viniferin suppresses the Singapore 314 p. signal transducer and activation of transcription-1 (STAT- Boutegrabet L., Fekete A., Hertkorn N., Papastamoulis Y., Waffo- 1)-inducible inflammatory genes in interferon-γ-stimulated macrophages. , , 405-414. Téguo P., Mérillon J.-M., Jeandet P., Gougeon R.D. and J. Pharmacol. Sci. 112 Schmitt-Kopplin P., 2011. Determination of stilbene Cichewicz R. and Kouzi S., 2002. Resveratrol oligomers: Structure, chemistry, and biological activity, 507-579. derivatives in Burgundy red wines by ultra-high-pressure Studies in liquid chromatography. , , 1517- . Elsevier, Amsterdam 1364 Anal. Bioanal. Chem. 401 natural products chemistry 1525. p. Breuil A., Adrian M., Pirio N., Meunier P., Bessis R. and Jeandet P., Dani C., Olilboni L.S., Agostini F., Funchal C., Serafini L., 1998. Metabolism of stilbene phytoalexins by Henriques J.A. and Salvador M., 2010. Phenolic content Botrytis of grapevine leaves ( var. Bordo) and its : 1. Characterization of a resveratrol dehydrodimer. cinerea neuroprotective effect against peroxide damage. ., , 537-540. Toxicol. Tetrahedron Lett 39 , , 148-153. Breuil A., Jeandet P., Adrian M., Chopin F., Pirio N., Meunier In Vitro 24 P. and Bessis R., 1999. Characterization of a pterostilbene Decendit A., Waffo-Teguo P., Richard T., Krisa S., Vercauteren J., dehydrodimer produced by laccase of . Monti J.-P., Deffieux G. and Mérillon J.-M., 2002. Botrytis cinerea Galloylated catechins and stilbene diglucosides in , , 298-302. Vitis Phytopathology 89 cell suspension cultures. , , 795- vinifera 60 Buiarelli F., Coccioli F., Jasionowska R., Merolle M. and 798. Terracciano A., 2007. Analysis of some stilbenes in Italian Delaunay J.-C., Castagnino C., Chèze C. and Vercauteren J., 2002. wines by liquid chromatography/tandem mass spectrometry. Preparative isolation of polyphenolic compounds from , , 2955-2964. Vitis Rapid Commun. Mass Spectrom. 21 by centrifugal partition chromatography. vinifera Cantos E., Espín J.C., Fernández M.J., Oliva J. and Tomás- , , 123-128. J. Chromatogr. A 964 Barberán F.A., 2003. Postharvest UV-C-irradiated grapes Deluc L.G., Decendit A., Papastamoulis Y., Mérillon J.-M., as a potential source for producing stilbene-enriched red Cushman J.C. and Cramer G.R., 2011. Water deficit wines. ., , 1208-1214. J. Agric. Food Chem 51 increases stilbene metabolism in Cabernet-Sauvignon Carando S., Teissedre P.L., Waffo-Téguo P., Cabanis J.C., berries. ., , 289-297. J. Agric. Food Chem 59 Deffieux G. and Mérillon J.M., 1999. High-performance Dourtoglou V., Makris D., Bois-Dounas F. and Zonas C., 1999. liquid chromatography coupled with flourescence detection -Resveratrol concentration in wines produced in trans for the determination of trans-astrigin in wine. Greece. , , 227-233. , , 617-620. J. Food Compost. Anal. 12 J. Chromatogr. A 849 Ector B., Magee J., Hegwood C. and Coign M., 1996. Resveratrol Careri M., Corradini C., Elviri L., Nicoletti I. and Zagnoni I., 2004. concentration in Muscadine berries, juice, pomace, purees, Liquid chromatography-electrospray tandem mass seeds, and wines. ., , 57-62. spectrometry of -resveratrol and resveratrol: Am. J. Enol. Vitic 47 cis trans- Faurie B., Cluzet S. and Mérillon J.-M., 2009. Implication of Development, validation, and application of the method to signaling pathways involving calcium, phosphorylation red wine, grape, and byproducts. J. Agric. Food and active oxygen species in mehtyl jasmonate-induced , , 6868-6874. defense responses in grapevine cell cultures. Chem. 52 J. Plant Çetin E.S., Altinöz D., Tarçan E. and Baydar N.G., 2011. Chemical ., , 1863-1877. Physiol 166 composition of grape canes. , , 994-998. Feijóo O., Moreno A. and Falqué E., 2008. Content of - and Ind. Crops Prod. 34 trans -resveratrol in Galician white and red wines. Chao C., Slezak J.M., Caan B.J. and Quinn V.P., 2008. Alcoholic cis J. Food ., , 608-613. beverage intake and risk of lung cancer: The California Compost. Anal 21 men's health study. , Cancer Epidemiol. Biomarkers Prev. Flamini R., 2003. Mass spectrometry in grape and . , 2692-2699. Part I: Polyphenols. ., , 218-250. 17 Mass. Spectrom. Rev 22 Chen L.-G. and Wang C.-C., 2009. Preparative separation of Fujii F., He Y.-H., Terashima K., Takaya Y. and Niwa M., 2005. oligostilbenes from var. Taiwaniana by Three new stilbeneoligomers from the roots of Vitis thunbergii Vitis vinifera centrifugal partition chromatography followed by Sephadex 'Kyohou'. , , 2461-2469. Heterocycles 65 LH-20 column chromatography. , Separ. Purif. Technol. Gambuti A., Strollo D., Ugliano M., Lecce L. and Moio L., 2004. , 65-70. -resveratrol, , (+)-catechin, and (-)-epicatechin 66 trans Chiou W., Shen C., Chen C., Lin C. and Huang Y., 2009. content in South Italian monovarietal wines: Relationship Oligostilbenes from the roots of . with maceration time and marc during winemaking. Vitis thunbergii Planta , , 856-859. ., , 5747-5751. Med. 75 J. Agric. Food Chem 52

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 106 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page107

Gatto P., Vrhovsek U., Muth J., Segala C., Romualdi C., Fontana P., Huang Y.-L., Tsai W.-J., Shen C.-C. and Chen C.-C., 2005. Pruefer D., Stefanini M., Moser C., Mattivi F. and Velasco Resveratrol derivatives from the roots of . Vitis thunbergii R., 2008. Ripening and geotype control stilbene accumulation ., , 217-220. J. Nat. Prod 68 in healthy grapes. , , 11773-11785. J. Agric. Food Chem. 56 Ito J. and Niwa M., 1996. Absolute structures of new Gerogiannaki-Christopoulou M., Athanasopoulos P., Kyriakidis N., hydroxystilbenoids, vitisin C and viniferal, from Vitis Gerogiannaki I.A. and Spanos M., 2006. -Resveratrol 'Kyohou'. , , 9991-9998. trans vinifera Tetrahedron 52 in wines from the major Greek red and white grape varieties. Ito J., Niwa M. and Oshima Y., 1997. A new hydroxystilbene , , 700-706. tetramer named isohopeaphenol from 'Kyohou'. Food Control 17 Vitis vinifera , , 1809-1813. Goldberg D., Yan J., Ng E., Diamandis E., Karumanchiri A., Heterocycles 45 Soleas G. and Waterhouse A., 1995. A global survey of Ito J., Gobaru K., Shimamura T., Niwa M., Takaya Y. and trans-resveratrol concentrations in commercial wines. Am. Oshima Y., 1998. Absolute configurations of some ., , 159-165. oligostilbenes from and J. Enol. Vitic 46 Vitis coignetiae Vitis vinifera 'Kyohou'. , , 6651-6660. Gonzalez-Barrio R., Beltran D., Cantos E., Gil M., Espin J. and Tetrahedron 54 Tomas-Barberan F., 2006. Comparison of ozone and UV- Ito J., Takaya Y., Oshima Y. and Niwa M., 1999. New C treatments on the postharvest stilbenoid monomer, dimer, oligostilbenes having a benzofuran from Vitis vinifera and trimer induction in var. 'Superior' white table grapes. 'Kyohou'. , , 2529-2544. J. Tetrahedron 55 ., , 4222-4228. Agric. Food Chem 54 Jang M., Cai L., Udeani G.O., Slowing K.V., Thomas C.F., Guebailia H.A., Chira K., Richard T., Mabrouk T., Furiga A., Vitrac Beecher C.W.W., Fong H.H.S., Farnsworth N.R., Kinghorn X., Monti J.-P., Delaunay J.-C. and Mérillon J. M., 2006. A.D., Mehta R.G., Moon R.C. and Pezzuto J.M., 1997. Hopeaphenol: The first resveratrol tetramer in wines from Cancer chemopreventive activity of resveratrol, a natural North Africa. ., , 9559-9564. product derived from grapes. , , 218-220. J. Agric. Food Chem 54 Science 275 Guerrero R., Puertas B. and Fernández M., 2010. Induction of Jang M., Piao X., Kim H., Cho E., Baek S., Kwon S. and Park J., 2007. Resveratrol oligomers from attenuate stilbenes in grapes by UV-C: Comparison of different Vitis amurensis -amyloid-induced oxidative stress in PC12 cells. subspecies of . ., , 231-238. β Biol. Vitis Innov. Food Sci. Emerg 11 ., , 1130-1134. Ha D.T., Kim H., Thuong P.T., Ngoc T.M., Lee I., Hung N.D. and Pharm. Bull 30 Bae K., 2009a. Antioxidant and lipoxygenase inhibitory Jean-Denis J.B., Pezet R. and Tabacchi R., 2006. Rapid analysis activity of oligostilbenes from the leaf and stem of of stilbenes and derivatives from downy mildew-infected Vitis . ., , 304-309. grapevine leaves by liquid chromatography-atmospheric amurensis J. Ethnopharmacol 125 pressure photoionisation mass spectrometry. Ha D.T., Chen Q.C., Hung T.M., Youn U.J., Ngoc T.M., J. Chromatogr. , , 263-268. Thuong P.T., Kim H.J., Seong Y.H., Min B.S. and Bae A 1112 K., 2009b. Stilbenes and oligostilbenes from leaf and stem Jeandet P., Bessis R. and Gautheron B., 1991. The production of of amurensis and their cytotoxic activity. resveratrol (3,5,4'-trihydroxystilbene) by grape berries in Vitis Arch. Pharm. different developmental stages. ., , 41- , , 177-183. Am. J. Enol. Vitic 42 Res. 32 46. He S., Jiang L., Wu B., Li C. and Pan Y., 2009. Chunganenol: An unusual antioxidative resveratrol hexamer from Jeandet P., Bessis R., Maume B., Meunier P., Peyron D. and Vitis . , , 7966-7969. Trollat P., 1995. Effect of enological practices on the chunganensis J. Org. Chem. 74 resveratrol isomer content of wine. , J. Agric. Food Chem. Howitz K.T., Bitterman K.J., Cohen H.Y., Lamming D.W., Lavu S., , 316-319. Wood J.G., Zipkin R.E., Chung P., Kisielewski A., Zhang 43 L.-L., Scherer B. and Sinclair D.A., 2003. Small molecule Joseph J.A., Fisher D.R., Cheng V., Rimando A.M. and Skhukitt- activators of sirtuins extend Hale B., 2008. Cellular and behavioral effects of stilbene Saccharomyces cerevisiae lifespan. , , 191-196. resveratrol analogues: Implications for reducing the Nature 425 deleterious effects of aging. , , J. Agric. Food Chem. 56 Huang K., Lin M. and Wang Y., 1999a. Synthesis of amurensin H, 10544-10551. a new resveratrol dimer from the roots of . Vitis amurensis Karacabey E. and Mazza G., 2008. Optimization of solid-liquid ., , 817-820. Chinese Chem. Lett 10 extraction of resveratrol and other phenolic compounds Huang K., Lin M., Yu L. and Kong M., 1999b. A new oligostilbene from milled grape canes ( ). Vitis vinifera J. Agric. Food from the roots of . , , , , 6318-6325. Vitis amurensis Chinese Chem. Lett. 10 Chem. 56 775-776. Keller M., 2010. The science of grapevines: Anatomy and Huang K., Lin M., Yu L. and Kong M., 2000. Four novel . Academic Press, London 400p.. oligostilbenes from the roots of . physiology Vitis amurensis Tetrahedron, Kim J., Ha T., Ahn J., Kim H. and Kim S., 2009. Pterostilbene , 1321-1329. from protect H O -induced inhibition of 56 Vitis coignetiae 2 2 Huang K., Lin M. and Cheng G., 2001. Anti-inflammatory tetramers gap junctional intercellular communication in rat liver cell of resveratrol from the roots of and the line. , , 404-409. Vitis amurensis Food Chem. Toxicol. 47 conformations of the seven-membered ring in some Kong Q., Ren X., Jiang L., Pan Y. and Sun C., 2010. Scirpusin A, oligostilbenes. , , 357-362. Phytochemistry 58 a hydroxystilbene dimer from Xinjiang wine grape, acts as Huang K.-S. and Lin M., 1999. Oligostilbenes from the roots of an effective singlet oxygen quencher and DNA damage . , , 21-28. protector. ., , 823-828. Vitis amurensis J. Asian Nat. Prod. Res. 2 J. Sci. Food Agric 90

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 107 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page108

A.D. PAWLUS et al.

Korhammer S., Reniero F. and Mattivi F., 1995. An oligostilbene Li W., Ding L. and Li B., 1996. Oligostilbenes from . Vitis heyneana from roots. , , 1501-1504. , , 1163-1165. Vitis Phytochemistry 38 Phytochemistry 42 Li W., Li B. and Chen Y., 1998a. Oligostilbentes [sic] from Krisa S., Larronde F., Budzinski H., Decendit A., Deffieux G. and Vitis Mérillon J.-M., 1999. Stilbene production by . , , 735-736. Vitis vinifera davidii Chinese Chem. Lett. 9 cell suspension cultures: Methyl jasmonate induction and Li W., Li B. and Chen Y., 1998b. Oligostilbenes from 13 Vitis C biolabeling. , , 1688-1690. . , , 1393-1394. J. Nat. Prod. 62 betulifolia Phytochemistry 49 Kulesh N.I., Veselova M.V., Fedoreev S.A. and Denisenko V.A., Li W., Li B. and Chen Y., 1998c. Flexuosol A, a new tetrastilbene 2006. Polyphenols from stems. from . ., , 646-647. Vitis amurensis Chem. Nat. Vitis flexuosa J. Nat. Prod 61 ., , 235-237. Li W., Li B. and Chen Y., 1998d. Oligostilbenes from Compd 42 Vitis Lamikanra O., Grimm C., Rodin J. and Inyang I., 1996. . , , 28-31. wilsonae Chin. J. Appl. Environ. Biol. 4 Hydroxylated stilbenes in selected American wines. J. Agric. Li W., Ding L., Li B. and Chen Y., 2000. Corrigendum to , , 1111-1115. “Oligostilbenes from ” [ , Food Chem. 44 Vitis heyneana Phytochemistry 42 (1996) 1163-1165]. , , 351. Lamuela-Raventos R.M., Romero-Perez A., Waterhouse A.L., Phytochemistry 54 Lloret M. and Torre-Boronat M., 1997. Resveratrol and Lin M. and Yao C., 2006. Natural oligostilbenes. Stud. Nat. Prod. piceid levels in wine production and in finished wines, 56- ., , 601-644. 68. . American Chem 33 Wine: Nutritional and therapeutic benefits Lopez M., Martınez F., Valle C.D., Orte C. and Miro M., 2001. Chemical Society, Washington 296 p.. Analysis of phenolic constituents of biological interest in Landrault N., Larronde F., Delaunay J.-C., Castagnino C., red wines by high-performance liquid chromatography. J. Vercauteren J., Merillon J.-M., Gasc F., Cros G. and , , 359-363. Chromatogr. A 922 Teissedre P.-L., 2002. Levels of stilbene oligomers and Lou H.-X., Yan Z., Dong-Mei R., Pei-Hong F. and Mei J., 2004. astilbin in French wines and in grapes during noble Identification of stilbenoids from the roots of Vitis amurensis rot development. , , 2046-2052. and their antioxidative effects. , , J. Agric. Food Chem. 50 Chin. J. Med. Chem. 14 Langcake P. and Pryce R., 1976. The production of resveratrol by 202-208. and other members of the Vitaceae as a Vitis vinifera Malacarne G., Vrhovsek U., Zulini L., Cestaro A., Stefanini M., response to infection or injury. , , Physiol. Plant Pathol. 9 Mattivi F., Delledonne M., Velasco R. and Moser C., 2011. 77-86. Resistance to in a grapevine segregating Plasmopara viticola Langcake P. and Pryce R., 1977a. A new class of phytoalexins population is associated with stilbenoid accumulation and with specific host transcriptional responses. from grapevines. ., , 151-152. BMC Plant Cell. Mol. Life Sci 33 , , 1-13. Langcake P. and Pryce R., 1977b. The production of resveratrol Biol. 11 and the viniferins by grapevines in response to ultraviolet Mattivi F. and Reniero F., 1992. Oligostilbenes from the roots of genus . , , 116- irradiation. , , 1193-1196. Vitis Bull. Liaison Groupe Polyphenols 16 Phytochemistry 16 119. Langcake P. and Mccarthy W.V., 1979. The relationship of resveratrol production to infection of grapevine leaves by Mattivi F., Reniero F. and Korhammer S., 1995. Isolation, . , , 244-253. characterization, and evolution in red wine vinification of Botrytis cinerea Vitis 18 resveratrol monomers. ., , 1820- J. Agric. Food Chem 43 Langcake P., Cornford C. and Pryce R., 1979. Identification of 1823. pterostilbene as a from leaves. Vitis vinifera , , 1025-1027. Mattivi F., Vrhovsek U., Malacarne G., Masuero D., Zulini L., Phytochemistry 18 Stefanini M., Moser C., Velasco R. and Guella G., 2011. Langcake P., 1981. Disease resistance of spp. and the Vitis Profiling of resveratrol oligomers, important stress production of the stress metabolites resveratrol, ε−viniferin, metabolites, accumulating in the leaves of hybrid Vitis α-viniferin and pterostilbene. , , ( x Teroldego) genotypes infected with Physiol. Plant Pathol. 18 vinifera 213-226. . ., , 5364-5375. Plasmopara viticola J. Agric. Food Chem 59 Larrieu S., Letenneur L., Helmer C., Dartigues J. and Barberger- Melzoch K., Hanzlíková I., Filip V., Buckiová D. and Smidrkal J., Gateau P., 2004. Nutritional factors and risk of incident 2001. Resveratrol in parts of vine and wine originating from dementia in the PAQUID longitudinal cohort. Bohemian and Moravian vineyard regions. J. Nutr. Health Agric. Conspec. , , 150-154. ., , 53-57. Aging 8 Sci 66 Larronde F., Richard T., Delaunay J.-C., Decendit A., Monti J. P., Monagas M., Bartolomé B. and Gómez-Cordovés C., 2005. Krisa S. and Mérillon J.-M., 2005. New stilbenoid glucosides Evolution of polyphenols in red wines from L. Vitis vinifera isolated from cell suspension cultures during aging in the bottle. , , Vitis vinifera Eur. Food Res. Technol. 220 (cv. Cabernet-Sauvignon). ., , 888-890. Planta Med 71 331-340. Leblanc M., Johnson C. and Wilson P., 2008. Influence of pressing Moreno A., Castro M. and Falqué E., 2008. Evolution of - trans method on juice stilbene content in Muscadine and bunch and -resveratrol content in red grapes ( L. cis Vitis vinifera grapes. , , H58-H62. cv Mencía, Albarello and Merenzao) during ripening. J. Food Sci. 73 Eur. , , 667-674. Lee J. and Rennaker C., 2007. Antioxidant capacity and stilbene Food Res. Technol. 227 contents of wines produced in the Snake River Valley of Moreno-Labanda J.F., Mallavia R., Pérez-Fons L., Lizama V., Idaho. ., , 195-203. Saura D. and Micol V., 2004. Determination of piceid and Food Chem 105

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 108 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page109

resveratrol in Spanish wines deriving from Monastrell ( Vitis Poussier M., Guilloux-Benatier M., Torres M., Heras E. and L.) grape variety. ., , 5396- vinifera J. Agric. Food Chem 52 Adrian M., 2003. Influence of different maceration 5403. techniques and microbial enzymatic activities on wine stilbene content. ., , 261-266. Naugler C., Mccallum J., Klassen G. and Strommer J., 2007. Am. J. Enol. Vitic 54 Concentrations of -resveratrol and related stilbenes in trans Pryce R.J. and Langcake P., 1977. α-Viniferin: An antifungal Nova Scotia wines. A ., , 117-119. resveratrol trimer from grapevines. , , m. J. Enol. Vitic 58 Phytochemistry 16 Nicoletti I., Bello C., De Rossi A. and Corradini D., 2008. 1452-1454. Identification and quantification of phenolic compounds in Püssa T., Floren J., Kuldkepp P. and Raal A., 2006. Survey of grapes by HPLC-PDA-ESI-MS on a semimicro separation grapevine stem polyphenols by liquid Vitis vinifera scale. ., , 8801-8808. J. Agric. Food Chem 56 chromatography-diode array detection-tandem mass spectrometry. , , 7488-7494. Nikfardjam M., Márk L., Avar P., Figler M. and Ohmacht R., 2006. J. Agric. Food Chem. 54 Polyphenols, anthocyanins, and -resveratrol in red trans Rayne S., Karacabey E. and Mazza G., 2008. Grape cane waste wines from the Hungarian Villany region. , , as a source of -resveratrol and -viniferin: High- Food Chem. 98 trans trans 453-462. value with medicinal and anti- phytopathogenic applications. , , 335- Orgogozo J., Dartigues J., Lafont S., Letenneur L., Commenges D., Ind. Crop. Prod. 27 Salamon R., Renaud S. and Breteler M., 1997. Wine 340. consumption and dementia in the elderly: A prospective Renaud S. and De Lorgeril M., 1992. Wine, alcohol, platelets, and community study in the Bordeaux area. (Paris), the French paradox for coronary heart disease. , , Rev. Neurol. Lancet 339 , 185-192. 1523-1526. 153 Oshima Y., Kamijou A., Moritani H., Namao K. and Ohizumi Y., Renaud S.C., Guéguen R., Schenker J. and d'Houtaud A., 1998. 1993. Vitisin A and -vitisin A, strongly hepatotoxic plant Alcohol and mortality in middle-aged men from Eastern cis oligostilbenes from (Vitaceae). France. , , 184-188. Vitis coignetiae J. Org. 9 , , 850-853. Chem. 58 Reniero F., Rudolph M., Angioni A., Bernreuther A., Cabras P. Oshima Y., Kamijou A., Ohizumi Y., Niwa M., Ito J., Hisamichi K. and Mattivi F., 1996. Identification of two stilbenoids from and Takeshita M., 1995a. Novel oligostilbenes from roots. , , 125-127. Vitis Vitis Vitis 35 coignetiae. , , 11979-11986. Tetrahedron 51 Ribeiro De Lima M.T., Waffo-Téguo P., Teissedre P.L., Pujolas A., Oshima Y., Namao K., Kamijou A., Matsuoka S., Nakano M., Vercauteren J., Cabanis J.C. and Mérillon J.M., 1999. Determination of stilbenes ( -astringin, - and - Terao K. and Ohizumi Y., 1995b. Powerful hepatoprotective trans cis trans piceid, and - and -resveratrol) in Portuguese wines. and hepatotoxic plant oligostilbenes, isolated from the oriental cis trans medicinal plant (Vitaceae). , , , , 2666-2670. Vitis coignetiae Experientia 51 J. Agric. Food Chem. 47 63-66. Richard T., Pawlus A.D., Iglésias M.-L., Pedrot E., Waffo-Teguo P., Ourtoule J., Bourhis M., Vercauteren J. and Théodore N., 1996. Mérillon J.-M. and Monti J.P., 2011. Neuroprotective properties of resveratrol and derivatives. First symmetrical bicyclo[6.6.0]tetradecane resveratrol Ann. N.Y. Acad. tetramer from stalks of (Vitaceae). ., , 103-108. Vitis vinifera Tetrahedron Sci 1 ., , 4697-4700. Lett 37 Santamaria A., Antonacci D., Caruso G., Cavaliere C., Gubbiotti R., Paulo L., Domingues F., António Queiroz J. and Gallardo E., 2011. Laganà A., Valletta A. and Pasqua G., 2010. Stilbene production in cell cultures of L. cvs Red Globe Development and validation of an analytical method for the Vitis vinifera determination of - and -resveratrol in wine: Analysis and Michele Palieri elicited by methyl jasmonate. trans cis Nat. Prod. of its contents in 186 Portuguese red wines. ., , 1488-1498. J. Agric. Food Res 24 ., , 2157-2168. Chem 59 Shen T., Wang X.-N. and Lou H.-X., 2009. Natural stilbenes: An overview. ., , 916-935. Péros J.-P., Berger G., Portemont A., Boursiquot J.-M. and Lacombe Nat. Prod. Rep 26 T., 2011. Genetic variation and biogeography of the disjunct Shibata M.-A., Akao Y., Shibata E., Nozawa Y., Ito T., Mishima S., subg. (Vitaceae). ., , 471-486. Vitis Vitis J. Biogeogr 38 Morimoto J. and Otsuki Y., 2007. Vaticanol C, a novel Pezet R. and Pont V., 1988. Mise en évidence de ptérostilbène dans resveratrol tetramer, reduces lymph node and lung les grappes de . , , metastases of mouse mammary carcinoma carrying p53 Vitis vinifera Plant Physiol. Biochem. 26 mutation. , , 681-691. 603-607. Cancer Chemother. Pharmacol. 60 Pezet R., Perret C., Jean-Denis J., Tabacchi R., Gindro K. and Shinoda K., Takaya Y., Ohta T., Niwa M., Hisamichi K., Takeshita M. and Oshima Y., 1997. Vitisins D and E, novel Viret O., 2003. δ-Viniferin, a resveratrol dehydrodimer: oligostilbenes from stem barks. One of the major stilbenes synthesized by stressed grapevine Vitis coignetiae leaves. ., , 5488-5492. , , 169-172. J. Agric. Food Chem 51 Heterocycles 46 Pezet R., Gindro K., Viret O. and Spring J., 2004. Glycosylation Siemann E. and Creasy L., 1992. Concentration of the phytoalexin resveratrol in wine. ., , 49-52. and oxidative dimerization of resveratrol are respectively Am. J. Enol. Vitic 43 associated to sensitivity and resistance of grapevine cultivars Soejima A. and Wen J., 2006. Phylogenetic analysis of the grape to downy mildew. ., , 297-303. family (Vitaceae) based on three chloroplast markers. Physiol. Mol. Plant Pathol 65 Am. ., , 278-287. Pezzuto J.M., 2011. The phenomenon of resveratrol: Redefining J. Bot 93 the virtues of promiscuity. , , 123- Soleas G., Goldberg D., Ng E., Karumanchiri A., Tsang E. and Ann. N.Y. Acad. Sci. 1215 130. Diamandis E., 1997. Comparative evaluation of four

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 109 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page110

A.D. PAWLUS et al.

methods for assay of - and -resveratrol. -piceid, - and -resveratrol, -viniferin) in cis trans Am. J. Enol. trans cis trans ε ., , 169-176. Brazilian wines. ., , 5664-5669. Vitic 48 J. Agric. Food Chem 53 Son P.-S., Park S.-A., Na H.-K., Jue D.-M., Kim S. and Vrhovsek U., Wendelin S. and Eder R., 1997. Effects of various Surh Y.-J., 2010. Piceatannol, a catechol-type , vinification techniques on the concentration of -and - cis trans resveratrol and resveratrol glucoside isomers in wine. inhibits phorbol ester-induced NF-κB activation and cyclo- Am. ., , 214-219. oxygenase-2 expression in human breast epithelial cells: J. Enol. Vitic 48 Cysteine 179 of IKK as a potential target. , β Carcinogenesis Vrhovsek U., Malacarne G., Masuero D., Zulini L., Guella G., , 1442-1449. 31 Stefanini M., Velasco R. and Mattivi F., 2011. Profiling and accurate quantification of -resveratrol, -piceid, Sotheeswaran S. and Pasupathy V., 1993. Distribution of resveratrol trans trans -pterostilbene and 11 viniferins induced by oligomers in plants. , , 1083-1092. trans Plasmopara Phytochemistry 32 in partially resistant grapevine leaves. Stark T., Wollmann N., Lösch S. and Hofmann T., 2011. viticola Aust. J. Grape ., doi: 10.1111/j.1755-0238.2011.00163.x. Quantitation of resveratrol in red wines by means of stable Wine Res isotope dilution analysis-ultra-performance liquid Waffo-Téguo P., Decendit A., Krisa S., Deffieux G., Vercauteren J. chromatography-Quan-time-of-flight mass spectrometry and Mérillon J.-M., 1996a. The accumulation of stilbene glycosides in cell suspension cultures. and cross validation. , , 3398-3405. Vitis vinifera J. Nat. Anal. Chem. 83 , , 1189-1191. Stervbo U., Vang O. and Bonnesen C., 2007. A review of the Prod. 59 content of the putative chemopreventive phytoalexin Waffo-Téguo P., Decendit A., Vercauteren J., Deffieux G. and Mérillon J.-M., 1996b. -Resveratrol-3-O- -glucoside resveratrol in red wine. ., , 449-457. trans β Food Chem 10 (piceid) in cell suspension cultures of . Sun A.Y., Simonyi A. and Sun G.Y., 2002. The "French paradox" Vitis vinifera , , 1591-1593. and beyond: Neuroprotective effects of polyphenols. Phytochemistry 42 Free , , 314-318. Waffo-Téguo P., Fauconneau B., Deffieux G., Huguet F., Radic. Biol. Med. 32 Vercauteren J. and Mérillon J.M., 1998. Isolation, Sun B., Ribes A., Leandro M., Belchior A. and Spranger M., 2006. identification, and antioxidant activity of three stilbene Stilbenes: Quantitative extraction from grape skins, glucosides newly extracted from cell cultures. Vitis vinifera contribution of grape solids to wine and variation during ., , 655-657. wine maturation. , , 382-390. J. Nat. Prod 61 Anal. Chim. Acta 563 Waffo-Téguo P., Lee D., Cuendet M., Mérillon J., Pezzuto J. M. Szkudelska K. and Szkudelski T., 2010. Resveratrol, obesity and and Kinghorn A.D., 2001. Two new stilbene dimer diabetes. , , 1-8. glucosides from grape ( ) cell cultures. Eur. J. Pharmacol. 635 Vitis vinifera J. Nat. Takaya Y., Terashima K., Yan K. and Niwa M., 2003. , , 136-138. Prod. 64 (+)_Viniferol D, a new stilbenetrimer [sic] from the stem Wang J., Ho L., Zhao Z., Seror I., Humala N., Dickstein D.L., of 'Kyohou'. , , 1433-1439. Vitis vinifera Heterocycles 60 Thiyagarajan M., Percival S.S., Talcott S.T. and Tinttunen S. and Lehtonen P., 2001. Distinguishing organic wines Pasinetti G.M., 2006. Moderate consumption of Cabernet- from normal wines on the basis of concentrations of phenolic Sauvignon attenuates Aβneuropathology in a mouse model compounds and spectral data. , , of Alzheimer's disease. FASEB J., 20, 2313-2320. Eur. Food Res. Technol. 212 390-394. Wang K.-T., Chen L.-G., Tseng S.-H., Huang J.-S., Hsieh M.-S. Tsukamoto T., Nakata R., Tamura E., Kogsuge Y., Kariya A., and Wang C.-C., 2011. Anti-inflammatory effects of resveratrol and oligostilbenes from var. Katsukawa M., Mishima S., Ito T., Linuma M., Akao Y., Vitis thunbergii Arai Y., Namura S. and Inoue H., 2010. Vaticanol C, a Taiwaniana against lipopolysaccharide-induced arthritis. resveratrol tetramer, activates PPAR and PPAR / ., , 3649-3656. α β δin vitro J. Agric. Food Chem 59 and . (Lond), , 1-8. in vivo Nutr. Metab. 7 Wang W., Tang K., Yang H.-R., Wen P.-F., Zhang P., Wang H. L. Vian M.A., Tomao V., Gallet S., Coulomb P.O. and Lacombe and Huang W.-D., 2010. Distribution of resveratrol and J.M., 2005. Simple and rapid method for - and - stilbene synthase in young grape plants ( L. cis trans Vitis vinifera resveratrol and piceid isomers determination in wine by cv. Cabernet-Sauvignon) and the effect of UV-C on its accumulation. ., , 142-152. high-performance liquid chromatography using chromolith Plant Physiol. Biochem 48 columns. , , 224-229. J. Chromatogr. A 1085 Waterhouse A.L. and Lamuela-Raventós R.M., 1994. The Vitrac X., Castagnino C., Waffo-Téguo P., Delaunay J.-C., occurrence of piceid, a stilbene glucoside, in grape berries. , , 571-573. Vercauteren J., Monti J.-P., Deffieux G. and Mérillon J. M., Phytochemistry 37 2001. Polyphenols newly extracted in red wine from Waterhouse A.L. and Teissedre P.-L., 1997. Levels of phenolics Southwestern France by centrifugal partition in California varietal wines, 12-23. Wine. Nutritional and chromatography. ., , 5934-5938. therapeutic benefits. , J. Agric. Food Chem 49 American Chemical Society Vitrac X., Monti J., Vercauteren J., Deffieux G. and Mérillon J., Washington D.C. 296 p. 2002. Direct liquid chromatographic analysis of resveratrol Yan K., Terashima K., Takaya Y. and Niwa M., 2001. A novel derivatives and flavanonols in wines with absorbance and oligostilbene named (+)-viniferol a from the stem of Vitis fluorescence detection. , , 103-110. 'Kyohou'. , , 2711-2715. Anal. Chim. Acta 458 vinifera Tetrahedron 57 Vitrac X., Bornet A., Vanderlinde R., Valls J., Richard T., Yan K., Terashima K., Takaya Y. and Niwa M., 2002. Two new stilbenetetramers [sic] from the stem of Delaunay J.-C., Mérillon J.-M. and Teissedre P.-L., 2005. Vitis vinifera Determination of stilbenes ( -viniferin, -astringin, 'Kyohou'. , , 6931-6935. δ trans Tetrahedron 58

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 110 - 06àutiliser-mérillonbis_05b-tomazic 27/06/12 21:23 Page111

Zga N., Papastamoulis Y., Toribio A., Richard T., Delaunay J.C., in one-year-old canes from seven major Chinese grape Jeandet P., Renault J.H., Monti J.P., Mérillon J.M. and producing regions. , , 2846-2861. Waffo-Téguo P., 2009. Preparative purification of Molecules 16 Zotou A. and Frangi E., 2008. Development and validation of antiamyloidogenic stilbenoids from Vitis vinifera () stems by centrifugal partition an SPE-LC method for the simultaneous determination chromatography. , , 1000-1004. of trans-resveratrol and selected flavonoids in wine. J. Chromatogr. B 877 , , 789-793. Zhang A., Fang Y., Li X., Meng J., Wang H., Li H., Zhang Z. and Chromatographia 67 Guo Z., 2011. Occurrence and estimation of -resveratrol trans

, 2012, , n°2, 57-111 J. Int. Sci. Vigne Vin 46 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 111 -