Bone Formation and Joints A560 – Fall 2015
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation
Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation Hajo Thermann, MD, PhD,* Christoph Becher, MD,† Francesca Vannini, MD, PhD,‡ and Sandro Giannini, MD‡ The treatment of osteochondral defects of the talus is still controversial. Matrix-guided treatment options for covering of the defect with a scaffold have gained increasing popularity. Cellular-based autologous chondrocyte implantation (ACI) has undergone a generational development overcoming the surgical drawbacks related to the use of the periosteal flap over time. As ACI is associated with high costs and limited in availability, autologous matrix-induced chondrogenesis, a single-step procedure combining microfracturing of the subchondral bone to release bone marrow mesenchymal stem cells in combination with the coverage of an acellular matrix, has gained increasing popularity. The purposes of this report are to present the arthroscopic approach of the matrix-guided autologous matrix-induced chondrogenesis technique and generational development of ACI in the treatment of chondral and osteochon- dral defects of the talus. Oper Tech Orthop 24:210-215 C 2014 Elsevier Inc. All rights reserved. KEYWORDS cartilage, defect, ankle, talus, AMIC, ACI Introduction Cartilage repair may be obtained by cartilage replacement: (OATS, mosaicplasty) or with techniques aimed to generate a hondral and osteochondral lesions are defects of the newly formed cartilage such as microfracture or autologous Ccartilaginous surface and underlying subchondral bone of chondrocyte implantation (ACI).9-17 the talar dome. These defects are often caused by a single or Arthroscopic debridement and bone marrow stimulation multiple traumatic events, mostly inversion or eversion ankle using the microfracture technique has proven to be an 1,2 sprains in young, active patients. -
GLOSSARY of MEDICAL and ANATOMICAL TERMS
GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat. -
The Osteoderm Microstructure in Doswelliids and Proterochampsids and Its Implications for Palaeobiology of Stem Archosaurs
The osteoderm microstructure in doswelliids and proterochampsids and its implications for palaeobiology of stem archosaurs DENIS A. PONCE, IGNACIO A. CERDA, JULIA B. DESOJO, and STERLING J. NESBITT Ponce, D.A., Cerda, I.A., Desojo, J.B., and Nesbitt, S.J. 2017. The osteoderm microstructure in doswelliids and proter- ochampsids and its implications for palaeobiology of stem archosaurs. Acta Palaeontologica Polonica 62 (4): 819–831. Osteoderms are common in most archosauriform lineages, including basal forms, such as doswelliids and proterochamp- sids. In this survey, osteoderms of the doswelliids Doswellia kaltenbachi and Vancleavea campi, and proterochampsid Chanaresuchus bonapartei are examined to infer their palaeobiology, such as histogenesis, age estimation at death, development of external sculpturing, and palaeoecology. Doswelliid osteoderms have a trilaminar structure: two corti- ces of compact bone (external and basal) that enclose an internal core of cancellous bone. In contrast, Chanaresuchus bonapartei osteoderms are composed of entirely compact bone. The external ornamentation of Doswellia kaltenbachi is primarily formed and maintained by preferential bone growth. Conversely, a complex pattern of resorption and redepo- sition process is inferred in Archeopelta arborensis and Tarjadia ruthae. Vancleavea campi exhibits the highest degree of variation among doswelliids in its histogenesis (metaplasia), density and arrangement of vascularization and lack of sculpturing. The relatively high degree of compactness in the osteoderms of all the examined taxa is congruent with an aquatic or semi-aquatic lifestyle. In general, the osteoderm histology of doswelliids more closely resembles that of phytosaurs and pseudosuchians than that of proterochampsids. Key words: Archosauria, Doswelliidae, Protero champ sidae, palaeoecology, microanatomy, histology, Triassic, USA. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
Biology of Bone Repair
Biology of Bone Repair J. Scott Broderick, MD Original Author: Timothy McHenry, MD; March 2004 New Author: J. Scott Broderick, MD; Revised November 2005 Types of Bone • Lamellar Bone – Collagen fibers arranged in parallel layers – Normal adult bone • Woven Bone (non-lamellar) – Randomly oriented collagen fibers – In adults, seen at sites of fracture healing, tendon or ligament attachment and in pathological conditions Lamellar Bone • Cortical bone – Comprised of osteons (Haversian systems) – Osteons communicate with medullary cavity by Volkmann’s canals Picture courtesy Gwen Childs, PhD. Haversian System osteocyte osteon Picture courtesy Gwen Childs, PhD. Haversian Volkmann’s canal canal Lamellar Bone • Cancellous bone (trabecular or spongy bone) – Bony struts (trabeculae) that are oriented in direction of the greatest stress Woven Bone • Coarse with random orientation • Weaker than lamellar bone • Normally remodeled to lamellar bone Figure from Rockwood and Green’s: Fractures in Adults, 4th ed Bone Composition • Cells – Osteocytes – Osteoblasts – Osteoclasts • Extracellular Matrix – Organic (35%) • Collagen (type I) 90% • Osteocalcin, osteonectin, proteoglycans, glycosaminoglycans, lipids (ground substance) – Inorganic (65%) • Primarily hydroxyapatite Ca5(PO4)3(OH)2 Osteoblasts • Derived from mesenchymal stem cells • Line the surface of the bone and produce osteoid • Immediate precursor is fibroblast-like Picture courtesy Gwen Childs, PhD. preosteoblasts Osteocytes • Osteoblasts surrounded by bone matrix – trapped in lacunae • Function -
Bone Cartilage Dense Fibrous CT (Tendons & Nonelastic Ligaments) Dense Elastic CT (Elastic Ligaments)
Chapter 6 Content Review Questions 1-8 1. The skeletal system consists of what connective tissues? Bone Cartilage Dense fibrous CT (tendons & nonelastic ligaments) Dense elastic CT (elastic ligaments) List the functions of these tissues. Bone: supports the body, protects internal organs, provides levers on which muscles act, store minerals, and produce blood cells. Cartilage provides a model for bone formation and growth, provides a smooth cushion between adjacent bones, and provides firm, flexible support. Tendons attach muscles to bones and ligaments attach bone to bone. 2. Name the major types of fibers and molecules found in the extracellular matrix of the skeletal system. Collagen Proteoglycans Hydroxyapatite Water Minerals How do they contribute to the functions of tendons, ligaments, cartilage and bones? The collagen fibers of tendons and ligaments make these structures very tough, like ropes or cables. Collagen makes cartilage tough, whereas the water-filled proteoglycans make it smooth and resistant. As a result, cartilage is relatively rigid, but springs back to its original shape if it is bent or slightly compressed, and it is an excellent shock absorber. The extracellular matrix of bone contains collagen and minerals, including calcium and phosphate. Collagen is a tough, ropelike protein, which lends flexible strength to the bone. The mineral component gives the bone compression (weight-bearing) strength. Most of the mineral in the bone is in the form of hydroxyapatite. 3. Define the terms diaphysis, epiphysis, epiphyseal plate, medullary cavity, articular cartilage, periosteum, and endosteum. Diaphysis – the central shaft of a long bone. Epiphysis – the ends of a long bone. Epiphyseal plate – the site of growth in bone length, found between each epiphysis and diaphysis of a long bone and composed of cartilage. -
Primary Bone Cancer a Guide for People Affected by Cancer
Cancer information fact sheet Understanding Primary Bone Cancer A guide for people affected by cancer This fact sheet has been prepared What is bone cancer? to help you understand more about Bone cancer can develop as either a primary or primary bone cancer, also known as secondary cancer. The two types are different and bone sarcoma. In this fact sheet we this fact sheet is only about primary bone cancer. use the term bone cancer, and include general information about how bone • Primary bone cancer – means that the cancer cancer is diagnosed and treated. starts in a bone. It may develop on the surface, in the outer layer or from the centre of the bone. As a tumour grows, cancer cells multiply and destroy The bones the bone. If left untreated, primary bone cancer A typical healthy person has over 200 bones, which: can spread to other parts of the body. • support and protect internal organs • are attached to muscles to allow movement • Secondary (metastatic) bone cancer – means • contain bone marrow, which produces that the cancer started in another part of the body and stores new blood cells (e.g. breast or lung) and has spread to the bones. • store proteins, minerals and nutrients, such See our fact sheet on secondary bone cancer. as calcium. Bones are made up of different parts, including How common is bone cancer? a hard outer layer (known as cortical or compact Bone cancer is rare. About 250 Australians are bone) and a spongy inner core (known as trabecular diagnosed with primary bone cancer each year.1 or cancellous bone). -
What Is Bone Cancer?
cancer.org | 1.800.227.2345 About Bone Cancer Overview and Types If you have been diagnosed with bone cancer or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is Bone Cancer? Research and Statistics See the latest estimates for new cases of bone cancer and deaths in the US and what research is currently being done. ● Key Statistics About Bone Cancer ● What’s New in Bone Cancer Research? What Is Bone Cancer? The information here focuses on primary bone cancers (cancers that start in bones) that most often are seen in adults. Information on Osteosarcoma1, Ewing Tumors (Ewing sarcomas)2, and Bone Metastases3 is covered separately. Cancer starts when cells begin to grow out of control. Cells in nearly any part of the body can become cancer, and can then spread (metastasize) to other parts of the body. To learn more about cancer and how it starts and spreads, see What Is Cancer?4 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 Bone cancer is an uncommon type of cancer that begins when cells in the bone start to grow out of control. To understand bone cancer, it helps to know a little about normal bone tissue. Bone is the supporting framework for your body. The hard, outer layer of bones is made of compact (cortical) bone, which covers the lighter spongy (trabecular) bone inside. The outside of the bone is covered with fibrous tissue called periosteum. Some bones have a space inside called the medullary cavity, which contains the soft, spongy tissue called bone marrow(discussed below). -
The Female Pelvic Floor Fascia Anatomy: a Systematic Search and Review
life Systematic Review The Female Pelvic Floor Fascia Anatomy: A Systematic Search and Review Mélanie Roch 1 , Nathaly Gaudreault 1, Marie-Pierre Cyr 1, Gabriel Venne 2, Nathalie J. Bureau 3 and Mélanie Morin 1,* 1 Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Faculty of Medicine and Health Sciences, School of Rehabilitation, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; [email protected] (M.R.); [email protected] (N.G.); [email protected] (M.-P.C.) 2 Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada; [email protected] 3 Centre Hospitalier de l’Université de Montréal, Department of Radiology, Radio-Oncology, Nuclear Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; [email protected] * Correspondence: [email protected] Abstract: The female pelvis is a complex anatomical region comprising the pelvic organs, muscles, neurovascular supplies, and fasciae. The anatomy of the pelvic floor and its fascial components are currently poorly described and misunderstood. This systematic search and review aimed to explore and summarize the current state of knowledge on the fascial anatomy of the pelvic floor in women. Methods: A systematic search was performed using Medline and Scopus databases. A synthesis of the findings with a critical appraisal was subsequently carried out. The risk of bias was assessed with the Anatomical Quality Assurance Tool. Results: A total of 39 articles, involving 1192 women, were included in the review. Although the perineal membrane, tendinous arch of pelvic fascia, pubourethral ligaments, rectovaginal fascia, and perineal body were the most frequently described structures, uncertainties were Citation: Roch, M.; Gaudreault, N.; identified in micro- and macro-anatomy. -
Kumka's Response to Stecco's Fascial Nomenclature Editorial
Journal of Bodywork & Movement Therapies (2014) 18, 591e598 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/jbmt FASCIA SCIENCE AND CLINICAL APPLICATIONS: RESPONSE Kumka’s response to Stecco’s fascial nomenclature editorial Myroslava Kumka, MD, PhD* Canadian Memorial Chiropractic College, Department of Anatomy, 6100 Leslie Street, Toronto, ON M2H 3J1, Canada Received 12 May 2014; received in revised form 13 May 2014; accepted 26 June 2014 Why are there so many discussions? response to the direction of various strains and stimuli. (De Zordo et al., 2009) Embedded with a range of mechanore- The clinical importance of fasciae (involvement in patho- ceptors and free nerve endings, it appears fascia has a role in logical conditions, manipulation, treatment) makes the proprioception, muscle tonicity, and pain generation. fascial system a subject of investigation using techniques (Schleip et al., 2005) Pathology and injury of fascia could ranging from direct imaging and dissections to in vitro potentially lead to modification of the entire efficiency of cellular modeling and mathematical algorithms (Chaudhry the locomotor system (van der Wal and Pubmed Exact, 2009). et al., 2008; Langevin et al., 2007). Despite being a topic of growing interest worldwide, This tissue is important for all manual therapists as a controversies still exist regarding the official definition, pain generator and potentially treatable entity through soft terminology, classification and clinical significance of fascia tissue and joint manipulative techniques. (Day et al., 2009) (Langevin et al., 2009; Mirkin, 2008). It is also reportedly treated with therapeutic modalities Lack of consistent terminology has a negative effect on such as therapeutic ultrasound, microcurrent, low level international communication within and outside many laser, acupuncture, and extracorporeal shockwave therapy. -
Patell O Medical Term
Patell O Medical Term Delightful and shadowing Brooks respect, but Aube sigmoidally remainders her nankeen. Valedictory Rene nuts some correcting after connectible Micah sliced intransitively. Correctional Richy never summersault so thievishly or hulls any nannies interchangeably. See intracardiac electrophysiological is called a smoothing action to move from the medical term many nurses have a list of a sonogram definitely showed far vision is Medical Language University of Phoenix. Medical Terminology YouScience. Medical Terminology Simplified 4th Edition Gylys Masters Test. Patello-femoral Pain Syndrome OnePointHealth. In medical terminology roots usually indicate a piece part cardio dento pulmono. Definition of PE definition of RO definition of patello difference between WR and. Algeso algesia excessive sensitivity to pain alveolo alveolus. What does in robe in medical terms? QuickStudy Medical Terminology Basics. The term and the right tube in the glans penis is located on. Meaning of Medical Term Medical Term myoso inflammation of muscle 1 cranio surgical repair her skull 2 patello excision of patella 3 teno suture of tendon. Medical Terminology Quiz By melissa91 Sporcle. What the the medical term SARC o mean? Presentation on theme Medical Terminology Get Connected. The term is. Word parts ortho osteo parieto patello pedo petro phalango physo. -ous pertaining to pancreato pancreas para- near camp around patello. What treatment of terms related to proceed with england with greek term for below are called _______________________, or more roots for partial or prone to and contempt. Talo-patello-scaphoid osteolysis is an extremely rare form is primary osteolysis see no term described in two. Medical word analyze the jury terms contract the letter Example. -
Autologous Chondrocyte Implantation
ARTIGO DE REVISÃO Transplante Autólogo DE Condrócitos AUTOLOGOUS CHONDROCYTE IMPLANTATION RONALD BISPO BARRETO, JOSÉ RICARDO PÉCORA, RICCARDO GOMES GOBBI, MÁRCIA UCHÔA DE REZENDE, GILBERTO LUIS CAMANHO RESUMO ABSTRACT: Esta revisão da literatura descreve o processo do transplante autólogo This literature review article describes the autologous chondrocyte de condrócitos em todas as suas etapas, indicações clínicas, técni- implantation (ACI) process – its stages, clinical indications, sur- ca operatória, técnica laboratorial, reabilitação e resultados clínicos. gical technique, laboratory protocol, rehabilitation and clinical Desde 1994, quando a técnica de ACI foi descrita pela primeira vez, outcomes. Since 1994, when the ACI was described for the first este procedimento foi aprimorado e tornou-se uma das mais impor- time, the procedure has improved to become one of the most tantes alternativas cirúrgicas para o tratamento das lesões condrais important surgical alternatives for the treatment of chondral lesions do joelho. Nivel de Evidência II, Prospectivo Comparativo. of the knee. Descritores: Traumatismos do Joelho. Condrócitos. Transplante Keywords: Knee trauma. Chondrocytes. Autologous transplant. autólogo. Humanos. Cultura celular. Humans. Cell culture. Citação: Barreto RB, Pécora JR, Gobbi RG, Rezende MU, Camanho GL. Transplante Citation: Barreto RB, Pécora JR, Gobbi RG, Rezende MU, Camanho GL. Autologous autólogo de condrócito. Acta Ortop Bras. [online]. 2011;19(4)X219-25. Disponível em chondrocyte implantation. Acta Ortop Bras.