Primary Bone Cancer a Guide for People Affected by Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Primary Bone Cancer a Guide for People Affected by Cancer Cancer information fact sheet Understanding Primary Bone Cancer A guide for people affected by cancer This fact sheet has been prepared What is bone cancer? to help you understand more about Bone cancer can develop as either a primary or primary bone cancer, also known as secondary cancer. The two types are different and bone sarcoma. In this fact sheet we this fact sheet is only about primary bone cancer. use the term bone cancer, and include general information about how bone • Primary bone cancer – means that the cancer cancer is diagnosed and treated. starts in a bone. It may develop on the surface, in the outer layer or from the centre of the bone. As a tumour grows, cancer cells multiply and destroy The bones the bone. If left untreated, primary bone cancer A typical healthy person has over 200 bones, which: can spread to other parts of the body. • support and protect internal organs • are attached to muscles to allow movement • Secondary (metastatic) bone cancer – means • contain bone marrow, which produces that the cancer started in another part of the body and stores new blood cells (e.g. breast or lung) and has spread to the bones. • store proteins, minerals and nutrients, such See our fact sheet on secondary bone cancer. as calcium. Bones are made up of different parts, including How common is bone cancer? a hard outer layer (known as cortical or compact Bone cancer is rare. About 250 Australians are bone) and a spongy inner core (known as trabecular diagnosed with primary bone cancer each year.1 or cancellous bone). The bone marrow is found in It affects people of all ages, but is most often seen this spongy core. Cartilage is the tough material at in people aged 10–25 and over 50. If it develops the end of each bone that allows one bone to move later in life, it may be linked to another bone against another. This meeting point is called a joint. condition (see page 2). Bone structure Cartilage Trabecular Cortical Bone marrow Cartilage (cancellous) bone (compact) bone cavity 2 Understanding Primary Bone Cancer Types of bone cancer Other bone conditions – Some people who have There are more than 30 types of primary bone had Paget’s disease of the bone, fibrous dysplasia cancer. The most common types are: or multiple enchondromas are at higher risk of • starts in cells that grow developing bone cancer. Some studies also suggest bone tissue that people who have had a soft tissue sarcoma • often affects the arms, legs have an increased risk of developing bone cancer. and pelvis, but may occur osteosarcoma in any bone Genetic factors – Some inherited conditions such (about 35% of • occurs in children and young as Li-Fraumeni syndrome increase the risk of bone bone cancers) adults with growing bones, cancer. People with a strong family history of certain and older people in their types of cancer are also at risk. Talk to a family 70s and 80s cancer clinic for more information. Some people • most are high-grade tumours develop bone cancer due to genetic changes that • starts in cells that grow happen during their lifetime, rather than inheriting a cartilage faulty gene. Most bone cancers are not hereditary. • often affects the bones in the upper arms and legs, pelvis, chondrosarcoma ribs and shoulder blade What are the symptoms? (about 30% of • most often occurs in middle- The most common symptom is strong pain in the bone cancers) aged and older people affected bone or joint. The pain gradually becomes • slow-growing form of cancer constant and doesn’t improve with mild pain relievers that rarely spreads to other such as paracetamol. It may be worse at night or parts of the body • most are low-grade tumours during activity. • affects cells in the bone or Other symptoms can include: soft tissue that multiply • swelling over the affected part of the bone rapidly and is often • stiffness or tenderness in the bone Ewing’s sarcoma associated with a large lump • problems with moving around, for example, (about 15% of • often affects the pelvis, legs, an unexplained limp bone cancers) ribs, spine, upper arms • common in children and • loss of feeling in the affected limb young adults • unexplained fractured bone • all are high-grade tumours • unexplained weight loss • tiredness. Some types of cancer affect the soft tissues around the bones. These are known as soft tissue sarcomas, Most people who have these symptoms do not have and may be treated differently. For more details, talk bone cancer. If you have symptoms for more than two to your doctor or call Cancer Council 13 11 20. weeks, you should see your general practitioner (GP). Diagnosis What are the risk factors? If you have symptoms that could be caused by bone The causes of most bone cancers are unknown, cancer, your doctor will take your medical history but factors that increase the risk include: and perform a physical examination. Bone cancer can be difficult to diagnose, and it is likely that you Previous radiation therapy (radiotherapy) – will have some of the following tests: Radiation therapy to treat cancer increases the risk • x-rays – can reveal bone damage or the creation of developing bone cancer. The risk is higher for of new bone people who have high doses of radiation therapy • blood tests – help check your overall health at a young age. Most people who have radiation • CT or MRI scans – a special computer is used to therapy will not develop bone cancer. create pictures to highlight any bone abnormality 3 Understanding Primary Bone Cancer • PET scan – you will be injected with a small Selecting the bone site to biopsy amount of radioactive glucose solution to highlight any cancerous areas on the scan A bone biopsy is a highly specialised test. It is best • bone biopsy – removes some cells and tissues that the biopsy is done at a specialist treatment from the outer part of the affected bone for centre (see below), preferably where you would be examination under a microscope. The biopsy may treated if it is cancer. The site to biopsy must be be done in one of two ways. In a core biopsy, a carefully chosen so it doesn’t cause problems if further surgery is needed. It is important that a bone local anaesthetic is used to numb the area, then biopsy is performed by a doctor who is an expert a thin needle is inserted into the bone under CT in bone cancer. This also helps ensure the sample is guidance to take a sample. In an open or surgical useful and reduces the risk of the cancer spreading. biopsy, the surgeon will cut through the skin under general anaesthesia to remove a piece of bone. If Ewing’s sarcoma is suspected, you will have a procedure to examine cells from the inner part of Treatment the affected bone. A thin needle is used to remove The treatment of bone cancers is complex and a sample of fluid (aspirate) from the bone marrow. requires specialist care. Treatment will depend on: • the type of primary bone cancer • the location and size of the tumour Staging • whether or not the cancer has spread (its stage) The test results will help show how far the cancer • your age, fitness, general health and preferences. has spread in the body. This is called staging. Knowing the stage helps your health care team Treatment for primary bone cancer usually includes plan the most suitable treatment for you. surgery, chemotherapy and radiation therapy, or a combination of these treatments. The aim is to control the cancer and maintain the use of the Grading bone cancer affected area of the body. Many people who are Grading describes how quickly a cancer might grow. treated for bone cancer go into remission (when the symptoms of bone cancer decrease or disappear). The cancer cells look similar to low normal cells. They are usually slow- grade growing and less likely to spread. Understanding your treatment options and possible side effects can help you weigh up the pros and The cancer cells look very abnormal. high cons of different treatments. You may want to get They grow quickly and are more grade a second opinion from another specialist to confirm likely to spread. or clarify your first doctor’s recommendations. Stages of bone cancer There are different staging systems used for bone Specialist treatment centres cancer. Ask your doctor to explain your stage to you. Located in major cities throughout Australia, these centres have expert multidisciplinary teams stage 1 The cancer contains low-grade cells; (MDTs) who regularly manage this cancer. The (localised) there is no spread beyond the bone. team will include surgeons, medical oncologists, stage 2 The cancer contains high-grade cells; radiation oncologists, pathologists, radiologists (localised) there is no spread beyond the bone. and clinical nurse consultants, as well as allied There are several high-grade tumours health professionals such as physiotherapists, stage 3 in the same bone; there is no spread occupational therapists and social workers. Some (localised) beyond the bone. centres also have oncologists with experience in treating young people with bone cancer. The cancer is any grade and has stage 4 spread to other parts of the body To find a specialist treatment centre, visit (advanced) (e.g. the lungs). sarcoma.org.au. 4 Understanding Primary Bone Cancer Preparing for treatment A physiotherapist can plan an exercise program to help you regain strength and function in your limb. Some types of chemotherapy and radiation therapy can affect your heart and kidneys. Your doctor may Surgery to remove the limb (amputation) recommend you have some tests to check how In some cases when it is not possible to remove all well your heart and kidneys are working.
Recommended publications
  • Advances in Immune Checkpoint Inhibitors for Bone Sarcoma Therapy T Pichaya Thanindratarna,B, Dylan C
    Journal of Bone Oncology 15 (2019) 100221 Contents lists available at ScienceDirect Journal of Bone Oncology journal homepage: www.elsevier.com/locate/jbo Review Article Advances in immune checkpoint inhibitors for bone sarcoma therapy T Pichaya Thanindratarna,b, Dylan C. Deana, Scott D. Nelsonc, Francis J. Horniceka, ⁎ Zhenfeng Duana, a Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, 615 Charles E. Young. Dr. South, Los Angeles, CA 90095, USA b Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand c Department of Pathology, University of California, Los Angeles, CA, USA ARTICLE INFO ABSTRACT Keywords: Bone sarcomas are a collection of sporadic malignancies of mesenchymal origin. The most common subtypes Immune checkpoint include osteosarcoma, Ewing sarcoma, chondrosarcoma, and chordoma. Despite the use of aggressive treatment Immunotherapy protocols consisting of extensive surgical resection, chemotherapy, and radiotherapy, outcomes have not sig- Bone sarcoma nificantly improved over the past few decades for osteosarcoma or Ewing sarcoma patients. In addition, chon- Anti-PD-1/PD-L1 drosarcoma and chordoma are resistant to both chemotherapy and radiation therapy. There is, therefore, an Anti-CTLA-4 urgent need to elucidate which novel new therapies may affect bone sarcomas. Emerging checkpoint inhibitors have generated considerable attention for their clinical success in a variety of human cancers, which has led to works assessing their potential in bone sarcoma management. Here, we review the recent advances of anti-PD-1/ PD-L1 and anti-CTLA-4 blockade as well as other promising new immune checkpoint targets for their use in bone sarcoma therapy.
    [Show full text]
  • The Osteoderm Microstructure in Doswelliids and Proterochampsids and Its Implications for Palaeobiology of Stem Archosaurs
    The osteoderm microstructure in doswelliids and proterochampsids and its implications for palaeobiology of stem archosaurs DENIS A. PONCE, IGNACIO A. CERDA, JULIA B. DESOJO, and STERLING J. NESBITT Ponce, D.A., Cerda, I.A., Desojo, J.B., and Nesbitt, S.J. 2017. The osteoderm microstructure in doswelliids and proter- ochampsids and its implications for palaeobiology of stem archosaurs. Acta Palaeontologica Polonica 62 (4): 819–831. Osteoderms are common in most archosauriform lineages, including basal forms, such as doswelliids and proterochamp- sids. In this survey, osteoderms of the doswelliids Doswellia kaltenbachi and Vancleavea campi, and proterochampsid Chanaresuchus bonapartei are examined to infer their palaeobiology, such as histogenesis, age estimation at death, development of external sculpturing, and palaeoecology. Doswelliid osteoderms have a trilaminar structure: two corti- ces of compact bone (external and basal) that enclose an internal core of cancellous bone. In contrast, Chanaresuchus bonapartei osteoderms are composed of entirely compact bone. The external ornamentation of Doswellia kaltenbachi is primarily formed and maintained by preferential bone growth. Conversely, a complex pattern of resorption and redepo- sition process is inferred in Archeopelta arborensis and Tarjadia ruthae. Vancleavea campi exhibits the highest degree of variation among doswelliids in its histogenesis (metaplasia), density and arrangement of vascularization and lack of sculpturing. The relatively high degree of compactness in the osteoderms of all the examined taxa is congruent with an aquatic or semi-aquatic lifestyle. In general, the osteoderm histology of doswelliids more closely resembles that of phytosaurs and pseudosuchians than that of proterochampsids. Key words: Archosauria, Doswelliidae, Protero champ sidae, palaeoecology, microanatomy, histology, Triassic, USA.
    [Show full text]
  • Malignant Bone Tumors (Other Than Ewing’S): Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up by Spanish Group for Research on Sarcomas (GEIS)
    Cancer Chemother Pharmacol DOI 10.1007/s00280-017-3436-0 ORIGINAL ARTICLE Malignant bone tumors (other than Ewing’s): clinical practice guidelines for diagnosis, treatment and follow-up by Spanish Group for Research on Sarcomas (GEIS) Andrés Redondo1 · Silvia Bagué2 · Daniel Bernabeu1 · Eduardo Ortiz-Cruz1 · Claudia Valverde3 · Rosa Alvarez4 · Javier Martinez-Trufero5 · Jose A. Lopez-Martin6 · Raquel Correa7 · Josefina Cruz8 · Antonio Lopez-Pousa9 · Aurelio Santos10 · Xavier García del Muro11 · Javier Martin-Broto10 Received: 7 July 2017 / Accepted: 15 September 2017 © The Author(s) 2017. This article is an open access publication Abstract Primary malignant bone tumors are uncommon of a localized bone tumor, with various techniques available and heterogeneous malignancies. This document is a guide- depending on the histologic type, grade and location of the line developed by the Spanish Group for Research on Sar- tumor. Chemotherapy plays an important role in some che- coma with the participation of different specialists involved mosensitive subtypes (such as high-grade osteosarcoma). in the diagnosis and treatment of bone sarcomas. The aim is In other subtypes, historically considered chemoresistant to provide practical recommendations with the intention of (such as chordoma or giant cell tumor of bone), new targeted helping in the clinical decision-making process. The diag- therapies have emerged recently, with a very significant effi- nosis and treatment of bone tumors requires a multidiscipli- cacy in the case of denosumab. Radiation therapy is usually nary approach, involving as a minimum pathologists, radi- necessary in the treatment of chordoma and sometimes of ologists, surgeons, and radiation and medical oncologists. other bone tumors. Early referral to a specialist center could improve patients’ survival.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Biology of Bone Repair
    Biology of Bone Repair J. Scott Broderick, MD Original Author: Timothy McHenry, MD; March 2004 New Author: J. Scott Broderick, MD; Revised November 2005 Types of Bone • Lamellar Bone – Collagen fibers arranged in parallel layers – Normal adult bone • Woven Bone (non-lamellar) – Randomly oriented collagen fibers – In adults, seen at sites of fracture healing, tendon or ligament attachment and in pathological conditions Lamellar Bone • Cortical bone – Comprised of osteons (Haversian systems) – Osteons communicate with medullary cavity by Volkmann’s canals Picture courtesy Gwen Childs, PhD. Haversian System osteocyte osteon Picture courtesy Gwen Childs, PhD. Haversian Volkmann’s canal canal Lamellar Bone • Cancellous bone (trabecular or spongy bone) – Bony struts (trabeculae) that are oriented in direction of the greatest stress Woven Bone • Coarse with random orientation • Weaker than lamellar bone • Normally remodeled to lamellar bone Figure from Rockwood and Green’s: Fractures in Adults, 4th ed Bone Composition • Cells – Osteocytes – Osteoblasts – Osteoclasts • Extracellular Matrix – Organic (35%) • Collagen (type I) 90% • Osteocalcin, osteonectin, proteoglycans, glycosaminoglycans, lipids (ground substance) – Inorganic (65%) • Primarily hydroxyapatite Ca5(PO4)3(OH)2 Osteoblasts • Derived from mesenchymal stem cells • Line the surface of the bone and produce osteoid • Immediate precursor is fibroblast-like Picture courtesy Gwen Childs, PhD. preosteoblasts Osteocytes • Osteoblasts surrounded by bone matrix – trapped in lacunae • Function
    [Show full text]
  • What Is Bone Cancer?
    cancer.org | 1.800.227.2345 About Bone Cancer Overview and Types If you have been diagnosed with bone cancer or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is Bone Cancer? Research and Statistics See the latest estimates for new cases of bone cancer and deaths in the US and what research is currently being done. ● Key Statistics About Bone Cancer ● What’s New in Bone Cancer Research? What Is Bone Cancer? The information here focuses on primary bone cancers (cancers that start in bones) that most often are seen in adults. Information on Osteosarcoma1, Ewing Tumors (Ewing sarcomas)2, and Bone Metastases3 is covered separately. Cancer starts when cells begin to grow out of control. Cells in nearly any part of the body can become cancer, and can then spread (metastasize) to other parts of the body. To learn more about cancer and how it starts and spreads, see What Is Cancer?4 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 Bone cancer is an uncommon type of cancer that begins when cells in the bone start to grow out of control. To understand bone cancer, it helps to know a little about normal bone tissue. Bone is the supporting framework for your body. The hard, outer layer of bones is made of compact (cortical) bone, which covers the lighter spongy (trabecular) bone inside. The outside of the bone is covered with fibrous tissue called periosteum. Some bones have a space inside called the medullary cavity, which contains the soft, spongy tissue called bone marrow(discussed below).
    [Show full text]
  • Immunological Status of Peripheral Blood Is Associated with Prognosis in Patients with Bone and Soft-Tissue Sarcoma
    ONCOLOGY LETTERS 21: 212, 2021 Immunological status of peripheral blood is associated with prognosis in patients with bone and soft-tissue sarcoma YOUNGJI KIM1‑3, EISUKE KOBAYASHI1, YOSHIYUKI SUEHARA2, AYUMU ITO4, DAISUKE KUBOTA1,2, YOSHIKAZU TANZAWA1, MAKOTO ENDO1, FUMIHIKO NAKATANI1, TETSUYA NAKATSURA3, AKIRA KAWAI1, KAZUO KANEKO2 and SHIGEHISA KITANO3,5,6 1Division of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104‑0045; 2Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo 113‑8431; 3Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital, Tokyo 104‑0045; Departments of 4Hematopoietic Stem Cell Transplantation, and 5Experimental Therapeutics, National Cancer Center Hospital, Tokyo 104‑0045; 6Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135‑8550, Japan Received June 27, 2020; Accepted October 23, 2020 DOI: 10.3892/ol.2021.12473 Abstract. Immune‑checkpoint inhibitors have shown Multivariate Cox regression analysis demonstrated that the promising antitumor effects against certain types of cancer. number of Tim‑3+ CD8+ T cells was associated with lower However, specific immune‑checkpoint inhibitors for patients DFS time. A significant association was also found between with sarcoma have yet to be identified, whereas the immu‑ the number of M‑MDSCs and progression‑free survival (PFS) nological status of peripheral blood in patients with bone time in patients with metastasis. The results suggested the sarcoma and soft‑tissue sarcoma (STS) remains unknown. occurrence of immune surveillance, which indicated that the In addition, it is unclear whether the immunological status host immune reaction against cancer existed in patients with from the peripheral blood could be used as a prognostic bone sarcoma and STS.
    [Show full text]
  • Conventional Chondrosarcoma James C
    Conventional Chondrosarcoma James C. Wittig, MD SSSarcoma Surgeon Orthopedic Oncologist General Information Ma lignant mesenc hyma l tumor o f cart ilag inous different iat ion. Conventional Chondrosarcoma is the most common type of chondrosarcoma (malignant cartilage tumor) Neoplastic cells form hyaline type cartilage or chondroid type tissue (Chondroid Matrix) but not osteoid If lesion arises de novo, it is a primary chondrosarcoma If superimposed on a preexisting benign neoplasm, it is considered a secondary chondrosarcoma Central chondrosarcomas arise from an intramedullary location. They may grow, destroy the cortex and form a soft tissue component. Peripheral chondrosarcomas extend outward from the cortex of the bone and can invade the medullary cavity. Peripheral chondrosarcomas most commonly arise from preexisting osteochondromas. Juxtacortical chondrosarcomas arise from the inner layer of the periosteum on the surface of the bone. It is technically considered a peripheral chondrosarcoma. Chondrosarcoma Heterogeneous group of tumors with varying biological behavior depending on grade, size and location Cartilage tumors can have similar histology and behave differently depending on location. For instance a histologically benign appearing cartilage tumor in the pelvis will behave aggressively as a low grade chondrosarcoma. Likewise, a histologically more aggressive hypercellular cartilag e tumor localized in a p halanx of a dig it may behave in an indolent, non aggressive or benign manner. There are low (grade I), intermediate (grade II) and high grade (grade III) types of conventional chondrosarcoma. Low grade lesions are slow growing and rarely metastasize . Low grade chondrosarcomas can be difficult to differentiate from benign tumors histologically. Clinical features and radiographic studies are important to help differentiate.
    [Show full text]
  • Bone & Soft Tissue
    14A ANNUAL MEETING ABSTRACTS and testicular atrophy with aspermatogenia (negative OCT3/OCT4 stain). There was 47 Comparison of Autopsy Findings of 2009 Pandemic Influenza evidence of acute multifocal bronchopneumonia and congestive heart failure. He carried A (H1N1) with Seasonal Influenza in Four Pediatric Patients two heterozygous mutations in ALMS1: 11316_11319delAGAG; R3772fs in exon 16 B Xu, JJ Woytash, D Vertes. State University of New York at Buffalo, Buffalo, NY; Erie and 8164C>T ter; R2722X in exon 10. County Medical Examiner’s Office, Buffalo, NY. Conclusions: This report describes previously undefined cardiac abnormalities in this Background: The swine-origin influenza A (H1N1) virus that emerged in humans rare multisystem disorder. Myofibrillar disarray is probably directly linked to ALMS1 in early 2009 has reached pandemic proportions and cause over 120 pediatric deaths mutation, while fibrosis in multiple organs may be a secondary phenomenon to gene nationwide. Studies in animal models have shown that the 2009 H1N1 influenza virus alteration. Whether and how intracellular trafficking or related signals lead to cardiac is more pathogenic than seasonal A virus, with more extensive virus replication and dysfunction is a subject for further research. shedding occurring the respiratory tract. Design: We report four cases of influenza A-associated deaths (two pandemic and two 45 Sudden Cardiac Death in Young Adults: An Audit of Coronial seasonal) in persons less than fifteen years of age who had no underlying health issues. Autopsy Findings Autopsy finding on isolation of virus from various tissue specimen, cocurrent bacterial A Treacy, A Roy, R Margey, JC O’Keane, J Galvin, A Fabre.
    [Show full text]
  • Spectrum of Bone Tumors in Chiang Mai University Hospital, Thailand According to WHO Classification 2002: a Study of 1,001 Cases
    Spectrum of Bone Tumors in Chiang Mai University Hospital, Thailand According to WHO Classification 2002: A Study of 1,001 Cases Jongkolnee Settakorn MD*, Suree Lekawanvijit MD*, Olarn Arpornchayanon MD**, Samreung Rangdaeng MD*, Pramote Vanitanakom MD*, Sarawut Kongkarnka MD*, Ruangrong Cheepsattayakorn MD*, Charin Ya-In MD*, Paul S Thorner MD*** * Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai ** Department of Orthopedic Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai *** Department of Laboratory Medicine, Hospital for Sick Children and University of Toronto, Toronto, Canada Objective: The aim of the present study was to determine the spectrum, frequency and demographics of bone tumors. Material and Method: A retrospective study of the 1,001 bone tumor specimens from the files at the Pathology Department of the Chiang Mai University Hospital, Thailand from 2000 to 2004. Results: From the study, 41 were non-neoplastic mass lesions, and 960 were neoplastic, with 856 (89%) as primary and 104 (11%) as metastatic tumors. In the primary tumor group, 654 (76%) cases were of hemato- logic origin, and 202 (24%) were non-hematologic. The most common benign bone tumors were giant cell tumor (n = 37), osteochondroma (n = 25), and chondroma (n = 15). The most common malignant bone tumors were lymphoma-leukemia (n = 583), metastatic malignancy (n = 104), plasma cell myeloma (n = 71), and osteosarcoma (n = 58). Conclusion: The present study showed a higher frequency of osteosarcoma (68%), lower frequencies of chondrosarcoma (12%) and Ewing sarcoma (4%) among primary non-hematologic malignant bone tumors when compared with similar studies based on Western patients. Whether these differences reflect differences in the ethnic population or in practice patterns remains to be determined.
    [Show full text]
  • 507 High Dimensional Flow Cytometry Analysis in Newly Diagnosed Acute
    J Immunother Cancer: first published as 10.1136/jitc-2020-SITC2020.0507 on 9 November 2020. Downloaded from Abstracts LAG-3, and CSF1R at the PM interface were associated with made R code, we performed dimensionality reduction, cluster- worse progression-free survival (PFS), while gene sets associ- ing, and pseudotime analysis. ated with productive T cell immune response were associated Results The IR-score discriminated NR and CR (p = 3e-02, with improved PFS (figure 4). AUC 0.84) after treatment with CD57 and KLRG1 accounting Conclusions In contrast to primary bone osteosarcoma for most of this difference (p = 2e-02, AUC = 0.79). Next ‘immune deserts,’ osteosarcoma PMs represent an ‘immune- we investigated CD8+ T cell populations that best correlated excluded’ TME where immune cells are present but are halted with response to chemotherapy. FlowSOM revealed seven at the PM interface. TILs can produce effector cytokines, sug- major clusters: naive and naive-like, CD28+KLRG1+ acti- gesting their capability of activation and recognition of tumor vated-effector, CD28+KLRG1+PD1+ dysfunctional, PD1 antigens. Our findings suggest cooperative immunosuppressive +CD57+ senescent effector-memory and two clusters of ter- mechanisms in osteosarcoma PMs that prevent TILs from pen- minally differentiated CD45RA+KLRG1+ cells. Since the acti- etrating into the PM interior, including immune checkpoint vation and differentiation states accounted for most of the molecule expression and the presence of immunosuppressive subpopulation variability, we grouped the clusters into resting myeloid cells. We identify cellular and molecular signatures (naive, naive-like), activated (activated-effector, dysfunctional), that are associated with PFS of patients, which could be and terminally differentiated cells (senescent effector-memory, potentially manipulated for successful immunotherapy.
    [Show full text]
  • Particulated Juvenile Articular Cartilage Allograft Transplantation with Bone Marrow Aspirate Concentrate for Treatment of Talus Osteochondral Defects Mark C
    SPECIAL FOCUS Particulated Juvenile Articular Cartilage Allograft Transplantation With Bone Marrow Aspirate Concentrate for Treatment of Talus Osteochondral Defects Mark C. Drakos, MD and Conor I. Murphy, BA conservative treatment options frequently ineffective.7–9 Used Abstract: Osteochondral defects (OCDs) of the talus are potential techniques include bone marrow stimulation, osteochondral sequelae of traumatic ankle injury and chronic ankle instability. Con- autograft transfer, fresh osteochondral allograft transfer, and servative treatment may fail thus requiring surgical intervention. Pri- matrix-induced autologous chondrocyte implantation. mary surgical intervention has classically entailed bone marrow Primary surgical treatment has classically involved bone stimulation, which may include drilling, microfracture, and/or abrasion marrow stimulation techniques, including microfracture, drill- arthroplasty, filling in the defect with fibrocartilage. Clinical data has ing, and abrasion arthroplasty, which attempt to fill in the OCD revealed good short-term success but the long-term effects and follow- with fibrocartilage by promoting an inflammatory response and up have been questioned. Newer techniques, such as osteochondral formation of a fibrin clot within the defect. Although this autograft transfer, fresh osteochondral allograft transfer, and autolo- technique is low-cost, technically undemanding, and minimally gous chondrocyte implantation, have shown initial promise in restoring invasive, the resulting fibrocartilage scar may degenerate
    [Show full text]