Malignant Bone Tumors (Other Than Ewing’S): Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up by Spanish Group for Research on Sarcomas (GEIS)

Total Page:16

File Type:pdf, Size:1020Kb

Malignant Bone Tumors (Other Than Ewing’S): Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up by Spanish Group for Research on Sarcomas (GEIS) Cancer Chemother Pharmacol DOI 10.1007/s00280-017-3436-0 ORIGINAL ARTICLE Malignant bone tumors (other than Ewing’s): clinical practice guidelines for diagnosis, treatment and follow-up by Spanish Group for Research on Sarcomas (GEIS) Andrés Redondo1 · Silvia Bagué2 · Daniel Bernabeu1 · Eduardo Ortiz-Cruz1 · Claudia Valverde3 · Rosa Alvarez4 · Javier Martinez-Trufero5 · Jose A. Lopez-Martin6 · Raquel Correa7 · Josefina Cruz8 · Antonio Lopez-Pousa9 · Aurelio Santos10 · Xavier García del Muro11 · Javier Martin-Broto10 Received: 7 July 2017 / Accepted: 15 September 2017 © The Author(s) 2017. This article is an open access publication Abstract Primary malignant bone tumors are uncommon of a localized bone tumor, with various techniques available and heterogeneous malignancies. This document is a guide- depending on the histologic type, grade and location of the line developed by the Spanish Group for Research on Sar- tumor. Chemotherapy plays an important role in some che- coma with the participation of different specialists involved mosensitive subtypes (such as high-grade osteosarcoma). in the diagnosis and treatment of bone sarcomas. The aim is In other subtypes, historically considered chemoresistant to provide practical recommendations with the intention of (such as chordoma or giant cell tumor of bone), new targeted helping in the clinical decision-making process. The diag- therapies have emerged recently, with a very significant effi- nosis and treatment of bone tumors requires a multidiscipli- cacy in the case of denosumab. Radiation therapy is usually nary approach, involving as a minimum pathologists, radi- necessary in the treatment of chordoma and sometimes of ologists, surgeons, and radiation and medical oncologists. other bone tumors. Early referral to a specialist center could improve patients’ survival. The multidisciplinary management of osteosar- Keywords Bone tumors · Bone sarcomas · Clinical coma, chondrosarcoma, chordoma, giant cell tumor of bone guideline · Diagnosis · Treatment and other rare bone tumors is reviewed in this guideline. Ewing’s sarcoma will be the focus of a separate guideline because of its specific biological, clinical and therapeutic Introduction features. Each statement has been accompanied by the level of evidence and grade of recommendation on the basis of the Primary bone tumors are an uncommon and heterogeneous available data. Surgical excision is the mainstay of treatment group of malignancies. Osteosarcoma is the most frequent with 7 * Andrés Redondo Hospital Virgen de la Victoria, Campus de Teatinos s/nº, [email protected] 29010 Málaga, Spain 8 1 Hospital Universitario de Canarias, Carretera de Ofra s/n, Hospital La Paz, Paseo Castellama, 261, 28046 Madrid, 38320 San Cristóbal de la Laguna, Santa Cruz De Tenerife, Spain Spain 2 Hospital de la Santa Creu i Sant Pau, Carrer de Sant Quintí, 9 Hospital de la Santa Creu i Sant Pau, C/. Mas Casanovas, 90, 89, 08026 Barcelona, Spain 08041 Barcelona, Spain 3 Hospital Vall d’Hebrón, Passeig de la Vall d’Hebrón 10 Hospital Virgen del Rocío, Av Manuel Siurot s/n, 119-129, 08035 Barcelona, Spain 41013 Sevilla, Spain 4 Hospital Gregorio Marañón, C/ Dr Esquerdo 46, 11 Institut Catalá d’Oncologia Hospitalet, Avinguda de la 28007 Marid, Spain GranVia de l´Hospitalet 199-203, L´Hospitalet de Llobregat, 5 Hospital Miguel Servet, Paseo Isabel la Católica 1-3, Barcelona, Spain 50009 Zaragoza, Spain 6 Hospital 12 de Octubre, Ctra, Andalucía, km. 5.4, 28041 Madrid, Spain Vol.:(0123456789)1 3 Cancer Chemother Pharmacol an estimated incidence average of 0.2–0.3 cases per 100,000 such as Magnetic Resonance Imaging (MRI), plain film per year in Europe. It occurs mainly in adolescents and young continues to offer canonical elements in the diagnostic adults, but is also seen in older patients, usually related to prior process of bone tumors [3]. radiotherapy or Paget’s disease. Chondrosarcoma is the most MRI is the next imaging step which allows both, a nar- frequent bone sarcoma in adults, with an incidence average of rower differential diagnosis and local staging. The imaging 0.2 cases per 100,000 per year. It often has an aggressive local protocol should include sequences T1-Spin-Echo (SE) and behavior but rarely metastasizing, although in some cases more T2-Fast-SE (FSE) weighted images (WI) with chemical fat aggressive forms can also be seen. Chordoma is a very uncom- suppression (FS) in the axial plane and in sagittal or coro- mon primary tumor of bone with invasive local behavior and nal planes. Short-TI Inversion Recovery (STIR) sequences metastatic potential, mostly after multiple local recurrences. also allow good T2 contrast, and they are recommended Giant cell tumor of bone (GCTB) is a rare tumor, affecting when susceptibility artifacts are present, in at least one mainly young adults. Although often considered benign, in plane. some cases it can metastasize and/or suffer malignant trans- MRI is also the main tool for local staging of primary formation. Lastly, Ewing’s sarcoma is a tumor of children and bone tumors and some important rules should be borne in adolescents that because of its specific biological, clinical and mind when it is performed, before any treatment: (a) it must therapeutic features will be the focus of a different guideline. include, at some point in the process, the two joints either Due to the complexity and rarity of bone tumors, Spanish side of the tumor in the coronal plane; (b) careful attention Group for Research on Sarcoma (GEIS) decided to develop should be paid to any epiphyseal or articular invasion, espe- this clinical guideline with the aim of providing practical cially in young patients without physeal closure; (c) STIR recommendations to help in the clinical decision-making sequences should not be used to measure tumor extension, process and improve outcomes for bone sarcoma patients. since they can lead to overestimation in both intramedullary Diagnosis and treatment of bone tumors requires a mul- and soft tissue (IV, A); (d) it is desirable that any follow- tidisciplinary approach, involving as a minimum patholo- up with MRI uses the same protocol every time, as it will gists, radiologists, surgeons, and radiation and medical enable a better comparison between them (IV, B). oncologists. There is a great deal of evidence demonstrat- Use of gadolinium contrast enhancement, static (CE- ing that early recognition and referral to a specialist center MRI) or dynamic (DCE-MRI), in diagnosis and evalua- that provides a multidisciplinary diagnosis and therapeu- tion of bone tumor is controversial, but it has two potential tic approach, and manages a high number of cases annu- advantages: (a) it allows adequate planning of biopsy route ally, could improve outcomes in patients with bone tumors. avoiding necrotic, hemorrhagic or low-grade sarcoma areas, Therefore, centralized referral should ideally be done from and (b) it allows monitoring of the response to chemother- the moment a diagnosis of a bone sarcoma is suspected (III, apy (IV, B). CE-MRI study requires an axial or coronal pre- A) [1]. contrast T1-SE WI with fat suppression (FS) sequence and the same after contrast. New MR diffusion-weighted images Methods (MR-DWI) have become increasingly used in the evaluation, staging and follow-up of bone sarcomas [4]. These guidelines have been developed by a multidisciplinary Neither MR-DWI nor DCE-MRI have demonstrated any panel of specialists in the different fields involved in the benefit for diagnostic purposes but there is some evidence of diagnosis and treatment of bone tumors. A bibliographic promising use when applied to response evaluation of neo- search of published articles was performed in the PubMed adjuvant therapies (mainly DCE-MRI) and for tumor staging database. In a face-to-face consensus meeting, each section and follow-up, as well as for searching for local recurrences was presented by one expert to the entire group, for a discus- or metastases other than lungs (mainly MR-DWI) (IV, B). sion and consensus of the statements. The panel adopted the To make the most of these procedures, they should be per- American Society of Clinical Oncology (ASCO) levels of formed at the time of basal protocol. evidence/grades of recommendation [2]. Computed tomography (CT) of the primary bone tumor is not always necessary for diagnosis, but CT can help in some instances to evaluate bone matrix or calcifications, especially Diagnosis and staging when chondroid tumors are suspected, or in chordoma (IV, A). Additionally, CT can be of value for planning surgery in Imaging complex areas like pelvis or spine (V, A). The key imaging diagnostic elements to analyze at baseline are summarized The initial approach to any suspected bone lesion must in Table 1. be with radiographic plain films taken in two orthogonal The radiological appearance of primary bone tumors can planes. In spite of more sophisticated imaging technologies be summarized as follows: 1 3 Cancer Chemother Pharmacol • Osteosarcoma usually shows a characteristic destructive invasion in juxtacortical variants, because of its surgical lesion in the metaphyseal area of long bones, mainly implications. around the knee, proximal humerus or proximal femur. • Chondrosarcoma should be considered anytime there is Mixed sclerotic or blastic matrix, and aggressive peri- a lytic, destructive lesion with amorphous, snowflake osteal reaction (‘hair-on-end’ or ‘Codman’s triangle’) are calcification, and mild or absent periosteal reaction in common features in 75% of cases of conventional cen- a patient over the age of 40. MRI helps to identify car- tral osteosarcoma. Other histological subtypes can show tilage tissue with its typical lobular or ‘grape’ pattern quite different patterns, such as: (1) pure lytic lesions in on T2-SEFSWI and rim enhancement in CE-MRI. Dif- telangiectatic osteosarcoma (frequently associated with ferential diagnosis between enchondroma and low-grade fluid–fluid levels on MRI) or in fibroblastic subtypes5 [ ]; chondrosarcoma needs a careful evaluation of clinical (2) a solid bone mass growing from the superficial cortex and radiological signs, but it is always challenging [6].
Recommended publications
  • Advances in Immune Checkpoint Inhibitors for Bone Sarcoma Therapy
    UCLA UCLA Previously Published Works Title Advances in immune checkpoint inhibitors for bone sarcoma therapy. Permalink https://escholarship.org/uc/item/3k40w8f4 Authors Thanindratarn, Pichaya Dean, Dylan C Nelson, Scott D et al. Publication Date 2019-04-01 DOI 10.1016/j.jbo.2019.100221 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Journal of Bone Oncology 15 (2019) 100221 Contents lists available at ScienceDirect Journal of Bone Oncology journal homepage: www.elsevier.com/locate/jbo Review Article Advances in immune checkpoint inhibitors for bone sarcoma therapy T Pichaya Thanindratarna,b, Dylan C. Deana, Scott D. Nelsonc, Francis J. Horniceka, ⁎ Zhenfeng Duana, a Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, 615 Charles E. Young. Dr. South, Los Angeles, CA 90095, USA b Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand c Department of Pathology, University of California, Los Angeles, CA, USA ARTICLE INFO ABSTRACT Keywords: Bone sarcomas are a collection of sporadic malignancies of mesenchymal origin. The most common subtypes Immune checkpoint include osteosarcoma, Ewing sarcoma, chondrosarcoma, and chordoma. Despite the use of aggressive treatment Immunotherapy protocols consisting of extensive surgical resection, chemotherapy, and radiotherapy, outcomes have not sig- Bone sarcoma nificantly improved over the past few decades for osteosarcoma or Ewing sarcoma patients. In addition, chon- Anti-PD-1/PD-L1 drosarcoma and chordoma are resistant to both chemotherapy and radiation therapy. There is, therefore, an Anti-CTLA-4 urgent need to elucidate which novel new therapies may affect bone sarcomas.
    [Show full text]
  • Advances in Immune Checkpoint Inhibitors for Bone Sarcoma Therapy T Pichaya Thanindratarna,B, Dylan C
    Journal of Bone Oncology 15 (2019) 100221 Contents lists available at ScienceDirect Journal of Bone Oncology journal homepage: www.elsevier.com/locate/jbo Review Article Advances in immune checkpoint inhibitors for bone sarcoma therapy T Pichaya Thanindratarna,b, Dylan C. Deana, Scott D. Nelsonc, Francis J. Horniceka, ⁎ Zhenfeng Duana, a Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, 615 Charles E. Young. Dr. South, Los Angeles, CA 90095, USA b Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand c Department of Pathology, University of California, Los Angeles, CA, USA ARTICLE INFO ABSTRACT Keywords: Bone sarcomas are a collection of sporadic malignancies of mesenchymal origin. The most common subtypes Immune checkpoint include osteosarcoma, Ewing sarcoma, chondrosarcoma, and chordoma. Despite the use of aggressive treatment Immunotherapy protocols consisting of extensive surgical resection, chemotherapy, and radiotherapy, outcomes have not sig- Bone sarcoma nificantly improved over the past few decades for osteosarcoma or Ewing sarcoma patients. In addition, chon- Anti-PD-1/PD-L1 drosarcoma and chordoma are resistant to both chemotherapy and radiation therapy. There is, therefore, an Anti-CTLA-4 urgent need to elucidate which novel new therapies may affect bone sarcomas. Emerging checkpoint inhibitors have generated considerable attention for their clinical success in a variety of human cancers, which has led to works assessing their potential in bone sarcoma management. Here, we review the recent advances of anti-PD-1/ PD-L1 and anti-CTLA-4 blockade as well as other promising new immune checkpoint targets for their use in bone sarcoma therapy.
    [Show full text]
  • Neurological Manifestation of Sacral Tumors
    Neurosurg Focus 15 (2):Article 1, 2003, Click here to return to Table of Contents Neurological manifestation of sacral tumors MICHAEL PAYER, M.D. Department of Neurosurgery, University Hopital of Geneva, Switzerland An extensive analysis of the existing literature concerning sacral tumors was conducted to characterize their clin- ical manifestations. Although certain specific manifestations can be attributed to some of the tumor types, a more general pattern of clinical presentation of an expansive sacral lesion can be elaborated. Local pain with or without pseudoradicular or radicular radiation is the most frequent initial symptom and is usually followed by the manifesta- tion of a lumbosacral sensorimotor deficit; bladder/bowel and/or sexual dysfunction appear throughout the natural course of disease. KEY WORDS • sacrum • tumor • lesion • neurological presentation All sacral and presacral tumors are rare.32,93 In one se- REVIEW OF SACRAL ANATOMY ries patients with these tumors were estimated to account for approximately one in 40,000 hospital admissions.93 Osseous Structures of the Sacrum Tumors arising from the bone of the sacrum are by far the The sacrum is a complex bone, comprising five sacral most frequent sacral tumors; chordomas are the most com- vertebrae that have fused. In its center lies the longitudi- mon and GCTs the second most common.20,46,50,61,74,81,98 nal sacral canal, which opens caudally posteriorly into the Although sacrococcygeal teratoma is the most common sacral hiatus, an incomplete posterior closure of the S-5 sacral tumor in neonates, it is very rare in adults.30,45,66 lamina. The thick anterior or pelvic face of the sacrum is The author conducted an extensive analysis of the exist- concave and contains four right- and left-sided anterior ing literature concerning tumors of the sacrum to charac- sacral foramina.
    [Show full text]
  • Sclerostin Inhibition Alleviates Breast Cancer–Induced Bone Metastases and Muscle Weakness
    Sclerostin inhibition alleviates breast cancer–induced bone metastases and muscle weakness Eric Hesse, … , Hiroaki Saito, Hanna Taipaleenmäki JCI Insight. 2019. https://doi.org/10.1172/jci.insight.125543. Research In-Press Preview Bone biology Oncology Breast cancer bone metastases often cause a debilitating non-curable condition with osteolytic lesions, muscle weakness and a high mortality. Current treatment comprises chemotherapy, irradiation, surgery and anti-resorptive drugs that restrict but do not revert bone destruction. In metastatic breast cancer cells, we determined the expression of sclerostin, a soluble Wnt inhibitor that represses osteoblast differentiation and bone formation. In mice with breast cancer bone metastases, pharmacological inhibition of sclerostin using an anti-sclerostin antibody (Scl-Ab) reduced metastases without tumor cell dissemination to other distant sites. Sclerostin inhibition prevented the cancer-induced bone destruction by augmenting osteoblast-mediated bone formation and reducing osteoclast-dependent bone resorption. During advanced disease, NF-κB and p38 signaling was increased in muscles in a TGF-β1-dependent manner, causing muscle fiber atrophy, muscle weakness and tissue regeneration with an increase in Pax7-positive satellite cells. Scl-Ab treatment restored NF-κB and p38 signaling, the abundance of Pax7-positive cells and ultimately muscle function. These effects improved the overall health condition and expanded the life span of cancer-bearing mice. Together, these results demonstrate that pharmacological
    [Show full text]
  • Primary Bone Cancer a Guide for People Affected by Cancer
    Cancer information fact sheet Understanding Primary Bone Cancer A guide for people affected by cancer This fact sheet has been prepared What is bone cancer? to help you understand more about Bone cancer can develop as either a primary or primary bone cancer, also known as secondary cancer. The two types are different and bone sarcoma. In this fact sheet we this fact sheet is only about primary bone cancer. use the term bone cancer, and include general information about how bone • Primary bone cancer – means that the cancer cancer is diagnosed and treated. starts in a bone. It may develop on the surface, in the outer layer or from the centre of the bone. As a tumour grows, cancer cells multiply and destroy The bones the bone. If left untreated, primary bone cancer A typical healthy person has over 200 bones, which: can spread to other parts of the body. • support and protect internal organs • are attached to muscles to allow movement • Secondary (metastatic) bone cancer – means • contain bone marrow, which produces that the cancer started in another part of the body and stores new blood cells (e.g. breast or lung) and has spread to the bones. • store proteins, minerals and nutrients, such See our fact sheet on secondary bone cancer. as calcium. Bones are made up of different parts, including How common is bone cancer? a hard outer layer (known as cortical or compact Bone cancer is rare. About 250 Australians are bone) and a spongy inner core (known as trabecular diagnosed with primary bone cancer each year.1 or cancellous bone).
    [Show full text]
  • What Is Bone Cancer?
    cancer.org | 1.800.227.2345 About Bone Cancer Overview and Types If you have been diagnosed with bone cancer or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is Bone Cancer? Research and Statistics See the latest estimates for new cases of bone cancer and deaths in the US and what research is currently being done. ● Key Statistics About Bone Cancer ● What’s New in Bone Cancer Research? What Is Bone Cancer? The information here focuses on primary bone cancers (cancers that start in bones) that most often are seen in adults. Information on Osteosarcoma1, Ewing Tumors (Ewing sarcomas)2, and Bone Metastases3 is covered separately. Cancer starts when cells begin to grow out of control. Cells in nearly any part of the body can become cancer, and can then spread (metastasize) to other parts of the body. To learn more about cancer and how it starts and spreads, see What Is Cancer?4 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 Bone cancer is an uncommon type of cancer that begins when cells in the bone start to grow out of control. To understand bone cancer, it helps to know a little about normal bone tissue. Bone is the supporting framework for your body. The hard, outer layer of bones is made of compact (cortical) bone, which covers the lighter spongy (trabecular) bone inside. The outside of the bone is covered with fibrous tissue called periosteum. Some bones have a space inside called the medullary cavity, which contains the soft, spongy tissue called bone marrow(discussed below).
    [Show full text]
  • Immunological Status of Peripheral Blood Is Associated with Prognosis in Patients with Bone and Soft-Tissue Sarcoma
    ONCOLOGY LETTERS 21: 212, 2021 Immunological status of peripheral blood is associated with prognosis in patients with bone and soft-tissue sarcoma YOUNGJI KIM1‑3, EISUKE KOBAYASHI1, YOSHIYUKI SUEHARA2, AYUMU ITO4, DAISUKE KUBOTA1,2, YOSHIKAZU TANZAWA1, MAKOTO ENDO1, FUMIHIKO NAKATANI1, TETSUYA NAKATSURA3, AKIRA KAWAI1, KAZUO KANEKO2 and SHIGEHISA KITANO3,5,6 1Division of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104‑0045; 2Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo 113‑8431; 3Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital, Tokyo 104‑0045; Departments of 4Hematopoietic Stem Cell Transplantation, and 5Experimental Therapeutics, National Cancer Center Hospital, Tokyo 104‑0045; 6Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135‑8550, Japan Received June 27, 2020; Accepted October 23, 2020 DOI: 10.3892/ol.2021.12473 Abstract. Immune‑checkpoint inhibitors have shown Multivariate Cox regression analysis demonstrated that the promising antitumor effects against certain types of cancer. number of Tim‑3+ CD8+ T cells was associated with lower However, specific immune‑checkpoint inhibitors for patients DFS time. A significant association was also found between with sarcoma have yet to be identified, whereas the immu‑ the number of M‑MDSCs and progression‑free survival (PFS) nological status of peripheral blood in patients with bone time in patients with metastasis. The results suggested the sarcoma and soft‑tissue sarcoma (STS) remains unknown. occurrence of immune surveillance, which indicated that the In addition, it is unclear whether the immunological status host immune reaction against cancer existed in patients with from the peripheral blood could be used as a prognostic bone sarcoma and STS.
    [Show full text]
  • A Case of Thoracic Vertebral Chondroblastoma, Treated with 3-D Image Guided Resection and Reconstruction
    KISEP J Korean Neurosurg Soc 37 : 154-156, 2005 Case Report A Case of Thoracic Vertebral Chondroblastoma, Treated with 3-D Image Guided Resection and Reconstruction Yoon Ho Lee, M.D., Dong Ah Shin, M.D., Keung Nyun Kim, M.D., Do Heum Yoon, M.D. Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea We present a case of chondroblastoma in the thoracic vertebra. A 40-year-old patient with upper back pain and lower extremity weakness was admitted to our clinic. On neurological examination, the patient exhibited lower extremity spastic paraparesis. Magnetic resonance imaging revealed a mass infiltrating the 7th thoracic vertebra and its adjacent structures with concomitant compression of the epidural space. After right upper lung tuberculoma was resected through the transthoracic approach, T7 total corpectomy was done with anterior stabilization using a MESH cage and T7 rib bone graft. Two weeks after the first operation, remained part of vertebra was removed and posterior stabilization was performed using a pedicle screw fixation and cross linkage bar with the assistance of the navigation system. The final pathologic diagnosis of the vertebral lesion was benign chondroblastoma. KEY WORDS : Chondroblastoma·Thoracic vertebra·Spine tumor. Introduction hondrobalsoma is a benign C bone tumor arising most often in the epiphysis of long bones. The vertebra is a rare pri- mary site of origin for chondro- blastomas. We report a 40-years old woman with chondroblastoma A B C of the 7th thoracic vertebral body and the adjacent structures. In Fig. 1. Preoperative T1-weighted enhanced axial(A) and sagittal(B) magnetic resonance images and computed tomography(C) scan demonstrating tumor involvement of the T7 vertebra with spinal addition, the use of an intraop- cord compression.
    [Show full text]
  • Conventional Chondrosarcoma James C
    Conventional Chondrosarcoma James C. Wittig, MD SSSarcoma Surgeon Orthopedic Oncologist General Information Ma lignant mesenc hyma l tumor o f cart ilag inous different iat ion. Conventional Chondrosarcoma is the most common type of chondrosarcoma (malignant cartilage tumor) Neoplastic cells form hyaline type cartilage or chondroid type tissue (Chondroid Matrix) but not osteoid If lesion arises de novo, it is a primary chondrosarcoma If superimposed on a preexisting benign neoplasm, it is considered a secondary chondrosarcoma Central chondrosarcomas arise from an intramedullary location. They may grow, destroy the cortex and form a soft tissue component. Peripheral chondrosarcomas extend outward from the cortex of the bone and can invade the medullary cavity. Peripheral chondrosarcomas most commonly arise from preexisting osteochondromas. Juxtacortical chondrosarcomas arise from the inner layer of the periosteum on the surface of the bone. It is technically considered a peripheral chondrosarcoma. Chondrosarcoma Heterogeneous group of tumors with varying biological behavior depending on grade, size and location Cartilage tumors can have similar histology and behave differently depending on location. For instance a histologically benign appearing cartilage tumor in the pelvis will behave aggressively as a low grade chondrosarcoma. Likewise, a histologically more aggressive hypercellular cartilag e tumor localized in a p halanx of a dig it may behave in an indolent, non aggressive or benign manner. There are low (grade I), intermediate (grade II) and high grade (grade III) types of conventional chondrosarcoma. Low grade lesions are slow growing and rarely metastasize . Low grade chondrosarcomas can be difficult to differentiate from benign tumors histologically. Clinical features and radiographic studies are important to help differentiate.
    [Show full text]
  • A Rare Case of Brain Metastasis
    Open Access Journal of Neurology & Neurosurgery . key to the Researchers Case Report Open Access J Neurol Neurosurg Volume 1 Issue 2 - September 2016 Copyright © All rights are reserved by Katarina Matic A Rare Case of Brain Metastasis Amit Kumar Ghosh*, Rafit Deb Barma, TN Sharma and Malay Chakrabarty Calcutta University, India Submission: September 19, 2016; Published: September 28, 2016 *Corresponding author: Calcutta University, India, Tel: ; Email: Abstract Intracerebral metastasis from chondrosarcoma is rare. This is a case report of 46 year old man with intracerebral metastasis from rib chondrosarcoma who was operated and literature was reviewed. Keywords: Chondrosarcoma; Intracerebral metastasis Introduction A 46 years old man presented with generalised tonic clonic seizure followed by drowsiness and admitted in the hospital. History revealed that he had developed right sided weakness over the last 2 weeks but ignored. He underwent left 7-9th rib resection for chondrosarcoma of 8th rib 13 years ago. No other detailed data regarding the type and grade of the lesion was available. Chest X-ray was done (Figure 1). Figure 3: Showing resected tumor with evidence of intratumoral bleed. Figure 1: Showing left 7-9th rib resected status. Figure 4: Post-operative CT scan of brain showing complete excision of tumor with decompresive craniectomised status. Figure 2: Non-contrast CT scan showing left sided hyperdense lesion with edema involving posterior frontal and parietal region. Figure 5A: Histopathology showing malignant cartilage. Open Access J Neurol Neurosurg 1(2): OAJNN.MS.ID.55560 (2016) 001 Open Access Journal of Neurology & Neurosurgery differentiated chondrosarcoma (Figure 5A, 5B, 5C, 5D, 5E).
    [Show full text]
  • Bone & Soft Tissue
    14A ANNUAL MEETING ABSTRACTS and testicular atrophy with aspermatogenia (negative OCT3/OCT4 stain). There was 47 Comparison of Autopsy Findings of 2009 Pandemic Influenza evidence of acute multifocal bronchopneumonia and congestive heart failure. He carried A (H1N1) with Seasonal Influenza in Four Pediatric Patients two heterozygous mutations in ALMS1: 11316_11319delAGAG; R3772fs in exon 16 B Xu, JJ Woytash, D Vertes. State University of New York at Buffalo, Buffalo, NY; Erie and 8164C>T ter; R2722X in exon 10. County Medical Examiner’s Office, Buffalo, NY. Conclusions: This report describes previously undefined cardiac abnormalities in this Background: The swine-origin influenza A (H1N1) virus that emerged in humans rare multisystem disorder. Myofibrillar disarray is probably directly linked to ALMS1 in early 2009 has reached pandemic proportions and cause over 120 pediatric deaths mutation, while fibrosis in multiple organs may be a secondary phenomenon to gene nationwide. Studies in animal models have shown that the 2009 H1N1 influenza virus alteration. Whether and how intracellular trafficking or related signals lead to cardiac is more pathogenic than seasonal A virus, with more extensive virus replication and dysfunction is a subject for further research. shedding occurring the respiratory tract. Design: We report four cases of influenza A-associated deaths (two pandemic and two 45 Sudden Cardiac Death in Young Adults: An Audit of Coronial seasonal) in persons less than fifteen years of age who had no underlying health issues. Autopsy Findings Autopsy finding on isolation of virus from various tissue specimen, cocurrent bacterial A Treacy, A Roy, R Margey, JC O’Keane, J Galvin, A Fabre.
    [Show full text]
  • Spectrum of Bone Tumors in Chiang Mai University Hospital, Thailand According to WHO Classification 2002: a Study of 1,001 Cases
    Spectrum of Bone Tumors in Chiang Mai University Hospital, Thailand According to WHO Classification 2002: A Study of 1,001 Cases Jongkolnee Settakorn MD*, Suree Lekawanvijit MD*, Olarn Arpornchayanon MD**, Samreung Rangdaeng MD*, Pramote Vanitanakom MD*, Sarawut Kongkarnka MD*, Ruangrong Cheepsattayakorn MD*, Charin Ya-In MD*, Paul S Thorner MD*** * Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai ** Department of Orthopedic Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai *** Department of Laboratory Medicine, Hospital for Sick Children and University of Toronto, Toronto, Canada Objective: The aim of the present study was to determine the spectrum, frequency and demographics of bone tumors. Material and Method: A retrospective study of the 1,001 bone tumor specimens from the files at the Pathology Department of the Chiang Mai University Hospital, Thailand from 2000 to 2004. Results: From the study, 41 were non-neoplastic mass lesions, and 960 were neoplastic, with 856 (89%) as primary and 104 (11%) as metastatic tumors. In the primary tumor group, 654 (76%) cases were of hemato- logic origin, and 202 (24%) were non-hematologic. The most common benign bone tumors were giant cell tumor (n = 37), osteochondroma (n = 25), and chondroma (n = 15). The most common malignant bone tumors were lymphoma-leukemia (n = 583), metastatic malignancy (n = 104), plasma cell myeloma (n = 71), and osteosarcoma (n = 58). Conclusion: The present study showed a higher frequency of osteosarcoma (68%), lower frequencies of chondrosarcoma (12%) and Ewing sarcoma (4%) among primary non-hematologic malignant bone tumors when compared with similar studies based on Western patients. Whether these differences reflect differences in the ethnic population or in practice patterns remains to be determined.
    [Show full text]