POLITECNICO DI MILANO Facolt`A Di Ingegneria Industriale Laurea Magistrale in Ingegneria Spaziale Wireless Technology for Space

Total Page:16

File Type:pdf, Size:1020Kb

POLITECNICO DI MILANO Facolt`A Di Ingegneria Industriale Laurea Magistrale in Ingegneria Spaziale Wireless Technology for Space POLITECNICO DI MILANO Facolt`adi Ingegneria Industriale Laurea Magistrale in Ingegneria Spaziale Wireless technology for space applications: effects of Antenna Diversity radio transceiver selection Relatore: Prof. Mich`eleLAVAGNA Co-relatore: Ing. Jean-Fran¸coisDUFOUR Tesi di Laurea di: Vincenzo TAUMATURGO Matr. 735141 Anno Accademico 2010-2011 Sed omnia praeclara tam difficilia, quam rara sunt (Baruch Spinoza) Abstract The impact of the harness on a spacecraft mass budget can be around 5% of the total dry mass, moreover it leads to a further complexity in the design phase to think about an appropriate path for electric cables and data wired and to longer time spent for Assembly, Integration and Testing (AIT) activi- ties. An alternative is offered by wireless technologies, developed for commer- cial usage in the latest 1990s and introduced in the space application technol- ogy development since few years only. Moreover always more Commercial- Off-The-Shelf components satisfy the aerospace applications strict require- ments and they have been successfully used both in testing activities than in critical in-flight operations, however not a big amount of data is actually available about the behavior of these components under when exposed to radiation, even if this is one of the main requirements of a space applica- tion. In this thesis I evaluated the performances of a wireless IEEE 802.15.4 compliant radiotransceiver, designing a test sequence which aims to evalu- ate the possibility to use this component in an AIT activity, for instance as the communication block of a temperature sensor network. I tested the radiotransceiver in several scenarios representative for a space oriented ap- plication, like the Venus-Express mock-up. In particular the benefit of the Antenna Diversity mechanism is evaluated to assess its benefit on the link budget in multipath affected scenarios, as like as a metallic closed structure divided in cavities. Then I performed a Total Ionizing Dose test, evalu- ating the behavior of the device in terms of electrical and communication parameters. Then a practical example of a space oriented application of the tested device is provided, through the implementation of a wireless smart temperature sensor. Keywords: wireless, Antenna Diversity, Commercial-off-the-shelf, smart sensor, IEEE 802.15.4. Sommario L'impatto dei cablaggi sul mass budget di un veicolo spaziale rappresen- ta circa il 5% della massa totale (carburante escluso). Inoltre porta a non poche complessit`asia in fase di progetto, nel prevedere opportuni percorsi per i cavi che rispettino i requisiti di compatibilit`aelettromagnetica, sia in fase di assemblaggio, integrazione e test, a causa dei chilometri di cavi im- piegati per sensori e apparati, da posare e verificare ad ogni utilizzo. Una valida alternativa `erappresentata dalla tecnologia wireless, nata nel mondo commerciale nella seconda met`adegli anni '90 e da qualche anno utilizzata per lo sviluppo di tecnologie in campo aerospaziale. Inoltre i severi requisi- ti delle applicazioni spaziali vengono spesso soddisfatti oggigiorno da com- ponenti commerciali, utilizzati sia per attivit`adi test non critiche, sia per applicazioni in volo. In questa tesi ho valutato le prestazioni di un radio- trasmettitore che segue lo standard IEEE 802.15.4, progettando una serie di test per valutare la possibilit`adi impiegare questo componente nell'ambito di un’attivit`adi integrazione e test, ad esempio come il terminale di un rete di sensori di temperatura. Ho testato il radiotrasmettitore in situazioni rappre- sentative di una applicazione orientata all'utilizzo in ambito aerospaziale, ad esempio all'interno della struttura principale del satellite Venus-Express. In particolare ho valutato il guadagno sul link budget garantito dal meccanis- mo di Antenna Diversity, per contrastare l’effetto del cosiddetto multipath fading, fortemente presente in ambienti caratterizzati da numerose rifles- sioni, come la struttura metallica del satellite, suddivisa in cavit`a. Inoltre ho effettuato un test di esposizione a radiazioni, valutando il comportamento del componente durante e dopo l'esposizione, in termini di quantit`aelet- triche e di parametri di comunicazione. Infine presento un esempio pratico di applicazione spaziale per questo componente: un sensore intelligente di temperatura, wireless e alimentato da una piccola batteria. Parole chiave: wireless, Antenna Diversity, componente commerciale, sen- sore intelligente, IEEE 802.15.4. Acknowledgements I would like to express my gratitude to those people which made me able to write this thesis with their moral support and their valuable contribution, also giving me the possibility to complete my studies doing a very instructive experience at the European Space Research and Technology Centre. I'm grateful to Professor Mich`eleand to my external supervisor, Jean-Fran¸cois Dufour, for their patience and availability, then I thank Giorgio Magistrati, Head of On-Board Computers & Data Handling section and all the TEC- EDD section members because they enabled me to work in the best possible conditions. Thanks to Maria, Farid, Gianluca, Max and Marco for the time they always found for me and I have to thank also Alberto, Javier, Michele, Alfonso and all the people who have been more than work mates for me. Then I can't forget who supported and encouraged me throughout my life and especially during these last five years: my Mother and my Sister, who stood by me even though I was annoying and obnoxious because I was under stress and my girlfriend who treated my kindly even if I had my head in the clouds. In the end I would like to thank my \brothers in arms" Fulvio, Davide, Marzio, Gi`o,Edo, Alex, Ste, Debby and Stefania who shared with me a lot of troubles and who helped me to ride over and to appreciate finally all the challenges handled with excitement and strength of will at the University. I II Contents Acknowledgements I List of Figures VII List of Tables XI 1 Introduction 1 2 Basic networks and communication theory 11 2.1 RF Propagation . 11 2.1.1 Multipath fading . 12 2.1.2 Multi-mode cavity theory . 14 2.1.3 Antenna diversity . 16 2.2 Node Topologies . 17 2.3 Network Topologies . 18 2.4 Communication System Models . 19 2.4.1 OSI Model . 20 2.5 IEEE 802.15.4 . 22 2.5.1 Supported devices . 24 2.5.2 Supported networks . 24 2.5.3 Layers Features . 24 3 GP500C device 33 3.1 Power consumption . 35 3.2 Event Scheduling . 36 3.3 Hardware integrated MAC layer . 37 3.4 Antenna Diversity . 38 3.5 Packet-in-Packet resynchronisation . 38 III 4 Test sequence 39 4.1 Test sequence tasks and purposes . 39 4.2 Functional Test . 41 4.2.1 Description . 41 4.2.2 Setup . 42 4.2.3 Test . 42 4.2.4 Software Development . 42 4.3 Physical parameters Test . 52 4.3.1 Description . 52 4.3.2 Setup . 53 4.3.3 Test . 53 4.4 Communication parameters test . 54 4.4.1 Description . 54 4.4.2 Setup . 57 4.4.3 Test . 58 4.5 V-Ex test . 59 4.5.1 Description . 59 4.5.2 Setup . 62 4.5.3 Test . 63 4.6 Radiation Test . 64 4.6.1 Description . 64 4.6.2 Setup . 66 4.6.3 Test . 67 5 Results 69 5.1 Functional Test . 69 5.2 Physical Parameters Test . 71 5.3 Communication parameters test . 72 5.4 V-Ex Mockup Test . 84 5.5 Radiation test . 102 6 Temperature sensor example design 111 6.1 Temperature sensor . 112 6.2 Amplification stage . 115 6.3 Micro-controller . 115 6.4 SPI interface . 116 6.5 Radio transceiver and Antenna . 117 6.6 Power supply . 117 7 Conclusions 121 Appendices 125 A Test environments 125 A.1 Avionics Laboratory . 125 A.2 Anechoic chamber . 126 A.3 Co-60 facility . 127 A.4 V-Ex mock-up . 129 Nomenclature 131 Bibliography 133 List of Figures 2.1 Network topologies . 19 2.2 OSI model . 20 2.3 PPDU and Data MPDU format . 27 2.4 MPDU general format . 29 3.1 GP500C vs traditional system block scheme . 34 3.2 GP500C SPI module device . 34 4.1 802.15.4 devices joining sequence . 43 4.2 802.15.4 devices data exchange sequence . 43 4.3 Front panel of a developed LabView software . 49 4.4 Block diagram of a developed LabView software . 51 4.5 SNR(LQI,RSSI) 3D curve . 55 4.6 SNR(LQI,RSSI) curves . 55 4.7 Gain and penalty definition . 61 4.8 Cavities and devices position inside them . 62 4.9 PER confidence level curves . 65 4.10 Radiation test setup . 66 5.1 Remote control answer packet . 69 5.2 Avionics Lab packet logging . 70 5.3 Radiation test, right received packet . 70 5.4 Radiation test, wrong received packet . 70 5.5 16 MHz crystal output . 71 5.6 RSSI vs distance, horizontal polarization . 72 5.7 LQI vs distance, horizontal polarization . 73 5.8 RSSI vs distance, vertical polarization, emitter antenna 0 . 73 5.9 LQI vs distance, vertical polarization, emitter antenna 0 . 73 5.10 RSSI vs distance, vertical polarization, emitter antenna 1 . 74 5.11 LQI vs distance, vertical polarization, emitter antenna 1 . 74 VII 5.12 RSSI vs distance, horizontal polarization . 75 5.13 LQI vs distance, horizontal polarization . 75 5.14 RSSI vs distance, vertical polarization, emitter antenna 0 . 76 5.15 LQI vs distance, vertical polarization, emitter antenna 0 . 76 5.16 RSSI vs distance, vertical polarization, emitter antenna 1 . 76 5.17 LQI vs distance, vertical polarization, emitter antenna 1 . 77 5.18 ED scan results for all the channels . 78 5.19 Effect of the noise on the exchanged packets RSSI .
Recommended publications
  • Multi-Antenna Non-Line-Of-Sight Identification Techniques for Target Localization in Mobile Ad-Hoc Networks
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2011 Multi-antenna non-line-of-sight identification techniques for target localization in mobile ad-hoc networks Wenjie Xu Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Electrical and Computer Engineering Commons Copyright 2011 Wenjie Xu Recommended Citation Xu, Wenjie, "Multi-antenna non-line-of-sight identification techniques for target localization in mobile ad- hoc networks", Dissertation, Michigan Technological University, 2011. https://doi.org/10.37099/mtu.dc.etds/58 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Electrical and Computer Engineering Commons MULTI-ANTENNA NON-LINE-OF-SIGHT IDENTIFICATION TECHNIQUES FOR TARGET LOCALIZATION IN MOBILE AD-HOC NETWORKS By Wenjie Xu A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Electrical Engineering) MICHIGAN TECHNOLOGICAL UNIVERSITY 2011 c 2011 Wenjie Xu This dissertation, "Multi-Antenna Non-Line-Of-Sight Identification Techniques for Target Localization in Mobile Ad-hoc Networks," is hereby approved in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN THE FIELD OF ELEC- TRICAL ENGINEERING. Department of Electrical and Computer Engineering Signatures: Dissertation Advisor Dr. Seyed A. (Reza) Zekavat Committee Member Dr. Daniel R. Fuhrmann Committee Member Dr. Zhi (Gerry) Tian Committee Member Dr. Vladimir D. Tonchev Department Chair Dr. Daniel R. Fuhrmann Date Contents List of Figures ..................................... vii List of Tables ...................................... xi Acknowledgments ...................................xiii Abstract ........................................ xv 1 Introduction ...................................
    [Show full text]
  • ABSTRACT 1 INTRODUCTION 1.1 Background 1.2 Data Link Requirements Overview
    HIGH-SPEED, LOW-POWER, EXCELLENT EMC: LVDS FOR ON-BOARD DATA HANDLING Dr SM Parkes Applied Computing, University of Dundee, Dundee, DD1 4HN, Scotland, UK Tel: 44 1382 345194, Fax: 44 1382 345509, Email: [email protected] ABSTRACT Since the endorsement of the IEEE 1355 by ESA and major companies involved in the space industry, the technology has The capabilities of remote-sensing instrumentation are been migrated successfully into radiation-tolerant, space- developing rapidly. As a consequence the data rates being qualifiable components. Daimler-Benz Aerospace and TEMIC handled on-board spacecraft are increasing. have developed a component (SMCS) which provides three LVDS (Low Voltage Differential Signaling) provides a means IEEE 1355 compatible links and a processor interface (Ref. 4). of sending data along a twisted pair cable at high speed, with Demonstration systems have been and are being developed for low power and with excellent EMC performance. These both multi-DSP processing systems (Ref. 5) and for large features make LVDS ideal for satellite on-board data-handling capacity, solid-state data storage systems (Ref. 6). High level applications. protocols have been developed to support interprocessor communication (Ref. 7). Software support for the SMCS link This paper assesses the suitability of LVDS for space devices has been provided within the Eonic Virtuoso real-time applications as part of a data-handling system based on IEEE operating system for both the TSC21020 DSP processor and 1355 comparing it against other types of line driver/receiver. the ERC32 SPARC 32-bit processor (Ref. 8). It explains how LVDS can be used together with IEEE 1355 to form the basis for a powerful on-board data handling system, The Digital Interface Circuit Evaluation (DICE) study was which is capable of handling data from current and future, initiated by ESTEC to take stock of these developments, to high data-rate instruments.
    [Show full text]
  • Ber Performance of Golden Coded Mimo-Ofdm System Over Rayleigh and Rician Fading Channels
    BER PERFORMANCE OF GOLDEN CODED MIMO-OFDM SYSTEM OVER RAYLEIGH AND RICIAN FADING CHANNELS A Vamsi Krishna G Dhruva Department of ECE, LNMIIT Department of ECE, LNMIIT Jaipur-303012, India Jaipur-303012, India [email protected] [email protected] V Sai Krishna V Sinha Department of ECE, LNMIIT Fellow IEEE, Department of ECE, LNMIIT Jaipur-303012, India Jaipur-303012, India [email protected] [email protected] Abstract— In this paper, we analyze the Bit Error Rate (BER) Interference (ICI) and ensures efficient utilization of performance of Golden coded Multiple-Input Multiple-Output bandwidth. The MIMO-OFDM has a great potential to meet Orthogonal Frequency Division Multiplexing (MIMO-OFDM) up the stringent requirement for boosting up the transmit system over Rician multipath fading channel. We also compare diversity and mitigation of the detrimental effects due to the performance of the MIMO-OFDM system using Golden code frequency selective fading [5]. in Rayleigh and Rician multipath fading channels. We discuss the effects of the presence of line-of-sight (LoS) component in the Designing Space-Time Block Codes (STBC) for frequency multipath fading environment which renders the improvement in selective MIMO channels is well motivated by broadband the overall performance of the Golden coded MIMO-OFDM. applications, where multi-antenna systems have to deliver This paper discusses the performance of Golden codes in a multimedia information content at high data rates[6]. frequency selective Rician fading channel. To deal with the Furthermore, STBC are used to improve MIMO performances frequency selective fading channel, we use the OFDM by providing a temporal and spatial multiplexing modulation (Orthogonal Frequency Division Multiplexing) modulation.
    [Show full text]
  • Modelado Y Validación De Un Sistema Digital De Comunicaciones De Gran Ancho De Banda De Aplicación En Vehículos De Transporte
    UNIVERSIDAD PONTIFICIA COMILLAS DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) (Instituto de Investigación Tecnológica) Modelado y validación de un sistema digital de comunicaciones de gran ancho de banda de aplicación en vehículos de transporte Tesis para la obtención del grado de Doctor Director: Prof. Dr. D. Sadot Alexandres Fernández Autor: Ing. D. Carlos Rodríguez-Morcillo García Madrid 2007 CONSTANCIA REGISTRAL DEL TRIBUNAL DEL ACTO DE LA DEFENSA DE TESIS DOCTORAL TÍTULO: Modelado y validación de un sistema digital de comunicaciones de gran ancho de banda de aplicación en vehículos de transporte AUTOR: D. Carlos Rodríguez-Morcillo García DIRECTOR: Dr. D. Sadot Alexandres Fernández TUTOR-PONENTE: -- DEPARTAMENTO: Instituto de Investigación Tecnológica FACULTAD O ESCUELA: Escuela Técnica Superior de Ingeniería (ICAI) Miembros del Tribunal Calificador: PRESIDENTE: Dr. D. Manuel Mazo Quintas Firma: ................................ VOCAL: Dr. D. José Luís Martín González Firma: ................................ VOCAL: Dr. D. César Sanz Álvaro Firma: ................................ VOCAL: Dr. D. Rafael Palacios Hielscher Firma: ................................ SECRETARIO: Dr. D. José Daniel Muñoz Frías Firma: ................................ Fecha de lectura: 19 de septiembre de 2007 Calificación: ……………………………………………………. A María, a mis padres y a mi hermano. A la memoria de Quique. Resumen En esta Tesis se propone un sistema digital de comunicaciones que per- mite transmitir una gran cantidad de información entre los equipos embar- cados en un vehículo de transporte, aumentando así la capacidad de trans- misión de los sistemas instalados actualmente. Además, el sistema propues- to es capaz de funcionar compartiendo el mismo medio físico que los siste- mas actuales, para minimizar el coste económico y de recursos que supone la instalación de un nuevo sistema en un vehículo ya fabricado.
    [Show full text]
  • Spacewire Handbook
    SpaceWire Handbook DRAFT - SVN version 45 - September 24, 2012 4Links Limited Suite E U 2 BletchleyPark Milton Keynes, MK3 6EB United Kingdom Copyright © 2012 4Links Limited. SpaceWire Handbook DRAFT - SVN version 45 - September 24, 2012 Foreword This Draft Handbook is 4Links Limited’sinitial contribution to the forthcoming ECSS SpaceWire Handbook. Change Log Date Version 2012/06/29 First draft issue 2012/09/24 Second draft issue Copyright © 2012 4Links Limited. 2 SpaceWire Handbook DRAFT - SVN version 45 - September 24, 2012 Table of Contents Title Page ......................... 1 Foreword . ........................ 2 Change Log ........................ 2 1. Introduction ....................... 6 1.1. Purpose ....................... 6 1.2. Scope ........................ 6 1.3. Acknowledgements . ................... 6 1.4. Document structure . ................... 7 2. Terms, definitions and abbreviations ............... 8 2.1. Terms and definitions from other documents ............ 8 2.2. Terms specific to the present handbook ............. 8 2.2.1. SpaceWire End-Point .................. 8 2.2.2. SpaceWire Node ................... 8 2.2.3. SpaceWire Unit ................... 8 2.3. Abbreviated terms .................... 8 3. References ........................ 9 4. Introduction to SpaceWire .................. 10 4.1. Background and History .................. 10 4.1.1. 1960 -AModular Computer ............... 10 4.1.2. 1980 -System on Chip, Serial Interfaces . ........... 11 4.1.3. Transputer serial links in space ............... 11 4.1.4. Modularity ..................... 12 4.1.5. 1990+ Transputer links to IEEE-1355 ............ 12 4.1.6. IEEE-1355 and early SpaceWire in Space ........... 13 4.2. The current SpaceWire Standard ................ 13 4.2.1. Data-Strobe encoding . ................. 14 4.2.2. Low-levelflow-control . ................ 15 4.2.3. Packets . ..................... 15 4.2.4. Packet Routing .................... 15 4.2.5.
    [Show full text]
  • Performance Comparison of Rayleigh and Rician Fading Channels in QAM Modulation Scheme Using Simulink Environment
    International Journal of Computational Engineering Research||Vol, 03||Issue, 5|| Performance Comparison of Rayleigh and Rician Fading Channels In QAM Modulation Scheme Using Simulink Environment P.Sunil Kumar1, Dr.M.G.Sumithra2 and Ms.M.Sarumathi3 1P.G.Scholar, Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, India 2Professor, Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, India 3Assistant Professor, Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, India ABSTRACT: Fading refers to the fluctuations in signal strength when received at the receiver and it is classified into two types as fast fading and slow fading. The multipath propagation of the transmitted signal, which causes fast fading, is because of the three propagation mechanisms described as reflection, diffraction and scattering. The multiple signal paths may sometimes add constructively or sometimes destructively at the receiver, causing a variation in the power level of the received signal. The received signal envelope of a fast-fading signal is said to follow a Rayleigh distribution if there is no line-of-sight between the transmitter and the receiver and a Ricean distribution if one such path is available. The Performance comparison of the Rayleigh and Rician Fading channels in Quadrature Amplitude Modulation using Simulink tool is dealt in this paper. KEYWORDS: Fading, Rayleigh, Rician, QAM, Simulink I. INTRODUCTION TO THE LINE OF SIGHT TRANSMISSION: With any communication system, the signal that is received will differ from the signal that is transmitted, due to various transmission impairments. For analog signals, these impairments introduce random modifications that degrade the signal quality. For digital data, bit errors are introduced, a binary 1 is transformed into a binary 0, and vice versa.
    [Show full text]
  • The IEEE 1355 Standard: Developments, Performance and Application in High Energy Physics
    The IEEE 1355 Standard: Developments, Performance and Application in High Energy Physics Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy by Stefan Haas December 1998 The IEEE 1355 Standard: Developments, Performance and Applications in High Energy Physics Stefan Haas The data acquisition systems of the next generation High Energy Physics experiments at the Large Hadron Collider (LHC) at CERN will rely on high-speed point-to-point links and switching networks for their higher level trigger and event building systems. This thesis pro- vides a detailed evaluation of the DS-Link and switch technology, which is based on the IEEE 1355 standard for Heterogeneous InterConnect (HIC). The DS-Link is a bidirectional point-to-point serial interconnect, operating at speeds up to 200 MBaud. The objective of this thesis was to study the performance of the IEEE 1355 link and switch technology and to dem- onstrate that switching networks using this technology would scale to meet the requirements of the High Energy Physics applications. The performance and reliability of the basic point-to-point interconnect technology over elec- trical and fibre optic media were examined. These studies were carried out while the IEEE 1355 standard was still being finalised and have therefore provided valuable input to the standards working group. In order to validate the fibre optic physical layer proposed for the IEEE 1355 standard, an implementation demonstrator of a DS-Link interface for fibre optics, employing a new line encoding scheme, has been designed and characterised. This interface allows the link length for DS-links to be extended, which is important in the HEP context, where the cable length from the detector to the electronics can be up to 200 meters.
    [Show full text]
  • A Novel Term Weighing Scheme Towards Efficient Crawl of Textual Databases
    International Journal of Computer Engineering and Applications, Volume XII, Special Issue, May 18, www.ijcea.com ISSN 2321-3469 DIGITAL AUDIO BROADCASTING UNDER DIFFERENT MODULATION SCHEMES AND CHANNELS Arvind Venkat M 1, Biswajit Singh 2, Sharon William Raj V 3 1Department of Electronics and Communication Engineering, VTU University 2Department of Electronics and Communication Engineering, VTU University 3Department of Electronics and Communication Engineering, VTU University ABSTRACT: Digital audio broadcasting (DAB) is a digital radio standard for broadcasting digital audio radio services, used in countries across Europe, the Middle East and Asia Pacific. The DAB standard was initiated as a European research project in the 1980s. DAB is more efficient in its use of spectrum than analogue FM radio, and thus offer more radio services for the same given bandwidth. DAB is more robust with regard to noise and multipath fading for mobile listening, since DAB reception quality first degrades rapidly when the signal strength falls below a critical threshold, whereas FM reception quality degrades slowly with the decreasing signal. DAB uses a wide-bandwidth broadcast technology and typically spectra have been allocated for it in Band III (174–240 MHz) and L band (1.452–1.492 GHz), although the scheme allows for operation between 30 and 300 MHz In a digital transmission, Bit Error Rate (BER) is the percentage of bits with errors divided by the total number of bits that have been transmitted, received or processed over a given period of time. The rate is typically expressed as 10 to the negative power. The main purpose is to calculate and compare Bit Error Rate of Digital Audio Broadcast under different channels using QPSK, BPSK modulation schemes for different modes of DAB.
    [Show full text]
  • Performance of Cell-Free Massive MIMO with Rician Fading and Phase Shifts
    1 Performance of Cell-Free Massive MIMO with Rician Fading and Phase Shifts Özgecan Özdogan, Student Member, IEEE, Emil Björnson, Senior Member, IEEE, and Jiayi Zhang, Member, IEEE Abstract—In this paper, we study the uplink (UL) and down- In its canonical form, cell-free massive MIMO uses MR link (DL) spectral efficiency (SE) of a cell-free massive multiple- combining because of its low complexity. Due to the fact that input-multiple-output (MIMO) system over Rician fading chan- MR combining cannot suppress the interference well, some nels. The phase of the line-of-sight (LoS) path is modeled as a uniformly distributed random variable to take the phase-shifts APs receive more interference from other UEs than signal due to mobility and phase noise into account. Considering the power from the desired UE. The LSFD method is proposed in availability of prior information at the access points (APs), the [7] and [8] to mitigate the interference for co-located massive phase-aware minimum mean square error (MMSE), non-aware MIMO systems. This method is generalized for more realistic linear MMSE (LMMSE), and least-square (LS) estimators are spatially correlated Rayleigh fading channels with arbitrary derived. The MMSE estimator requires perfectly estimated phase knowledge whereas the LMMSE and LS are derived without it. first-layer decoders in [9], [10]. The two-layer decoding tech- In the UL, a two-layer decoding method is investigated in order nique is first adapted to cell-free massive MIMO networks in to mitigate both coherent and non-coherent interference. Closed- [11] for a Rayleigh fading scenario.
    [Show full text]
  • Simulation Model for a Frequency-Selective Land Mobile Satellite Communication Channel
    CORE Metadata, citation and similar papers at core.ac.uk Provided by International Institute for Science, Technology and Education (IISTE): E-Journals Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol 3, No.11, 2012 Simulation Model for a Frequency-Selective Land Mobile Satellite Communication Channel Zachaeus K. Adeyemo 1, Olumide O. Ajayi 2* , Festus K. Ojo 3 1. Department of Electronic and Electrical Engineering, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria 2. Department of Electronic and Electrical Engineering, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria 3. Department of Electronic and Electrical Engineering, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria *E-mail of corresponding author: [email protected] Abstract This paper investigates a three-state simulation model for a frequency-selective land mobile satellite communication (LMSC) channel. Aside from ionospheric effects, the propagation channels for LMSC systems are also characterized by wideband effects due to multipath fading which makes the channels time-variant and exhibit frequency-selective distortion. Hence, an adequate knowledge and modelling of the propagation channel is necessary for the design and performance evaluation of the LMSC systems. A three-state simulation model for a frequency-selective LMSC channel, which is a combination of Rayleigh, Rician and Loo fading processes, is developed. The propagation characteristics of the proposed
    [Show full text]
  • Effect of AWGN & Fading (Raleigh & Rician) Channels on BER Performance of a Wimax Communication System
    (IJCSIS) International Journal of Computer Science and Information Security, Vol. 10, No. 8, August 2012 Effect of AWGN & Fading (Raleigh & Rician) channels on BER performance of a WiMAX communication System Nuzhat Tasneem Awon Md. Mizanur Rahman Dept. of Information & Communication Engineering Dept. of Information & Communication Engineering University of Rajshahi, Rajshahi, Bangladesh University of Rajshahi, Rajshahi, Bangladesh e-mail: [email protected] e-mail: [email protected] Md. Ashraful Islam A.Z.M. Touhidul Islam Lecturer Associate Professor Dept. of Information & Communication Engineering Dept. of Information & Communication Engineering University of Rajshahi, Rajshahi, Bangladesh University of Rajshahi, Rajshahi, Bangladesh e-mail: [email protected] e-mail: [email protected] Abstract— The emergence of WIMAX has attracted significant into two types; Fixed Wireless Broadband and Mobile interests from all fields of wireless communications including Broadband. The fixed wireless broadband provides services students, researchers, system engineers and operators. The that are similar to the services offered by the fixed line WIMAX can also be considered to be the main technology in the broadband. But wireless medium is used for fixed wireless implementation of other networks like wireless sensor networks. broadband and that is their only difference. The mobile Developing an understanding of the WIMAX system can be broadband offers broadband services with an addition namely achieved by looking at the model of the WIMAX
    [Show full text]
  • Tools Help You Lose the HARDWARE EDA SOFTWARE SEEMS to BE the ONLY SILICON Blues ASSISTANCE THAT SOME
    coverstory By Brian Dipert, Technical Editor Tools help you lose the HARDWARE EDA SOFTWARE SEEMS TO BE THE ONLY SILICON blues ASSISTANCE THAT SOME PROGRAMMABLE-LOGIC COMPANIES WANT TO TALK ABOUT NOWADAYS. WHAT OTHER TOOLS ARE AVAILABLE TO SIMPLIFY YOUR TASK OF—AS THESE SUPPLIERS SEEM TO HAVE FORGOTTEN—DESIGNING HARDWARE? At a glance ..........................37 A tools-table teaser ..........38 For more information ......42 Photo courtesy Altera 36 edn | April 18, 2002 www.ednmag.com n the early days of semiconductors, digital-system design was almost completely Ia hardware-intensive-tools task. User-customizable-logic chips (with the exception of software-configurable microprocessors) just didn’t exist. Instead, you dealt with collections of transistors, subsequently followed by dis- er, covers only conditions that you explicitly describe crete-logic gates, and then by single-chip assemblages in your test-vector file.What about those “real-world” of multiple gates. You interconnected them on the sys- combinations of input signals and sequences of those tem board to construct a desired function, maybe with signals that you haven’t predicted? Clearly, relying only the assistance of a DeMorgan Law logic-transformation on simulation is insufficient; old-school debugging program, but more likely with nothing more glamorous techniques still have value. Throughout the four main than a No. 2 pencil and paper.And when, invariably, the stages of product development—definition, design, circuit’s function didn’t match what you expected, you prototyping, and production—plenty of other op- powered up your trusty oscilloscope and logic analyz- portunities for hardware help exist, too. er to track down what went wrong.
    [Show full text]