Comparison of Communication Architectures for Spacecraft Modular Avionics Systems D.A

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Communication Architectures for Spacecraft Modular Avionics Systems D.A National Aeronautics and NASA/TM—2006–214431 Space Administration IS20 George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 Comparison of Communication Architectures for Spacecraft Modular Avionics Systems D.A. Gwaltney and J.M. Briscoe Marshall Space Flight Center, Marshall Space Flight Center, Alabama June 2006 The NASA STI Program Office…in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical conferences, science. The NASA Scientific and Technical symposia, seminars, or other meetings sponsored Information (STI) Program Office plays a key or cosponsored by NASA. part in helping NASA maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, The NASA STI Program Office is operated by projects, and mission, often concerned with Langley Research Center, the lead center for subjects having substantial public interest. NASA’s scientific and technical information. The NASA STI Program Office provides access to • TECHNICAL TRANSLATION. the NASA STI Database, the largest collection of English-language translations of foreign aeronautical and space science STI in the world. scientific and technical material pertinent to The Program Office is also NASA’s institutional NASA’s mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office’s diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results…even • TECHNICAL PUBLICATION. Reports of providing videos. completed research or a major significant phase of research that present the results of For more information about the NASA STI Program NASA programs and include extensive data Office, see the following: or theoretical analysis. Includes compilations of significant scientific and technical data • Access the NASA STI Program Home Page at and information deemed to be of continuing http://www.sti.nasa.gov reference value. NASA’s counterpart of peer- reviewed formal professional papers but has less • E-mail your question via the Internet to stringent limitations on manuscript length and [email protected] extent of graphic presentations. • Fax your question to the NASA Access Help • TECHNICAL MEMORANDUM. Scientific Desk at 301–621–0134 and technical findings that are preliminary or of specialized interest, e.g., quick release reports, • Telephone the NASA Access Help Desk at working papers, and bibliographies that contain 301–621–0390 minimal annotation. Does not contain extensive analysis. • Write to: NASA Access Help Desk • CONTRACTOR REPORT. Scientific and NASA Center for AeroSpace Information technical findings by NASA-sponsored 7121 Standard Drive contractors and grantees. Hanover, MD 21076–1320 301–621–0390 NASA/TM—2006–214431 Comparison of Communication Architectures for Spacecraft Modular Avionics Systems D.A. Gwaltney and J.M. Briscoe Marshall Space Flight Center, Marshall Space Flight Center, Alabama Natonal Aeronautcs and Space Admnstraton Marshall Space Flght Center • MSFC, Alabama 35812 June 2006 TRADEMARKS Trade names and trademarks are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration. Avalable from: NASA Center for AeroSpace Informaton Natonal Techncal Informaton Servce 7121 Standard Drve 5285 Port Royal Road Hanover, MD 21076–1320 Springfield, VA 22161 301–621–0390 703–487–4650 TABLE OF CONTENTS 1. INTRODUCTION ......................................................................................................................... 1 2. CANDIDATE ARCHITECTURES ............................................................................................... 3 2.1 MIL–STD–1553 .................................................................................................................. 6 2.2 SAFEbus ........................................................................................................................... 7 2.3 Time-Triggered Communication Protocol .......................................................................... 8 2.4 FlexRay ............................................................................................................................. 9 2.5 Time-Triggered Controller Area Network ........................................................................... 9 2.6 IEEE 1394b ......................................................................................................................... 10 2.7 SpaceWire ........................................................................................................................... 10 2.8 Ethernet 10/100 Base-T ....................................................................................................... 11 2.9 Avionics Full-Duplex Switched Ethernet ......................................................................... 12 2.10 Fibre Channel ...................................................................................................................... 12 2.11 Gigabit Ethernet .................................................................................................................. 13 3. SELECTION RATIONALE .......................................................................................................... 14 4. CONCLUSION ............................................................................................................................. 16 APPENDIX—COMMUNICATION ARCHITECTURE COMPARISON MATRIX ....................... 17 REFERENCES .................................................................................................................................. 23 LIST OF ACRONYMS AE avionics environment AFDX avionics full-duplex switched ANSI Amercan Natonal Standards Insttute ARINC 659 Aircraft Radio, Inc. ASIC application specific integrated circuit BC bus controller BIU bus interface card BOSS bus owner/supervisor/selector CAN controller area network CRC cyclc redundancy check CSMA/CD+AMP carrier sense multiple access with collision detection and arbitration on message priority. CDMA code dvson multple access EBR–1553 enhanced bit rate 1553 ESA European Space Agency ESMD Exploration Systems Mission Directorate FC–AE Fibre Channel avionics environment FDIR fault detecton, solaton, and recovery FPGA field-programmable gate array GOF glass optical fiber v LIST OF ACRONYMS (Continued) I2C inter-IC bus IO input/output IP ntellectual property ISAACC integrated safety crtcal advanced avoncs for communcatons and control ISHM integrated system health management JPL Jet Propulsion Laboratory LAN local area network LRM line replaceable module LVDS low-voltage differential signaling MMSI mnature muntons/store nterface MSFC Marshall Space Flght Center NGLT Next Generation Launch Technology PHIAT propulsion high-impact avionics technology POF plastic optical fiber RT remote termnal RX receiver SAN storage area nets SPI seral perpheral nterface SSME Space Shuttle main engine SPIDER™ scalable processor-independent design for electromagnetic resilience TCP transmsson control/protocol v LIST OF ACRONYMS (Continued) TDMA tme dvson on multple access TM Techncal Memorandum TTA time-triggered architecture TTCAN time-triggered controller area network TTP time-triggered protocol TTP/C time-triggered protocol/automotive class C UDP user datagram protocol VL virtual link v TECHNICAL MEMORANDUM COMPARISON OF COMMUNICATION ARCHITECTURES FOR SPACECRAFT MODULAR AVIONICS SYSTEMS 1. INTRODUCTION Ths Techncal Memorandum (TM) s a survey of publcly avalable nformaton concernng seral communcaton archtectures used, or proposed to be used, n aeronautc and aerospace applca- tions. It is not intended to be all-inclusive, but rather, focuses on serial communication architectures that are suitable for low-latency or real-time communication between physically distributed nodes in a system. Candidates for the study have either extensive deployment in the field or appear to be viable for near-term deployment. The motvaton for ths survey s to provde a complaton of data sutable for tradng seral bus architecture against requirements for modular distributed real-time avionics architecture for man-rated spacecraft. This survey is one of the products of the Propulsion High-Impact Avionics Technology (PHIAT) Project at NASA Marshall Space Flight Center (MSFC). PHIAT was originally funded under the Next Generation Launch Technology (NGLT) Program to develop avionics technologies for control of next generation reusable rocket engines. After the announcement of the Space Exploration Initiative, in January 2004, the Exploration Systems Mission Directorate (ESMD) through the Propulsion Technol- ogy and Integration Project at MSFC funded PHIAT. At this time the scope of the project was broad- ened to include vehicle systems control for human and robotic missions. Early in the PHIAT project, a survey was performed to determine the best communication architecture for a safety critical real-time distributed control system. This survey was focused only on those communication architectures specifi- cally targeted for safety critical systems. However, with the broadened scope of the PHIAT project and
Recommended publications
  • Getting Started with Your VXI-1394 Interface for Windows NT/98 And
    VXI Getting Started with Your VXI-1394 Interface for Windows NT/98 VXI-1394 Interface for Windows NT/98 November 1999 Edition Part Number 322109D-01 Worldwide Technical Support and Product Information www.ni.com National Instruments Corporate Headquarters 11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100 Worldwide Offices Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011, Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625, Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, Norway 32 27 73 00, Poland 48 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085, Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2377 1200, United Kingdom 01635 523545 For further support information, see the Technical Support Resources appendix. To comment on the documentation, send e-mail to [email protected] © Copyright 1998, 1999 National Instruments Corporation. All rights reserved. Important Information Warranty The National Instruments VXI-1394 board is warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period.
    [Show full text]
  • A Technology Comparison Adopting Ultra-Wideband for Memsen’S File Sharing and Wireless Marketing Platform
    A Technology Comparison Adopting Ultra-Wideband for Memsen’s file sharing and wireless marketing platform What is Ultra-Wideband Technology? Memsen Corporation 1 of 8 • Ultra-Wideband is a proposed standard for short-range wireless communications that aims to replace Bluetooth technology in near future. • It is an ideal solution for wireless connectivity in the range of 10 to 20 meters between consumer electronics (CE), mobile devices, and PC peripheral devices which provides very high data-rate while consuming very little battery power. It offers the best solution for bandwidth, cost, power consumption, and physical size requirements for next generation consumer electronic devices. • UWB radios can use frequencies from 3.1 GHz to 10.6 GHz, a band more than 7 GHz wide. Each radio channel can have a bandwidth of more than 500 MHz depending upon its center frequency. Due to such a large signal bandwidth, FCC has put severe broadcast power restrictions. By doing so UWB devices can make use of extremely wide frequency band while emitting very less amount of energy to get detected by other narrower band devices. Hence, a UWB device signal can not interfere with other narrower band device signals and because of this reason a UWB device can co-exist with other wireless devices. • UWB is considered as Wireless USB – replacement of standard USB and fire wire (IEEE 1394) solutions due to its higher data-rate compared to USB and fire wire. • UWB signals can co-exists with other short/large range wireless communications signals due to its own nature of being detected as noise to other signals.
    [Show full text]
  • Spacewire Links Routers and Networks ECSS-E50-12A
    SpaceWire Links Routers and Networks ECSS-E50-12A Presented by Ph. Armbruster ESA/ESTEC/TOS-ED Data Systems Division [email protected] Credit – University of Dundee - European Space Agency Contents Part 1 Contents Part 2 § Introduction § SpaceWire Packets § Physical Level § Routing Switch Concepts § Signal Level – Worm-hole routing § Character Level – Header deletion – Path addressing § Exchange Level – Logical addressing § Packet Level – Priority – Arbitration – Group adaptive routing – Fault tolerance § Networks § Time Codes SpaceWire § SpaceWire is a standard for spacecraft onboard data-handling – ESA ECSS-E-50-12A § SpaceWire based on two commercial standards – IEEE-1355 – LVDS (Low Voltage Differential Signalling) § SpaceWire is the result of work by many people in ESA, NASA, the space industry and academia. SpaceWire Key Features § High data rate ( > 100 Mbps) § Distance of 10m + § Scalable § Low error rate § Good EMC performance § Low-power § Fault tolerance support § Radiation tolerant components Purpose § SpaceWire provides a unified high-speed data- handling infrastructure for connecting together – sensors, – processing elements, – mass-memory units, – downlink telemetry sub-systems, and – EGSE equipment. Purpose § The purpose of the SpaceWire standard is – to facilitate the construction of high-performance onboard data-handling systems – to help reduce system integration costs – to promote compatibility between data-handling equipment and sub-systems – to encourage re-use of data handling equipment across several different missions. Scope § SpaceWire links are – full-duplex, point-to-point, serial data communication links. § The scope of the SpaceWire standard is the – physical connectors and cables, – electrical properties, and – logical protocols. Scope § The SpaceWire standard covers the following normative protocol levels – Physical Level: Connectors, cables, cable assemblies and PCB tracks – Signal Level: Signal encoding, voltage levels, noise margins, and data rates.
    [Show full text]
  • Benefits of a Standardized Diagnostic Framework
    Benefits of a standardized diagnostic framework Hareesh Prakash Development Engineer The copying, distribution and utilization of this document as well as the communication of its contents to other without expressed authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or ornamental design registration. Agenda DiagnosticsDiagnostics withwith standardsstandards –– Motivation Motivation ODXODX –– ODXplorer ODXplorer MCD-3MCD-3 ServerServer –– samMCD3 samMCD3 serverserver MVCI-D-PDU-APIMVCI-D-PDU-API –– HSX HSX samtecsamtec DiagnosticDiagnostic FrameworkFramework The copying, distribution and utilization of this document as well as the communication of its contents to other without expressed authorization is prohibited. ffenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or ornamental design registration. Diagnostics with Standards Motivation 2000 - 2009 New ACC Stop & Go ALC + Navigation Strategies, Heading Control Night Vision Process, AFS I + II X-AGS 1990 - 1999 Internet Tools, … Telematics Navigation system Online Services CD-Changer Bluetooth Bus system Car Office ACC Adaptive Cruise Control Complexity Local Hazard Warning Complexity 1980 - 1989 Airbags Integrated Safety Systems DSC Dynamic Stability Control Electronic Transmission control Break-By-Wire Adaptive Transmission Control Electronic air conditioning control Steer-By-Wire Anti-roll ASR i-Drive Xenon Lights ABS Fuel cells 1970 - 1979 BMW Assist Telephone LH RDS/TMC 2 Electronic Fuel Injection Seat heating Lane change ssistant Emergency calls Electronic Ignition … Personalization Servotronic Check Control Software Update … Idle speed regulator Force Feedback Pedal Central lock … Costs Source: [2] Hudi; [4] Reichert The copying, distribution and utilization of this document as well as the communication of its contents to other without expressed authorization is prohibited.
    [Show full text]
  • Efficiently Triggering, Debugging and Decoding Low-Speed Serial Buses
    Efficiently Triggering, Debugging and Decoding Low-Speed Serial Buses Hello, my name is Jerry Mark, I am a Product Marketing Engineer at Tektronix. The following presentation discusses aspects of embedded design techniques for “Efficiently Triggering, Debugging, and Decoding Low-Speed Serial Buses”. 1 Agenda Introduction – Parallel Interconnects – Transition from Parallel to Serial Buses – High-Speed versus Low-Speed Serial Data Buses Low-Speed Serial Data Buses – Challenges – Technology Reviews – Measurement Solutions Summary 2 In this presentation we will begin by taking a glance at the transition from parallel-to-serial data and the challenges this presents to engineers. Then we will briefly review some of the most widely used low-speed serial buses in industry today and some of their key characteristics. We will turn our attention to the key measurements on these buses. Subsequently, we will present by example how the low-speed serial solution from Tektronix addresses these challenges. 2 Parallel Interconnects Traditional way to connect digital devices used parallel buses Advantages – Simple point-to-point connections – All signals are transmitted in parallel, simultaneously – Easy to capture state of bus (if you have enough channels!) – Decoding the bus is relatively easy Disadvantages – Occupies a lot of circuit board space – All high-speed connections must be the same length – Many connections limit reliability – Connectors may be very large 3 Parallel buses present all of the bits in parallel, as shown in the logic analyzer display. A parallel connection between two ICs can be as simple as point-to-point circuit board traces for each of the data lines. If you can physically probe these lines, it is easy to display the bus state on a logic analyzer or mixed signal oscilloscope.
    [Show full text]
  • Fieldbus Communication: Industry Requirements and Future Projection
    MÄLARDALEN UNIVERSITY SCHOOL OF INNOVATION, DESIGN AND ENGINEERING VÄSTERÅS, SWEDEN Thesis for the Degree of Bachelor of Science in Engineering - Computer Network Engineering | 15.0 hp | DVA333 FIELDBUS COMMUNICATION: INDUSTRY REQUIREMENTS AND FUTURE PROJECTION Erik Viking Niklasson [email protected] Examiner: Mats Björkman Mälardalen University, Västerås, Sweden Supervisor: Elisabeth Uhlemann Mälardalen University, Västerås, Sweden 2019-09-04 Erik Viking Niklasson Fieldbus Communication: Industry Requirements and Future Projection Abstract Fieldbuses are defined as a family of communication media specified for industrial applications. They usually interconnect embedded systems. Embedded systems exist everywhere in the modern world, they are included in simple personal technology as well as the most advanced spaceships. They aid in producing a specific task, often with the purpose to generate a greater system functionality. These kinds of implementations put high demands on the communication media. For a medium to be applicable for use in embedded systems, it has to reach certain requirements. Systems in industry practice react on real-time events or depend on consistent timing. All kinds are time sensitive in their way. Failing to complete a task could lead to irritation in slow monitoring tasks, or catastrophic events in failing nuclear reactors. Fieldbuses are optimized for this usage. This thesis aims to research fieldbus theory and connect it to industry practice. Through interviews, requirements put on industry are explored and utilization of specific types of fieldbuses assessed. Based on the interviews, guidelines are put forward into what fieldbus techniques are relevant to study in preparation for future work in the field. A discussion is held, analysing trends in, and synergy between, state of the art and the state of practice.
    [Show full text]
  • Serial Communication Buses
    Computer Architecture 10 Serial Communication Buses Made wi th OpenOffi ce.org 1 Serial Communication SendingSending datadata oneone bitbit atat oneone time,time, sequentiallysequentially SerialSerial vsvs parallelparallel communicationcommunication cable cost (or PCB space), synchronization, distance ! speed ? ImprovedImproved serialserial communicationcommunication technologytechnology allowsallows forfor transfertransfer atat higherhigher speedsspeeds andand isis dominatingdominating thethe modernmodern digitaldigital technology:technology: RS232, RS-485, I2C, SPI, 1-Wire, USB, FireWire, Ethernet, Fibre Channel, MIDI, Serial Attached SCSI, Serial ATA, PCI Express, etc. Made wi th OpenOffi ce.org 2 RS232, EIA232 TheThe ElectronicElectronic IndustriesIndustries AllianceAlliance (EIA)(EIA) standardstandard RS-232-CRS-232-C (1969)(1969) definition of physical layer (electrical signal characteristics: voltage levels, signaling rate, timing, short-circuit behavior, cable length, etc.) 25 or (more often) 9-pin connector serial transmission (bit-by-bit) asynchronous operation (no clock signal) truly bi-directional transfer (full-duplex) only limited power can be supplied to another device numerous handshake lines (seldom used) many protocols use RS232 (e.g. Modbus) Made wi th OpenOffi ce.org 3 Voltage Levels RS-232RS-232 standardstandard convertconvert TTL/CMOS-levelTTL/CMOS-level signalssignals intointo bipolarbipolar voltagevoltage levelslevels toto improveimprove noisenoise immunityimmunity andand supportsupport longlong cablecable lengthslengths TTL/CMOS → RS232: 0V = logic zero → +3V…+12V (SPACE) +5V (+3.3V) = logic one → −3V…−12V (MARK) Some equipment ignores the negative level and accepts a zero voltage level as the "OFF" state The "dead area" between +3V and -3V may vary, many receivers are sensitive to differentials of 1V or less Made wi th OpenOffi ce.org 4 Data frame CompleteComplete one-byteone-byte frameframe consistsconsists of:of: start-bit (SPACE), data bits (7, 8), stop-bits (MARK) e.g.
    [Show full text]
  • A Gumstix-Based MIDI-To-OSC Converter
    midOSC: a Gumstix-Based MIDI-to-OSC Converter Sebastien´ Schiesser Institute for Computer Music and Sound Technology Zurich University of the Arts Baslerstrasse 30, 8048 Zurich, Switzerland [email protected] Abstract [14], sent to the remote-controlled devices location and con- A MIDI-to-OSC converter is implemented on a commer- verted back to MIDI. Until now, this has been done at each cially available embedded linux system, tighly integrated conversion point through a Max/MSP patch running on a with a microcontroller. A layered method is developed which computer connected to a MIDI interface. This is very de- permits the conversion of serial data such as MIDI to OSC manding in terms of hardware: in the backstage system of formatted network packets with an overall system latency the mAe, a computer is dedicated to conversion purposes below 5 milliseconds for common MIDI messages. only. And when MIDI devices are present on stage, an ad- The Gumstix embedded computer provide an interest- ditional laptop with interface is required. ing and modular platform for the development of such an The mAe is intended to be modular and to support several embedded applications. The project shows great potential “I/O hubs”, where audio and control data are collected and to evolve into a generic sensors-to-OSC ethernet converter dispatched. In order to avoid dependence on a converting which should be very useful for artistic purposes and could computer at each hub, it seemed appropriate to use a dedi- be used as a fast prototyping interface for gesture acquisition cated converter which can run independently, be stacked in devices.
    [Show full text]
  • CAN-To-Flexray Gateways and Configuration Tools
    CAN-to-Flexray gateways Device and confi guration tools lexray and CAN net- Listing bus data traffic toring channels it is possi- power management func- Fworks will coexists in (tracing) ble to compare timing rela- tionality offers configurable the next generation or pas- Graphic and text displays tionships and identify timing sleep, wake-up conditions, senger cars. Flexray orig- of signal values problems. and hold times. The data inally designed for x-by- Interactive sending of GTI has developed a manipulation functionality wire applications gains mar- pre-defined PDUs und gateway, which provides has been extended in or- ket acceptance particular- frames two CAN and two Flexray der to enable the user to ap- ly in driver assistance sys- Statistics on nodes and ports. It is based on the ply a specific manipulation tems. Nevertheless, Flexray messages with the Clus- MPC5554 micro-controller. function several times. Also applications need informa- ter Monitor The gateway is intended to available for TTXConnexion tion already available in ex- Logging messages for be used for diagnostic pur- is the PC tool TTXAnalyze, isting CAN in-vehicle net- later replay or offline poses, generating start-up/ which allows simultaneous works. Therefore, CAN-to- evaluation sync frames, and it can be viewing of traffic, carried on Flexray gateways are nec- Display of cycle multi- used with existing software the various bus systems. essary. Besides deeply em- plexing, in-cycle rep- tools. The Flexray/CAN bedded micro-controller etition and PDUs in the The TTXConnexion by gateway by Ixxat is a with CAN and Flexray inter- analysis windows TTControl is a gateway tool configurable PC application faces, there is also a need Agilent also provides an combining data manipula- allowing Flexray messag- for gateway devices as in- analyzing tool for Flexray tion, on-line viewing, and es and signals to be trans- terface modules for system and CAN.
    [Show full text]
  • Introduction to Serial Communication
    Technical Tutorial Introduction to Serial Communication Introduction to Serial Communication Technical Tutorial 2002 – 12 - 06 Technical Tutorial Introduction to Serial Communication Table of Contents 1: Introduction 1.1. DCE and DTE Devices 1.2. Synchronous data transfer 1.3. Asynchronous data transfer 2: RS232 2.1. RS232 on DB9 (9-pin D-type connector) 2.2. RS232 on DB25 (25-pin D-type connector) 2.3. RS232 on RJ-45 2.4. Signal Description 2.5. Limitations of RS232 3: RS422 and RS485 3.1. RS422 Serial Communication 3.2. RS485 Serial Communication 3.3. Converters 4: Summary Table 5: Serial Interface of Sena Products 5.1. HelloDevice Lite series 5.2. HelloDevice Pro series 5.3. HelloDevice Super series 5.4. IALink100 Series 5.5. VTS Series 2 Technical Tutorial Introduction to Serial Communication 1. Introduction The purpose of this application note is to attempt to describe the main elements in Serial Communication. This application note attempts to cover enough technical details of RS232, RS422 and RS485. 1.1. DCE and DTE Devices DTE stands for Data Terminal Equipment, and DCE stands for Data Communications Equipment. These terms are used to indicate the pin-out for the connectors on a device and the direction of the signals on the pins. Your computer is a DTE device, while most other devices such as modem and other serial devices are usually DCE devices. RS-232 has been around as a standard for decades as an electrical interface between Data Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE) such as modems or DSUs.
    [Show full text]
  • ABSTRACT 1 INTRODUCTION 1.1 Background 1.2 Data Link Requirements Overview
    HIGH-SPEED, LOW-POWER, EXCELLENT EMC: LVDS FOR ON-BOARD DATA HANDLING Dr SM Parkes Applied Computing, University of Dundee, Dundee, DD1 4HN, Scotland, UK Tel: 44 1382 345194, Fax: 44 1382 345509, Email: [email protected] ABSTRACT Since the endorsement of the IEEE 1355 by ESA and major companies involved in the space industry, the technology has The capabilities of remote-sensing instrumentation are been migrated successfully into radiation-tolerant, space- developing rapidly. As a consequence the data rates being qualifiable components. Daimler-Benz Aerospace and TEMIC handled on-board spacecraft are increasing. have developed a component (SMCS) which provides three LVDS (Low Voltage Differential Signaling) provides a means IEEE 1355 compatible links and a processor interface (Ref. 4). of sending data along a twisted pair cable at high speed, with Demonstration systems have been and are being developed for low power and with excellent EMC performance. These both multi-DSP processing systems (Ref. 5) and for large features make LVDS ideal for satellite on-board data-handling capacity, solid-state data storage systems (Ref. 6). High level applications. protocols have been developed to support interprocessor communication (Ref. 7). Software support for the SMCS link This paper assesses the suitability of LVDS for space devices has been provided within the Eonic Virtuoso real-time applications as part of a data-handling system based on IEEE operating system for both the TSC21020 DSP processor and 1355 comparing it against other types of line driver/receiver. the ERC32 SPARC 32-bit processor (Ref. 8). It explains how LVDS can be used together with IEEE 1355 to form the basis for a powerful on-board data handling system, The Digital Interface Circuit Evaluation (DICE) study was which is capable of handling data from current and future, initiated by ESTEC to take stock of these developments, to high data-rate instruments.
    [Show full text]
  • Lab 5: Serial Communication (Sci/Spi) and C Objectives Required Materials Introduction
    University of Florida EEL 3744 –Spring 2018 Dr. Eric M. Schwartz Electrical & Computer Engineering Dept. 28-Mar-18 Page 1/8 Revision 7 LAB 5: SERIAL COMMUNICATION (SCI/SPI) AND C OBJECTIVES As discovered in Homework 4, the asynchronous UART • Understand the basic operation and structure of protocol utilizes a transfer rate (denoted as the baud rate), as asynchronous and synchronous serial communication, well as two physical connections for each device to i.e., SCI (UART) and SPI. communicate data, i.e., a pin for Receiving data (Rx), and a pin • Utilize C programming constructs to create functions to for Transmitting data (Tx). The only way that this protocol interact with the XMEGA’s USART and SPI systems. functions correctly is if both devices agree on a common baud • Learn how to use SPI communication to interact with an rate. external IMU sensor package. • Stream and plot real-time 3D (XYZ) acceleration data SPI, on the other hand, utilizes a shared clock signal connected using the XMEGA’s USART system and Atmel Studio’s between (at least) two devices (usually denoted as SCK), where Data Visualizer. only one device is known as the “master” device, and where the other devices are “slaves.” Full-duplex communication is REQUIRED MATERIALS possible with SPI (i.e., two devices can talk to each other at the • µPAD v2.0 Development Board same time), although the master always starts any • Robotics Backpack communication between the devices. When the master wants • Digilent/NI Analog Discovery (DAD/NAD) kit to transmit/receive data to/from the slave(s), it generates the • LSM330.h header file synchronized Serial Clock signal (SCK).
    [Show full text]