The Multipath Fading and the Frequency Response of the Channel in an Indoor Radiating Cable System

Total Page:16

File Type:pdf, Size:1020Kb

The Multipath Fading and the Frequency Response of the Channel in an Indoor Radiating Cable System The Multipath Fading and the Frequency Response of the Channel in an Indoor Radiating Cable System By M.C. Jorge Alberto Seseña Osorio Thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Science with specialty in Electronics at Instituto Nacional de Astrofísica, Óptica y Electrónica Supervised by: Dr. Ignacio Enrique Zaldívar Huerta, INAOE Dr. Alejandro Aragón Zavala, ITESM campus Querétaro © INAOE 2014 The author hereby grants to INAOE permission to reproduce and to distribute copies of this thesis document in whole or in part The Multipath Fading and the Frequency Response of the Channel in an Indoor Radiating Cable System By M.C. Jorge Alberto Seseña Osorio Thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Science with specialty in Electronics at Instituto Nacional de Astrofísica, Óptica y Electrónica Supervised by: Dr. Ignacio Enrique Zaldívar Huerta, INAOE Dr. Alejandro Aragón Zavala, ITESM campus Querétaro © INAOE 2014 The author hereby grants to INAOE permission to reproduce and to distribute copies of this thesis document in whole or in part i ii Abstract The use of wireless handheld devices has increased in recent years, at the same time; the data transmission rate rises exponentially. This trend has led to a greater concentration of mobile devices in specific locations, such as office buildings, shopping centers, airports, sports stadiums, etc. In this context, the next generation of wireless services must be able to develop ubiquitous ultra-broadband speeds. Hence, solutions are required for overcoming the hurdles present at these locations in order to satisfy the user requirements. In this regard, dedicated systems are an alternative for providing wireless services at indoor environments, while also allowing performance improvement and the possibility of offering tailored services for specific environments. In this context, radiating cables have been used as alternative distribution systems for indoor environments where distributed antenna systems have limitations giving full coverage due to obstacles (walls, doors, furniture, etc.) between the receiver and transmitter. Such scenarios generate challenges on the study and design of these radiating cable systems – for example, issues involved in the wireless communication channel. This work presents the multipath fading and the frequency response of the channel of a radiating cable system. These topics are essential in the planning and research of any wireless system. In this context, there are a few simple propagation models for radiating cables which are somewhat restricted to radiating cables placed along a straight line. Furthermore, little attention has been paid to the frequency response of such systems. In this work, the radiating cable is installed in different paths in order to analyze experimentally the behavior of the channel, different paths of radiating cable allow shaping the coverage area for demanding scenarios. An exhaustive modeling of the multipath fading as well as the frequency response of the channel is carried by using statistical and autoregressive models, respectively. iii The proposed modeling considers the first wall reflection, penetration loss, cable termination, and radiating cable paths. The use of different empirical coefficients allows consideration of the mentioned propagation mechanisms. The coefficients of the proposed modeling were obtained empirically; this allows modeling different propagation mechanisms without knowing the construction material characteristics. These situations have not been considered by the current propagation models for radiating cable systems. The proposed modeling is carried out using three different propagation models and has been experimentally validated by sets of measurements. Measurements were performed in a university building in the frequency range from 900 MHz to 2.1 GHz. A careful selection of the data sets validates the robustness of the proposed modeling. The results show an averaged error of less than 1 dB. Thus, the large-scale fading showed a standard deviation between 2.5 dB and 3.7 dB for the distributions with the best fitting, and the small-scale fading was fitted to various probability distributions. The coherence bandwidth and the rms delay spread (rms) were obtained by measuring the frequency response of the channel and it was demonstrated that there is dependence between rms and the receiver position along the cable length. This dependence must be taken into account in the design and study of broadband systems with mobility. On the other hand, simulations of small-scale fading were carried out too. First, the Rayleigh fading simulator was used and subsequently the Rician and Weibull fading were obtained. Simulations showed a better fit with theoretical distributions, compared with experimental distributions, and the maximum absolute error between measurements and simulations was 1.71 dB. Also, an autoregressive (AR) model for the frequency response was carried out. Results showed that a fifth order AR model gives the best fitting at the 3- dB width of the frequency correlation function; however the poles of the second order AR model showed a better-defined behavior in the complex iv plane. This better-defined behavior showed the variation of delay along the cable length. The magnitude of Pole 1 was almost constant, and its angle rotates counterclockwise, which represents the variation of the delay with receiver positions along the cable length. At the same time, Pole 2 displayed a reduction in its magnitude and minimum variations on its angle. This describes the reduction of the rms as the receiver moved away from the cable feeder in a direction parallel to the cable. v vi Resumen El uso de dispositivos inalámbricos portátiles se ha incrementado en los últimos años, al mismo tiempo las velocidades de transmisión de datos crece exponencialmente. Esta tendencia ha generado una mayor concentración de dispositivos móviles en lugares específicos, por ejemplo en edificios con oficinas, centros comerciales, terminales aéreas, estadios deportivos, etc. En este contexto, la próxima generación de servicios inalámbricos debe ser capaz de desarrollar altas velocidades de transmisión en cualquier lugar. Por consiguiente, soluciones son requeridas para superar los obstáculos presentes en estos lugares con el fin de satisfacer los requerimientos del usuario. A este respecto, los sistemas dedicados son una alternativa para proveer servicios inalámbricos en interiores, ya que permiten mejorar el desempeño y dan la posibilidad de ofrecer servicios a la medida para lugares específicos. En este sentido, los cables radiantes han sido utilizados como sistemas de distribución para interiores donde los sistemas con antenas distribuidas tienen limitaciones para dar cobertura completa debido a obstáculos (paredes, puertas, muebles, etc.) entre receptor y transmisor. Tales escenarios generan retos en el estudio y diseño de estos sistemas con cable radiante - por ejemplo, los temas relacionados con el canal inalámbrico de comunicación. Este trabajo presenta el desvanecimiento por trayectos múltiples y la respuesta de frecuencia del canal en un sistema de cable radiante. Estos temas son esenciales en la planificación y la investigación de cualquier sistema inalámbrico. En este contexto, hay pocos modelos de propagación para cable radiante que están de alguna forma restringidos a un cable radiante colocado en línea recta. Además, poca atención se ha puesto en el modelado de la respuesta de frecuencia de tales sistemas con cable radiante. En este trabajo, el cable radiante fue instalado a lo largo de diferentes rutas con el fin de analizar experimentalmente el comportamiento vii del canal, diferentes rutas de cable radiante permiten la conformación de la zona de cobertura para escenarios exigentes. Un modelado exhaustivo de los desvanecimientos por trayectorias múltiples, así como la respuesta de frecuencia del canal fue realizado mediante el uso de modelos estadísticos y auto regresivos respectivamente. El modelado propuesto considera la reflexión en paredes, pérdidas por penetración, la terminación del cable y las rutas del cable radiante instalado. El uso de diferentes coeficientes empíricos permite considerar los mecanismos de propagación mencionados. Los coeficientes del modelado propuestos fueron obtenidos empíricamente; esto permite modelar los diferentes mecanismos de propagación sin conocer las características de los materiales de construcción. Estas situaciones no han sido consideradas por los modelos actuales de propagación para cable radiante. El modelado propuesto es realizado usando tres modelos de propagación y ha sido experimentalmente validado mediante mediciones. Las mediciones son desarrolladas en un edificio universitario en el rango de frecuencia de 900 MHz a 2.1 GHz. Una selección cuidadosa de los datos valida la robustez del modelado propuesto. Los resultados muestran un error promedio menor a 1 dB. Así, los desvanecimientos de gran escala mostraron una desviación estándar entre 2.5 y 3.7 dB para las distribuciones con el mejor ajuste. El ancho de banda coherente y la dispersión del retardo rms fueron obtenidos midiendo la respuesta de frecuencia del canal, y fue demostrado que hay una dependencia entre la dispersión del retardo y la posición a lo largo de la longitud del cable. Esta dependencia debe ser tomada en cuenta en el diseño y estudio de sistemas de banda ancha con movilidad. Por otro lado, las simulaciones
Recommended publications
  • Multi-Antenna Non-Line-Of-Sight Identification Techniques for Target Localization in Mobile Ad-Hoc Networks
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2011 Multi-antenna non-line-of-sight identification techniques for target localization in mobile ad-hoc networks Wenjie Xu Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Electrical and Computer Engineering Commons Copyright 2011 Wenjie Xu Recommended Citation Xu, Wenjie, "Multi-antenna non-line-of-sight identification techniques for target localization in mobile ad- hoc networks", Dissertation, Michigan Technological University, 2011. https://doi.org/10.37099/mtu.dc.etds/58 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Electrical and Computer Engineering Commons MULTI-ANTENNA NON-LINE-OF-SIGHT IDENTIFICATION TECHNIQUES FOR TARGET LOCALIZATION IN MOBILE AD-HOC NETWORKS By Wenjie Xu A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Electrical Engineering) MICHIGAN TECHNOLOGICAL UNIVERSITY 2011 c 2011 Wenjie Xu This dissertation, "Multi-Antenna Non-Line-Of-Sight Identification Techniques for Target Localization in Mobile Ad-hoc Networks," is hereby approved in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN THE FIELD OF ELEC- TRICAL ENGINEERING. Department of Electrical and Computer Engineering Signatures: Dissertation Advisor Dr. Seyed A. (Reza) Zekavat Committee Member Dr. Daniel R. Fuhrmann Committee Member Dr. Zhi (Gerry) Tian Committee Member Dr. Vladimir D. Tonchev Department Chair Dr. Daniel R. Fuhrmann Date Contents List of Figures ..................................... vii List of Tables ...................................... xi Acknowledgments ...................................xiii Abstract ........................................ xv 1 Introduction ...................................
    [Show full text]
  • On the Cascaded Weibull Fading Channel Model
    ARTICLE IN PRESS Journal of the Franklin Institute 344 (2007) 1–11 www.elsevier.com/locate/jfranklin On the cascaded Weibull fading channel model Nikos C. Sagiasa, George S. Tombrasb,Ã aInstitute of Informatics and Telecommunications, National Centre for Scientific Research– ‘‘Demokritos’’, Agia Paraskevi, GR-15310 Athens, Greece bLaboratory of Electronics, Department of Physics, University of Athens, Panepistimiopolis, Zografou, GR-15784 Athens, Greece Received 3 April 2006; received in revised form 24 June 2006; accepted 6 July 2006 Abstract A new stochastic fading channel model called cascaded Weibull fading is introduced and the associated capacity is derived in closed form. This model is generated by the product of independent, but not necessarily identically distributed, Weibull random variables (RVs). By quantifying the convergence rate of the central limit theorem as pertaining to the multiplication of Weibull distributed RVs, the statistical basis of the lognormal distribution is investigated. By performing Kolmogorov–Smirnov tests, the null hypothesis for this product to be approximated by the lognormal distribution is studied. Another null hypothesis is also examined for this product to be approximated by a Weibull distribution with properly adjusted statistical parameters. r 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. Keywords: Fading channels; Weibull distribution; Lognormal distribution; Cascaded fading; Shannon capacity; Kolmogorov–Smirnov test; Central limit theorem (CLT); Stochastic models; Product of variates 1. Introduction Due to the existence of a great variety of fading environments, several distributions have been proposed for channel modeling of fading envelopes under short, long, as well as mixed fading conditions [1]. Recently, attention has been given to the so-called ‘‘multiplicative’’ stochastic models.
    [Show full text]
  • Performance Analysis of Two-Way AF Cooperative Relay Networks Over Weibull Fading Channels
    Journal of Communications Vol. 8, No. 6, June 2013 Performance Analysis of Two-Way AF Cooperative Relay Networks over Weibull Fading Channels Xinjie Wang1,2, Hao Zhang1,3, T. Aaron Gulliver3, Wei Shi1 and Hongjiao Zhang1 1 Department of Electrical Engineering, Ocean University of China, Qingdao, China 2 College of Communication and Electronics, Qingdao Technological University, China 3 Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada Email: [email protected]; [email protected]; [email protected]; [email protected] [email protected] Abstract—The performance of two-way amplify-and-forward and symbol error probability (SEP) for two-way AF (AF) cooperative relay networks over independent but not relaying were analyzed with perfect channel state necessarily identically distributed Weibull fading channels is information (CSI) over Rayleigh fading channels in [11], studied. Tight closed form approximations for the overall [12]. In [13], two-way relaying in mixed Rayleigh and outage probability (OOP) and the average symbol error Rician fading channels was considered. The exact probability (ASEP) are derived. The analysis is verified by expressions for OP, SEP and average sum-rate were simulation, and the accuracy is shown to be excellent, especially derived over Nakagami-m fading channels in [14]. at high signal noise ratio (SNR). According to the analysis, increasing the fading parameter, the power scaling parameter, or However, the above results only consider the performance in terms of single user outage and SER. the number of relays, can improve the system performance when the best relay is selected. Since the quality of service (QoS) requirements for bidirectional links are the same as for two-way relaying, Index Terms—Two-way relay network; Weibull fading channel; the overall outage probability (OOP) and average SEP Outage probability; Symbol error probability; Amplify and performance can be used to evaluate the performance of forward both links.
    [Show full text]
  • ABRIDGED CV : FIRST PAGE Mqhele Enock‐Hershal Dlodlo
    ABRIDGED CV : FIRST PAGE Mqhele Enock‐Hershal Dlodlo (MIEEE) earned a PhD (1996) from Delft University of Technology, a master's degree in electrical engineering (1989) from Kansas State University, and two bachelor's degrees in electrical engineering (1980), mathematics and independent studies in engineering management (1983), from Geneva College, Beaver Falls, PA, USA. Profile: At University of Cape Town, Rondebosch, South Africa, he is an Associate Professor in telecommunications in the Electrical Engineering Department. His research interests are in wireless communication systems and applications. He is an active member of the Communications Research Group (CRG) in the Telkom Centre of Excellence (CoE) for Broadband Networks and Applications. His CoE projects have attracted substantial funding to the CoE from industry and THRIP since 2007. The research has led to over eighty international refereed publications, six PhD theses and numerous master's dissertations. Internationally, he is a member of the Region 8, South Africa Section, Integrated Circuits and Applications Society, and Communications Society of the IEEE. He is also a member of the Fulbright Alumni Association. Competencies: A vision‐driven academic leader with a solid record of team leadership, inauguration and building of new institutions, departments, and programmes, innovative and inventive problem‐ solving and an ability to inspire collaboration across diverse interests and modes of outlook. A results‐oriented, decisive leader that ensures buy‐in on institutional success strategies. An academic with an impeccable track record in research, teaching and responsiveness to societal needs. Experience: Between May 2008 and August 2011, he successfully led a departmental team working on an Innovation Fund (TIA) Project T70026 on low‐bandwidth video streaming, with a spin‐off company and a patent filed in South Africa, and a number of international refereed publications.
    [Show full text]
  • Ber Performance of Golden Coded Mimo-Ofdm System Over Rayleigh and Rician Fading Channels
    BER PERFORMANCE OF GOLDEN CODED MIMO-OFDM SYSTEM OVER RAYLEIGH AND RICIAN FADING CHANNELS A Vamsi Krishna G Dhruva Department of ECE, LNMIIT Department of ECE, LNMIIT Jaipur-303012, India Jaipur-303012, India [email protected] [email protected] V Sai Krishna V Sinha Department of ECE, LNMIIT Fellow IEEE, Department of ECE, LNMIIT Jaipur-303012, India Jaipur-303012, India [email protected] [email protected] Abstract— In this paper, we analyze the Bit Error Rate (BER) Interference (ICI) and ensures efficient utilization of performance of Golden coded Multiple-Input Multiple-Output bandwidth. The MIMO-OFDM has a great potential to meet Orthogonal Frequency Division Multiplexing (MIMO-OFDM) up the stringent requirement for boosting up the transmit system over Rician multipath fading channel. We also compare diversity and mitigation of the detrimental effects due to the performance of the MIMO-OFDM system using Golden code frequency selective fading [5]. in Rayleigh and Rician multipath fading channels. We discuss the effects of the presence of line-of-sight (LoS) component in the Designing Space-Time Block Codes (STBC) for frequency multipath fading environment which renders the improvement in selective MIMO channels is well motivated by broadband the overall performance of the Golden coded MIMO-OFDM. applications, where multi-antenna systems have to deliver This paper discusses the performance of Golden codes in a multimedia information content at high data rates[6]. frequency selective Rician fading channel. To deal with the Furthermore, STBC are used to improve MIMO performances frequency selective fading channel, we use the OFDM by providing a temporal and spatial multiplexing modulation (Orthogonal Frequency Division Multiplexing) modulation.
    [Show full text]
  • Performance Comparison of Rayleigh and Rician Fading Channels in QAM Modulation Scheme Using Simulink Environment
    International Journal of Computational Engineering Research||Vol, 03||Issue, 5|| Performance Comparison of Rayleigh and Rician Fading Channels In QAM Modulation Scheme Using Simulink Environment P.Sunil Kumar1, Dr.M.G.Sumithra2 and Ms.M.Sarumathi3 1P.G.Scholar, Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, India 2Professor, Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, India 3Assistant Professor, Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, India ABSTRACT: Fading refers to the fluctuations in signal strength when received at the receiver and it is classified into two types as fast fading and slow fading. The multipath propagation of the transmitted signal, which causes fast fading, is because of the three propagation mechanisms described as reflection, diffraction and scattering. The multiple signal paths may sometimes add constructively or sometimes destructively at the receiver, causing a variation in the power level of the received signal. The received signal envelope of a fast-fading signal is said to follow a Rayleigh distribution if there is no line-of-sight between the transmitter and the receiver and a Ricean distribution if one such path is available. The Performance comparison of the Rayleigh and Rician Fading channels in Quadrature Amplitude Modulation using Simulink tool is dealt in this paper. KEYWORDS: Fading, Rayleigh, Rician, QAM, Simulink I. INTRODUCTION TO THE LINE OF SIGHT TRANSMISSION: With any communication system, the signal that is received will differ from the signal that is transmitted, due to various transmission impairments. For analog signals, these impairments introduce random modifications that degrade the signal quality. For digital data, bit errors are introduced, a binary 1 is transformed into a binary 0, and vice versa.
    [Show full text]
  • A Novel Term Weighing Scheme Towards Efficient Crawl of Textual Databases
    International Journal of Computer Engineering and Applications, Volume XII, Special Issue, May 18, www.ijcea.com ISSN 2321-3469 DIGITAL AUDIO BROADCASTING UNDER DIFFERENT MODULATION SCHEMES AND CHANNELS Arvind Venkat M 1, Biswajit Singh 2, Sharon William Raj V 3 1Department of Electronics and Communication Engineering, VTU University 2Department of Electronics and Communication Engineering, VTU University 3Department of Electronics and Communication Engineering, VTU University ABSTRACT: Digital audio broadcasting (DAB) is a digital radio standard for broadcasting digital audio radio services, used in countries across Europe, the Middle East and Asia Pacific. The DAB standard was initiated as a European research project in the 1980s. DAB is more efficient in its use of spectrum than analogue FM radio, and thus offer more radio services for the same given bandwidth. DAB is more robust with regard to noise and multipath fading for mobile listening, since DAB reception quality first degrades rapidly when the signal strength falls below a critical threshold, whereas FM reception quality degrades slowly with the decreasing signal. DAB uses a wide-bandwidth broadcast technology and typically spectra have been allocated for it in Band III (174–240 MHz) and L band (1.452–1.492 GHz), although the scheme allows for operation between 30 and 300 MHz In a digital transmission, Bit Error Rate (BER) is the percentage of bits with errors divided by the total number of bits that have been transmitted, received or processed over a given period of time. The rate is typically expressed as 10 to the negative power. The main purpose is to calculate and compare Bit Error Rate of Digital Audio Broadcast under different channels using QPSK, BPSK modulation schemes for different modes of DAB.
    [Show full text]
  • Performance of Cell-Free Massive MIMO with Rician Fading and Phase Shifts
    1 Performance of Cell-Free Massive MIMO with Rician Fading and Phase Shifts Özgecan Özdogan, Student Member, IEEE, Emil Björnson, Senior Member, IEEE, and Jiayi Zhang, Member, IEEE Abstract—In this paper, we study the uplink (UL) and down- In its canonical form, cell-free massive MIMO uses MR link (DL) spectral efficiency (SE) of a cell-free massive multiple- combining because of its low complexity. Due to the fact that input-multiple-output (MIMO) system over Rician fading chan- MR combining cannot suppress the interference well, some nels. The phase of the line-of-sight (LoS) path is modeled as a uniformly distributed random variable to take the phase-shifts APs receive more interference from other UEs than signal due to mobility and phase noise into account. Considering the power from the desired UE. The LSFD method is proposed in availability of prior information at the access points (APs), the [7] and [8] to mitigate the interference for co-located massive phase-aware minimum mean square error (MMSE), non-aware MIMO systems. This method is generalized for more realistic linear MMSE (LMMSE), and least-square (LS) estimators are spatially correlated Rayleigh fading channels with arbitrary derived. The MMSE estimator requires perfectly estimated phase knowledge whereas the LMMSE and LS are derived without it. first-layer decoders in [9], [10]. The two-layer decoding tech- In the UL, a two-layer decoding method is investigated in order nique is first adapted to cell-free massive MIMO networks in to mitigate both coherent and non-coherent interference. Closed- [11] for a Rayleigh fading scenario.
    [Show full text]
  • Simulation Model for a Frequency-Selective Land Mobile Satellite Communication Channel
    CORE Metadata, citation and similar papers at core.ac.uk Provided by International Institute for Science, Technology and Education (IISTE): E-Journals Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol 3, No.11, 2012 Simulation Model for a Frequency-Selective Land Mobile Satellite Communication Channel Zachaeus K. Adeyemo 1, Olumide O. Ajayi 2* , Festus K. Ojo 3 1. Department of Electronic and Electrical Engineering, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria 2. Department of Electronic and Electrical Engineering, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria 3. Department of Electronic and Electrical Engineering, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria *E-mail of corresponding author: [email protected] Abstract This paper investigates a three-state simulation model for a frequency-selective land mobile satellite communication (LMSC) channel. Aside from ionospheric effects, the propagation channels for LMSC systems are also characterized by wideband effects due to multipath fading which makes the channels time-variant and exhibit frequency-selective distortion. Hence, an adequate knowledge and modelling of the propagation channel is necessary for the design and performance evaluation of the LMSC systems. A three-state simulation model for a frequency-selective LMSC channel, which is a combination of Rayleigh, Rician and Loo fading processes, is developed. The propagation characteristics of the proposed
    [Show full text]
  • Viewing the Growth in Civil Aviation and VTV Communications, and by Describing the Utility of the 5 Ghz Band for These New Communication Systems
    5 GHZ CHANNEL CHARACTERIZATION FOR AIRPORT SURFACE AREAS AND VEHICLE-VEHICLE COMMUNICATION SYSTEMS A dissertation presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Indranil Sen August 2007 This dissertation titled 5 GHZ CHANNEL CHARACTERIZATION FOR AIRPORT SURFACE AREAS AND VEHICLE-VEHICLE COMMUNICATION SYSTEMS by INDRANIL SEN has been approved for the School Electrical Engineering Computer Science and the Russ College of Engineering and Technology by David W. Matolak Associate Professor, School of Electrical Engineering and Computer Science Dennis Irwin Dean, College of Engineering and Technology Abstract SEN, INDRANIL, Ph.D., August 2007, Electrical Engineering 5 GHZ CHANNEL CHARACTERIZATION FOR AIRPORT SURFACE AREAS AND VEHICLE-VEHICLE COMMUNICATION SYSTEMS (416 pp.) Director of Dissertation: David W. Matolak We empirically characterize the 5 GHz channel for airport surface (AS) area and vehicle to vehicle (VTV) communication systems. The characterization consists of stochastic models for the channel impulse response, which focus on small-scale, and “medium,” or “meso-“scale effects. Motivation is provided by reviewing the growth in civil aviation and VTV communications, and by describing the utility of the 5 GHz band for these new communication systems. Further motivation arose from our literature survey, which revealed a pressing need for wideband stochastic channel models for these new applications in this band. Data measurement campaigns and environment descriptions are provided. For both the AS and VTV settings, classification schemes are developed. These schemes allow grouping AS and VTV environments into classes, and these classes are further divided into propagation regions, for which channel characteristics are statistically similar.
    [Show full text]
  • On the Use of Padé Approximation for Performance Evaluation of Maximal
    Hindawi Publishing Corporation EURASIP Journal on Wireless Communications and Networking Volume 2006, Article ID 58501, Pages 1–7 DOI 10.1155/WCN/2006/58501 On the Use of Pade´ Approximation for Performance Evaluation of Maximal Ratio Combining Diversity over Weibull Fading Channels Mahmoud H. Ismail and Mustafa M. Matalgah Department of Electrical Engineering, Center for Wireless Communications, The University of Mississippi, University, MS 38677-1848, USA Received 1 April 2005; Revised 18 August 2005; Accepted 11 October 2005 Recommended for Publication by Peter Djuric We use the Pade´ approximation (PA) technique to obtain closed-form approximate expressions for the moment-generating func- tion (MGF) of the Weibull random variable. Unlike previously obtained closed-form exact expressions for the MGF, which are relatively complicated as being given in terms of the Meijer G-function, PA can be used to obtain simple rational expressions for the MGF, which can be easily used in further computations. We illustrate the accuracy of the PA technique by comparing its results to either the existing exact MGF or to that obtained via Monte Carlo simulations. Using the approximate expressions, we analyze the performance of digital modulation schemes over the single channel and the multichannels employing maximal ratio combin- ing (MRC) under the Weibull fading assumption. Our results show excellent agreement with previously published results as well as with simulations. Copyright © 2006 M. H. Ismail and M. M. Matalgah. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Effect of AWGN & Fading (Raleigh & Rician) Channels on BER Performance of a Wimax Communication System
    (IJCSIS) International Journal of Computer Science and Information Security, Vol. 10, No. 8, August 2012 Effect of AWGN & Fading (Raleigh & Rician) channels on BER performance of a WiMAX communication System Nuzhat Tasneem Awon Md. Mizanur Rahman Dept. of Information & Communication Engineering Dept. of Information & Communication Engineering University of Rajshahi, Rajshahi, Bangladesh University of Rajshahi, Rajshahi, Bangladesh e-mail: [email protected] e-mail: [email protected] Md. Ashraful Islam A.Z.M. Touhidul Islam Lecturer Associate Professor Dept. of Information & Communication Engineering Dept. of Information & Communication Engineering University of Rajshahi, Rajshahi, Bangladesh University of Rajshahi, Rajshahi, Bangladesh e-mail: [email protected] e-mail: [email protected] Abstract— The emergence of WIMAX has attracted significant into two types; Fixed Wireless Broadband and Mobile interests from all fields of wireless communications including Broadband. The fixed wireless broadband provides services students, researchers, system engineers and operators. The that are similar to the services offered by the fixed line WIMAX can also be considered to be the main technology in the broadband. But wireless medium is used for fixed wireless implementation of other networks like wireless sensor networks. broadband and that is their only difference. The mobile Developing an understanding of the WIMAX system can be broadband offers broadband services with an addition namely achieved by looking at the model of the WIMAX
    [Show full text]