The Changing Structure of the Electric Power Industry: Selected Issues, 1998

Total Page:16

File Type:pdf, Size:1020Kb

The Changing Structure of the Electric Power Industry: Selected Issues, 1998 DOE/EIA-0562(98) Distribution Category UC-950 The Changing Structure of the Electric Power Industry: Selected Issues, 1998 July 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts This report was prepared by the staff of the Electric telephone at (202) 426-1180 or by Internet at Market Assessment Branch, Office of Coal, Nuclear, [email protected]. Specific questions regarding Electric and Alternate Fuels. General information the preparation and content of this report should be regarding this publication may be obtained from Robert directed to Dr. Suraj P. Kanhouwa, Project Manager, by M. Schnapp, Director, Electric Power Division, by telephone at (202) 426-1257 or by Internet at telephone at (202) 426-1211 or by Internet at [email protected]. Questions regarding [email protected], or from Betsy O'Brien, specific chapters of the report should be directed as Chief, Electric Market Assessment Team, by follows: Chapter Name Telephone Internet Chapters 1, 4, and 5 Dr. Suraj P. Kanhouwa (202) 426-1257 [email protected] Chapter 2 John W. Makens (202) 426-1165 [email protected] Dr. Suraj P. Kanhouwa (202) 426-1257 [email protected] Chapter 3 William D. Liggett (202) 426-1139 [email protected] ii Energy Information Administration/ The Changing Structure of the Electric Power Industry: Selected Issues, 1998 Preface Section 205(A)(2) of the Department of Energy Organi- The legislation that created the EIA vested the organ- zation Act of 1977 (Public Law 95-91) requires the ization with an element of statutory independence. The Administrator of the Energy Information Administration EIA does not take positions on policy questions. (EIA) to carry out a central, comprehensive, and unified energy data information program. Under this program, The EIA's responsibility is to provide timely, high- the EIA will collect, evaluate, assemble, analyze, and dis- quality information and to perform objective, credible seminate data and information relevant to energy re- analyses in support of deliberations by both public and sources, reserves, production, demand, technology, and private decisionmakers. Accordingly, this report does related economic and statistical information. not purport to represent the policy positions of the U.S. Department of Energy or the Administration. To assist in meeting these responsibilities in the area of electric power, EIA has prepared this report, The Chan- Charles Smith supervised the editing of this report and ging Structure of the Electric Power Industry: Selected Issues, Rebecca McNerney supervised production with 1998. This report is one in a series of reports meant to assistance from Terry Varley, Lisa Kinner, and Sandra provide a comprehensive analysis of key issues brought Smith. Theresa Simonds provided invaluable research forth by the movement of the U.S. electric power assistance. industry toward competition. This report can be accessed from EIA's World Wide Web This publication is intended for a wide audience, in- site at http://www.eia.doe.gov. cluding Congress, Federal and State agencies, the electric power industry, and the general public. Energy Information Administration/ The Changing Structure of the Electric Power Industry: Selected Issues, 1998 iii Contents Page Executive Summary ..............................................................................ix 1. Introduction .................................................................................. 1 2. An Overview of Electricity Trade ................................................................ 5 Background ................................................................................. 5 The Supply Side: Generation and Transmission .................................................... 5 The Demand Side: Residential, Commercial, and Industrial Users .................................... 9 The Wholesale Market: Trade and Price Issues .................................................... 15 Emerging Issues ............................................................................. 24 Conclusions ................................................................................ 26 3. Development of Independent Transmission System Operators ..................................... 29 Introduction ................................................................................ 29 An Overview of the Bulk Power Transmission System ............................................. 29 Emergence of the Independent System Operator Concept .......................................... 31 Status of ISO Proposals ....................................................................... 32 Responsibilities of ISOs ....................................................................... 37 Summary and Conclusion ..................................................................... 50 4. Ratesetting and Consumer Choice Issues in Electricity Restructuring ................................ 51 Background ................................................................................ 51 Treatment of Stranded Costs by States .......................................................... 59 Performance-Based Ratemaking (PBR) .......................................................... 64 Pilot Programs .............................................................................. 80 Conclusion ................................................................................. 85 5. State and Federal Restructuring Initiatives ....................................................... 93 Background ................................................................................ 93 Congressional Initiatives ...................................................................... 94 Administration Proposal ...................................................................... 97 States’ Perspectives on Federal Legislation ....................................................... 98 Stakeholders’ Perspectives on Federal Legislation ................................................. 99 State Initiatives .............................................................................. 99 Appendices A. Selected Provisions of The Energy Policy Act of 1992 and The Federal Power Act ................... 101 B. Average Revenue per Kilowatthour by Sector, 1988-1996 ....................................... 119 C. Data on Electric Trade Data in the United States, 1996 ......................................... 123 D. Fundamentals of Electric Power Transmission and Integrating Nonutility Generators ............... 137 E. Treatment of Stranded Costs in States as of April 30, 1998 143 F. Electricity Restructuring Bills Introduced in the 105th Congress as of May 31, 1998 167 Energy Information Administration/ The Changing Structure of the Electric Power Industry: Selected Issues, 1998 v Tables 3DJH 1. Major Characteristics of U.S. Electric Utilities by Type of Ownership ............................... 6 2. Composition of Generating Capability and Generation in the Electric Power Industry, 1996 ............ 8 3. Number of Retail Customers by Sector in the United States, 1990-1996 ............................. 11 4. Retail Sales, Revenue, and Average Price Paid by End-User Sector, 1990-1996 ....................... 12 5. End-User Sector Shares and Annual Growth Rates, 1990-1996 .................................... 13 6. Average Retail Electricity Prices by End-Use Sector, 1990-1996 ................................... 14 7. Retail Sales, Revenue, and Price by Requirement, Partial Requirement, and Non-Requirement Utilities, 1990-1996 ................................................................................ 16 8. Market Share of Wholesale Trade, Various Years ............................................... 21 9. Sales for Resale and Purchases by Investor-Owned Electric Utilities, 1990-1996 ...................... 22 10. Cost of Firm and Non-Firm Purchases by Investor-Owned Electric Utilities ......................... 22 11. Revenue from Firm and Non-Firm Sales for Resale by Investor-Owned Electric Utilities .............. 23 12. Average Price of Electricity for Wholesale Trade by Investor-Owned Electric Utilities ................ 23 13. Average Wholesale Price for From and To Trade by Investor-Owned Electric Utilities ................ 25 14. Electricity Purchases and Sales by Federal Utilities, Fiscal Year Ending September 30, 1995 ............ 26 15. Summary Information on Approved and Planned Independent System Operators as of March 31, 1998 . 34 16. Major Categories of Information on the Open Access Same-Time Information System (OASIS) ......... 50 17. Treatment of Stranded Costs by States as of April 30, 1998: A Summary ........................... 65 18. Retail Pilot Programs as of April 30, 1998 ..................................................... 86 19. Proposed Legislation Influencing the Restructuring of the Electric Power Industry During the 105th Congress as of May 31, 1998 ............................................................ 95 B1. Average Revenue per Kilowatthour for Industrial Customers, 1988-1996 .........................
Recommended publications
  • U.S. Energy in the 21St Century: a Primer
    U.S. Energy in the 21st Century: A Primer March 16, 2021 Congressional Research Service https://crsreports.congress.gov R46723 SUMMARY R46723 U.S. Energy in the 21st Century: A Primer March 16, 2021 Since the start of the 21st century, the U.S. energy system has changed tremendously. Technological advances in energy production have driven changes in energy consumption, and Melissa N. Diaz, the United States has moved from being a net importer of most forms of energy to a declining Coordinator importer—and a net exporter in 2019. The United States remains the second largest producer and Analyst in Energy Policy consumer of energy in the world, behind China. Overall energy consumption in the United States has held relatively steady since 2000, while the mix of energy sources has changed. Between 2000 and 2019, consumption of natural gas and renewable energy increased, while oil and nuclear power were relatively flat and coal decreased. In the same period, production of oil, natural gas, and renewables increased, while nuclear power was relatively flat and coal decreased. Overall energy production increased by 42% over the same period. Increases in the production of oil and natural gas are due in part to technological improvements in hydraulic fracturing and horizontal drilling that have facilitated access to resources in unconventional formations (e.g., shale). U.S. oil production (including natural gas liquids and crude oil) and natural gas production hit record highs in 2019. The United States is the largest producer of natural gas, a net exporter, and the largest consumer. Oil, natural gas, and other liquid fuels depend on a network of over three million miles of pipeline infrastructure.
    [Show full text]
  • Neural Network Based Microgrid Voltage Control Chun-Ju Huang University of Wisconsin-Milwaukee
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations May 2013 Neural Network Based Microgrid Voltage Control Chun-Ju Huang University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Electrical and Electronics Commons Recommended Citation Huang, Chun-Ju, "Neural Network Based Microgrid Voltage Control" (2013). Theses and Dissertations. 118. https://dc.uwm.edu/etd/118 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. NEURAL NETWORK BASED MICROGRID VOLTAGE CONTROL by Chun-Ju Huang A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering at The University of Wisconsin-Milwaukee May 2013 ABSTRACT NEURAL NETWORK BASED MICROGRID VOLTAGE CONTROL by Chun-Ju Huang The University of Wisconsin-Milwaukee, 2013 Under the Supervision of Professor David Yu The primary purpose of this study is to improve the voltage profile of Microgrid using the neural network algorithm. Neural networks have been successfully used for character recognition, image compression, and stock market prediction, but there is no directly application related to controlling distributed generations of Microgrid. For this reason the author decided to investigate further applications, with the aim of controlling diesel generator outputs. Firstly, this thesis examines the neural network algorithm that can be utilized for alleviating voltage issues of Microgrid and presents the results. MATLAT and PSCAD are used for training neural network and simulating the Microgrid model respectively.
    [Show full text]
  • Monitoring and Diagnosis Systems to Improve Nuclear Power Plant Reliability and Safety. Proceedings of the Specialists` Meeting
    J — v ft INIS-mf—15B1 7 INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR ELECTRIC Ltd. Monitoring and Diagnosis Systems to Improve Nuclear Power Plant Reliability and Safety PROCEEDINGS OF THE SPECIALISTS’ MEETING JOINTLY ORGANISED BY THE IAEA AND NUCLEAR ELECTRIC Ltd. AND HELD IN GLOUCESTER, UK 14-17 MAY 1996 NUCLEAR ELECTRIC Ltd. 1996 VOL INTRODUCTION The Specialists ’ Meeting on Monitoring and Diagnosis Systems to Improve Nuclear Power Plant Reliability and Safety, held in Gloucester, UK, 14 - 17 May 1996, was organised by the International Atomic Energy Agency in the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI) and the International Task Force on NPP Diagnostics in co-operation with Nuclear Electric Ltd. The 50 participants, representing 21 Member States (Argentina, Austria, Belgium, Canada, Czech Republic, France, Germany, Hungary, Japan, Netherlands, Norway, Russian Federation, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine, UK and USA), reviewed the current approaches in Member States in the area of monitoring and diagnosis systems. The Meeting attempted to identify advanced techniques in the field of diagnostics of electrical and mechanical components for safety and operation improvements, reviewed actual practices and experiences related to the application of those systems with special emphasis on real occurrences, exchanged current experiences with diagnostics as a means for predictive maintenance. Monitoring of the electrical and mechanical components of systems is directly associated with the performance and safety of nuclear power plants. On-line monitoring and diagnostic systems have been applied to reactor vessel internals, pumps, safety and relief valves and turbine generators. The monitoring techniques include nose analysis, vibration analysis, and loose parts detection.
    [Show full text]
  • Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
    INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.
    [Show full text]
  • Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications
    ORNL/TM-2005/230 POWER ELECTRONICS FOR DISTRIBUTED ENERGY SYSTEMS AND TRANSMISSION AND DISTRIBUTION APPLICATIONS L. M. Tolbert T. J. King B. Ozpineci J. B. Campbell G. Muralidharan D. T. Rizy A. S. Sabau H. Zhang* W. Zhang* Y. Xu* H. F. Huq* H. Liu* December 2005 *The University of Tennessee-Knoxville ORNL/TM-2005/230 Engineering Science and Technology Division POWER ELECTRONICS FOR DISTRIBUTED ENERGY SYSTEMS AND TRANSMISSION AND DISTRIBUTION APPLICATIONS L. M. Tolbert T. J. King B. Ozpineci J. B. Campbell G. Muralidharan D. T. Rizy A. S. Sabau H. Zhang W. Zhang Y. Xu H. F. Huq H. Liu Publication Date: December 2005 Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DE-AC05-00OR22725 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Not available externally. Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source. Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Web site http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Post-EPIRA Impacts of Electric Power Industry Competition Policies
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Navarro, Adoracion M.; Detros, Keith C.; Dela Cruz, Kirsten J. Working Paper Post-EPIRA impacts of electric power industry competition policies PIDS Discussion Paper Series, No. 2016-15 Provided in Cooperation with: Philippine Institute for Development Studies (PIDS), Philippines Suggested Citation: Navarro, Adoracion M.; Detros, Keith C.; Dela Cruz, Kirsten J. (2016) : Post-EPIRA impacts of electric power industry competition policies, PIDS Discussion Paper Series, No. 2016-15, Philippine Institute for Development Studies (PIDS), Quezon City This Version is available at: http://hdl.handle.net/10419/173536 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Philippine Institute for Development Studies Surian sa mga Pag-aaral Pangkaunlaran ng Pilipinas Post-EPIRA Impacts of Electric Power Industry Competition Policies Adoracion M.
    [Show full text]
  • Solar Electric Power -- the U.S. Photovoltaic Industry Roadmap
    CONTRIBUTORS U.S. Photovoltaic Industry Roadmap Steering Committee • Allen Barnett, AstroPower, Inc. • Larry Crowley (retired), formerly with Idaho Power • J. Michael Davis, Avista Labs • Chet Farris, Siemens Solar Industries • Harvey Forest (retired), formerly with Solarex Corp. • Glenn Hamer, Solar Energy Industries Association • Lionel Kimerling, Massachusetts Institute of Technology • Roger Little, Spire Corporation • Michael Paranzino, Solar Energy Industries Association • William Roppenecker (retired), formerly with Trace Engineering • Richard Schwartz, Purdue University • Harry Shimp, BP Solar • Scott Sklar, The Stella Group, Ltd.; formerly with SEIA Roadmap Workshop Participants • National Center for Photovoltaics: Workshop on PV Program Strategic Direction, July 14-15, 1997 (Golden, Colorado) • U.S. Photovoltaics Industry PV Technology Roadmap Workshop, June 23-25, 1999 (Chicago, Illinois) • PV Roadmap Conference, December 13-14, 2000 (Dallas, Texas) SOLAR-ELECTRIC POWER THE U.S. PHOTOVOLTAIC INDUSTRY ROADMAP “…providing the electricity consumer with competitive and environmentally friendly energy products and services from a thriving United States-based solar-electric power industry.” Reprinted January 2003 TABLE OF CONTENTS Executive Summary.........................................................................................................................1 Chapter 1. Introducing the Photovoltaic Industry Roadmap … Full Speed Ahead........................5 Chapter 2. PV's Value to Customers and the Nation … Why Travel the
    [Show full text]
  • U.S. Electric Power Industry - Context and Structure
    U.S. Electric Power Industry - Context and Structure Authored by Analysis Group for Advanced Energy Economy November 2011 Industry Organization The electric industry across the United States contains Figure 1 significant variations from the perspectives of structure, A History of the U.S. Electric Industry organization, physical infrastructure characteristics, 1870 cost/price drivers, and regulatory oversight. The variation stems from a mix of geographical influences, population Thomas Edison demonstrates the electric light bulb and generator and industry make up, and the evolution of federal and 1880 state energy law and policy. Edison launches Pearl Street station, the first modern electricity generation station th In the early part of the 20 century, the electric industry 1890 evolved quickly through the creation, growth and Development begins on the Niagra Falls hydroelectric project consolidation of vertically-integrated utilities – that is, Samuel Insull suggests the utility industry is a natural companies that own and operate all of the power plants, 1900 monopoly - electric industry starts to become vertically transmission lines, and distribution systems that generate integrated and deliver power to ultimate customers. At the same Wisconsin enacts first private utility regulation and 30 states time, efficiency of electricity generation dramatically follow suit shortly thereafter 1910 improved, encouraging growth, consolidation of the industry, and expansion into more and more cities, and The Federal Power Act created the Federal Power Commission across a wider geographic area. Over time, consolidated (now FERC) utilities were granted monopoly franchises with exclusive 1920 service territories by states, in exchange for an obligation to serve customers within that territory at rates for service 1 1930 based on state-regulated, cost-of-service ratemaking.
    [Show full text]
  • Community Energy White Paper April 2014 Contents
    Community Energy White Paper April 2014 Contents Letter from the CEO .............................................................................. 3 Executive Summary ............................................................................. 4 Redefining energy ............................................................................... 5 Today’s challenges .............................................................................. 8 The future of energy .......................................................................... 11 A solution: Decentralisation ............................................................... 14 Why focus on communities? .............................................................. 15 What can we learn from other countries? ........................................ 20 A platform for success ...................................................................... 24 How will it work? ............................................................................... 25 Government support ......................................................................... 26 Appendix: The UK Government’s community energy strategy ....... 27 Bibliography ....................................................................................... 29 2 Letter from the CEO All industries evolve. If they don’t, they die out or are supplanted by something different. Evolution can take many forms - value for money, customer service, product innovation, operational efficiency. But one way or another, change means survival and growth.
    [Show full text]
  • Magnox Electric Plc's Strategy for Decommissioning Its Nuclear
    A review by HM Nuclear Installations Inspectorate Magnox Electric plc’s strategy for decommissioning its nuclear licensed sites A review by HM Nuclear Installations Inspectorate Magnox Electric plc’s strategy for decommissioning its nuclear licensed sites Published by the Health and Safety Executive February 2002 Further copies are available from: Health and Safety Executive Nuclear Safety Directorate Information Centre Room 004 St Peter’s House Balliol Road, Bootle Merseyside L20 3LZ Tel: 0151 951 4103 Fax: 0151 951 4004 E-mail: [email protected] Available on the Internet from: http://www.open.gov.uk/hse/nsd ii FOREWORD This report sets out the findings of a review by the Health and Safety Executive’s Nuclear Installation Inspectorate, in consultation with the environment agencies, of the Magnox Electric plc (Magnox Electric) decommissioning and waste management strategies for its nuclear licensed sites. The review was undertaken in accordance with the 1995 White Paper “Review of Radioactive Waste Management Policy: Final Conclusions”, Cm 2919, which stated that the Government would ask all nuclear operators to draw up strategies for the decommissioning of their redundant plant and that the Health and Safety Executive (HSE) would review these strategies on a quinquennial basis in consultation with the environment agencies. The Magnox Electric strategy upon which this review is based was prepared subsequent to the merger of Magnox Electric with British Nuclear Fuels plc (BNFL) but whilst it still remained a separate nuclear site licensee under the Nuclear Installations Act 1965 (as amended). This report therefore considers Magnox Electric’s decommissioning and waste management strategies as of April 2000 for its nuclear licensed sites at: Berkeley, Bradwell, Dungeness A, Hinkley Point A, Hunterston A, Oldbury, Sizewell A, Trawsfynydd and Wylfa; and at the Berkeley Centre; and for the financial liabilities for waste and decommissioning on other nuclear licensed sites (e.g.
    [Show full text]
  • Endless Trouble: Britain's Thermal Oxide Reprocessing Plant
    Endless Trouble Britain’s Thermal Oxide Reprocessing Plant (THORP) Martin Forwood, Gordon MacKerron and William Walker Research Report No. 19 International Panel on Fissile Materials Endless Trouble: Britain’s Thermal Oxide Reprocessing Plant (THORP) © 2019 International Panel on Fissile Materials This work is licensed under the Creative Commons Attribution-Noncommercial License To view a copy of this license, visit ww.creativecommons.org/licenses/by-nc/3.0 On the cover: the world map shows in highlight the United Kingdom, site of THORP Dedication For Martin Forwood (1940–2019) Distinguished colleague and dear friend Table of Contents About the IPFM 1 Introduction 2 THORP: An Operational History 4 THORP: A Political History 11 THORP: A Chronology 1974 to 2018 21 Endnotes 26 About the authors 29 About the IPFM The International Panel on Fissile Materials (IPFM) was founded in January 2006 and is an independent group of arms control and nonproliferation experts from both nuclear- weapon and non-nuclear-weapon states. The mission of the IPFM is to analyze the technical basis for practical and achievable pol- icy initiatives to secure, consolidate, and reduce stockpiles of highly enriched uranium and plutonium. These fissile materials are the key ingredients in nuclear weapons, and their control is critical to achieving nuclear disarmament, to halting the proliferation of nuclear weapons, and to ensuring that terrorists do not acquire nuclear weapons. Both military and civilian stocks of fissile materials have to be addressed. The nuclear- weapon states still have enough fissile materials in their weapon stockpiles for tens of thousands of nuclear weapons. On the civilian side, enough plutonium has been sepa- rated to make a similarly large number of weapons.
    [Show full text]
  • Assessment of On-Site Power Opportunities in the Industrial Sector
    ORNL/TM-2001/169 Assessment of On-Site Power Opportunities in the Industrial Sector September 2001 Prepared by: Onsite Energy Corporation Under contract No. 85X-TA008V 701 Palomar Airport Road, Suite 200 Carlsbad, California 92009 Teresa Bryson William Major Ken Darrow ORNL/TM-2001/169 ASSESSMENT OF ON-SITE POWER OPPORTUNITIES IN THE INDUSTRIAL SECTOR Energy Division September 2001 Prepared by OAK RIDGE NATIONAL LABORATORY P.O. Box 2008 Oak Ridge, Tennessee 37831-6285 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC-00OR22725 TABLE OF CONTENTS LIST OF FIGURES........................................................................................................................... vii LIST OF TABLES............................................................................................................................. ix ACRONYMS..................................................................................................................................... xi ACKNOWLEDGMENTS.................................................................................................................xiii EXECUTIVE SUMMARY ...............................................................................................................ES-1 INTRODUCTION....................................................................................................................... ES-1 EXISTING ON-SITE GENERATION IN THE INDUSTRIAL SECTOR................................ ES-1 REMAINING POTENTIAL FOR ON-SITE GENERATION IN THE INDUSTRIAL
    [Show full text]