Feeding Habitats of Juvenile Reef Fishes in a Tropical Mangroveâœseagrass Continuum Along a Malaysian Shallow-Water Coastal La

Total Page:16

File Type:pdf, Size:1020Kb

Feeding Habitats of Juvenile Reef Fishes in a Tropical Mangroveâœseagrass Continuum Along a Malaysian Shallow-Water Coastal La Bull Mar Sci. 96(3):469–486. 2020 research paper https://doi.org/10.5343/bms.2018.0093 Feeding habitats of juvenile reef fishes in a tropical mangrove–seagrass continuum along a Malaysian shallow-water coastal lagoon 1 Institute of Oceanography Dung Quang Le 1 * and Environment, Universiti 1 Malaysia Terengganu, 21030 Siau Yin Fui 2 Kuala Nerus, Terengganu, Kentaro Tanaka Malaysia Suhaimi Suratman 1 2 Atmosphere and Ocean Yuji Sano 2 Research Institute, The 2 University of Tokyo, 5-1-5, Kotaro Shirai Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan * Corresponding author email: ABSTRACT.—We conducted stable isotope (δ13C and <[email protected]>, <le. δ15N) and gut content analyses to understand habitat use [email protected]> of juvenile reef fishes (Lethrinus lentjan, Lutjanus russellii, and Epinephelus coioides), particularly the influence of spatial habitat structure along seagrass–mangrove continua. Sampling was conducted in Setiu Lagoon, located in the southern waters of the South China Sea (Malaysia). Gut content analysis indicated that the focal fishes preyed mainly on benthic invertebrates and other smaller fishes; these were used as potential prey items for isotopic tracers to track fish habitat use. Stable isotope analyses highlighted that the juvenile reef fishes were highly associated with seagrass beds as feeding grounds; however, site-specific analyses suggest differences in fish feeding habitats. The juvenile fishes, particularly large juveniles, preyed in both mangrove and seagrass areas from the central lagoon, whereas all juveniles showed preferential foraging within seagrass meadows in the nearby lagoon mouth. Furthermore, the mean stable isotope values of muscle tissue differed among fish size classes, indicating their ontogenetic habitat/diet shifts, especially for L. lentjan and E. coioides. This study provides important information to support current efforts in protecting and Guest Editor: Amy Y Then preserving mangroves and seagrasses as crucial nursery Date Submitted: 11 December, 2018. habitats for juvenile reef fishes from the anthropogenic Date Accepted: 6 September, 2019. activities influencing Setiu Lagoon. Available Online: 11 September, 2019. Mangrove and seagrass habitats in tropical shallow-water coastal lagoons are con- sidered crucial nursery and feeding grounds for numerous fish species including reef fishes (Blaber 2000, Sheaves and Molony 2000, Beck et al. 2001) because they provide protection from predators and rich food resources, which maximize growth during the juvenile stage (Sheaves et al. 2015). They also serve to replenish and sustain adult populations on coral reefs (Beck et al. 2001, Nagelkerken et al. 2008, Sheaves et al. Bulletin of Marine Science 469 © 2020 Rosenstiel School of Marine & Atmospheric Science of the University of Miami 470 Bulletin of Marine Science. Vol 96, No 3. 2020 2015). The interlinked mangrove and seagrass habitats have been intensively studied due to their importance as feeding habitats for juvenile reef fishes, particularly in the Caribbean region (Nagelkerken and van der Velde 2004, Vaslet et al. 2015). In this region, substantial areas exist where mangrove prop-roots are inundated during low tide, thus juvenile reef fishes can shelter in mangrove habitats and make feeding forays into nearby seagrass beds (Rooker and Dennis 1991, Nagelkerken and van der Velde 2004). Additionally, some studies conducted on size-related dietary shifts of reef fishes suggested that small juveniles utilize mainly seagrass beds and then in- crease their range of foraging grounds (a mangrove–seagrass continua) as they grow before migrating to coral reefs (Nagelkerken and van der Velde 2004, Mumby 2006, Vaslet et al. 2015). Fish feeding activities can also be site-specific and depend on geographic regions as well as tropical estuary environments (Barletta et al. 2005, Lugendo et al. 2007). In the Indo-Pacific region, mangroves and seagrasses also form continua of intertidal mosaic habitats in lagoons and estuaries; however, the man- grove habitats are alternately inundated and exposed by the high-tide/low-tide cycle. During low tidal periods, such habitats are often not continuously available for most fishes, thus seagrass meadows provide food and shelter while mangroves are unavail- able (Sheaves 2005, Nagelkerken 2009). Several studies suggest that mangroves may not be the main sources of carbon for fish assemblages in mangrove estuaries, as the isotopic ratios in fish species were more enriched in13 C than mangrove-derived carbon sources (Kieckbusch et al. 2004, Lugendo et al. 2007, Nyunja et al. 2009, Tue et al. 2014). However, other studies have measured stable isotope ratios in benthic invertebrates to trace the origins or ontogenetic movements of their consumers, par- ticularly fish species (Nakamura et al. 2008, Berkström et al. 2013, Connolly and Waltham 2015, Escalas et al. 2015) because, given that benthic invertebrates have lower mobility or are habitat-specific, the isotopic signatures of their tissues reflect the relative changes in the isotopic values of local dietary sources, seagrasses or man- groves (Fry 1984, Nagelkerken et al. 2001, Bouillon et al. 2002, Vaslet et al. 2011, 2012, Berkström et al. 2013, Le et al. 2018). While juvenile reef fishes can access mangroves for feeding during tidal inundation, they mainly prey on benthic inver- tebrates that rely on mangrove carbon sources, such as sesarmid crabs (Sheaves and Molony 2000, Le et al. 2018). Such feeding activities of the juveniles reflect complex functional webs integrated across interlinked, intertidal vegetated habitats in tropi- cal regions (Nagelkerken and van der Velde 2004, Igulu et al. 2013). Furthermore, the nursery functions of vegetated habitats are structurally complex and dependent on habitat configuration and environmental conditions (Blaber 2000, Nagelkerken et al. 2008, Taylor et al. 2017). Thus, the loss or damage of one nursery habitat can- not only alter ecological functioning of entire coastal systems, but also profoundly affect juvenile fish biomass and sustainable fishery stocks (Honda et al. 2013). Very little information is available regarding juvenile reef fishes feeding habits in coastal nursery habitats of the Pacific Ocean, particularly around Malaysia. Therefore, such research is urgently needed to improve our understanding of these habitats and the food webs they support in order to successfully design marine reserves and resource management systems to preserve mangrove and seagrass habitats. In recent studies, gut content and stable isotope analyses have been combined as an effective approach to study food web structure and the movement and feeding ac- tivities of juvenile fishes (Cocheret de la Morinière et al. 2003, Vaslet et al. 2011, Igulu et al. 2014, Escalas et al. 2015, Le et al. 2018). Gut contents provide a 1–2 hr snapshot Le et al.: Feeding habitats of juvenile reef fishes in interlinked habitats 471 of information on fish diets (George and Hadley 1979) and can help determine the available prey items within habitats (Vaslet et al. 2011). Stable isotopic values in fish tissue provide information relating to the isotopic signature of fish diets during the preceding days, weeks, or months (Gearing 1991, Fry 2008). According to Post (2002) and McCutchan et al. (2003), the degree of enrichment of stable isotopes between fishes and their diets are slightly enriched (<1‰) or conserved for 13δ C but vary from 2.0‰ to 3.5‰ for δ15N. Furthermore, mangroves often show distinct δ13C signatures (δ13C generally between −34‰ and −27‰) compared to seagrasses (δ13C > −18‰; Fry and Sherr 1984, Bouillon et al. 2008). Thus, stable isotope signatures of fish tissue can reflect the corresponding isotopic signatures of local vegetation-based food webs in which the fish has grown (Nagelkerken and van der Velde 2004, Vaslet et al. 2011, Le et al. 2018). Recently, Bayesian mixing models, such as Stable Isotope Analysis in R (SIAR), have been widely applied for their utility in analyzing isotope data (Parnell et al. 2010, Phillips et al. 2014). SIAR was developed to estimate distributions of con- sumers’ possible diets (Vaslet et al. 2011, Abrantes et al. 2015, Connolly and Waltham 2015), to elucidate species-specific ontogenetic shifts, or to characterize broader food web structure (Cocheret de la Morinière et al. 2003, Nakamura et al. 2008, Vinagre et al. 2012, Abrantes et al. 2015, Artero et al. 2015, Le et al. 2017). In the present study, we used gut content and stable isotope analysis (δ13C and δ15N) to determine the feeding grounds of juvenile reef fishes, especially of emperor fish (Lethrinus lentjan), snapper (Lutjanus russellii), and grouper (Epinephelus coioides) in structurally complex nursery habitats in a shallow-water lagoon. Materials and Methods Study Area.—Setiu Lagoon (Fig. 1) is a critical nursery wetland for the juveniles of many fish species along the eastern coast of Peninsular Malaysia (Azmi 2014). An earlier study indicated that the mangrove and seagrass continua that form along the lagoon are utilized by a number of juvenile fishes, particularly reef fishes (Le et al. 2018). Approximately 14 km long, the lagoon contains several habitat types with a gradient of salinity from the center to the mouth (Nakisah and Fauziah 2003, Azmi 2014). In the central lagoon, where the water is influenced by the Ular rivulet and mangroves are dominated by Rhizophora spp. and Avicennia spp., the salinity varies from 24‰ to 27‰. In contrast, waters which are in the narrow mouth,
Recommended publications
  • Ecology of Bivalves in the Lagoon Area of Setiu Wetlands, Terengganu, Malaysia
    Middle-East Journal of Scientific Research 24 (6): 2145-2151, 2016 ISSN 1990-9233 © IDOSI Publications, 2016 DOI: 10.5829/idosi.mejsr.2016.24.06.23657 Ecology of Bivalves in the Lagoon Area of Setiu Wetlands, Terengganu, Malaysia 11Nurulafifah Yahya, Nurul Zalizahana Zakaria, 1Zakirah Mohd Taufeq, 12Noor Shahida Rosli and Zainudin Bachok 1Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia 2School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia Abstract: Study on ecology of bivalves in the lagoon area of Setiu Wetlands, Terengganu, South China Sea was conducted on two months interval for a year (July, September, November 2011 and January, March, May 2012). Bivalve samples and environmental parameters (in situ parameters and sediments) were collected from 11 stations within 50 m transect line along the lagoon. A total of 10, 845 individual of bivalves were collected and classified into 11 families, 21 genera and 34 species with mean total density of 33±17 individuals/m2 . There was no significant temporal changes in abundance of bivalves and environmental parameter (p>0.05). The density of bivalves, in situ parameters (salinity and pH) and sediment analysis (total organic matter and sediment size) had significant difference among stations (p<0.05). However, density of bivalves had no significant relationship with all environmental parameters studied (p>0.05). Density of bivalves was higher in the brackish subtidal area compared to freshwater subtidal and mangrove intertidal area. The abundance of bivalve’s species in the lagoon area of Setiu Wetlands is relatively high to the area covered.
    [Show full text]
  • 5. Bibliography
    click for previous page 101 5. BIBLIOGRAPHY Akazaki, M., 1958. Studies on the orbital bones of sparoid fishes. Zool.Mag., Tokyo, 67:322-25 -------------,1959. Comparative morphology of pentapodid fishes. Zool.Mag., Tokyo, 68(10):373-77 -------------,1961. Results of the Amami Islands expedition no. 4 on a new sparoid fish, Gymnocranius japonicus with special reference to its taxonomic status. Copeia, 1961 (4):437-41 -------------,1962. Studies on the spariform fishes. Anatomy, phylogeny, ecology and taxonomy. Misaki Mar.Biol.Inst.,Kyoto Univ., Spec. Rep. , No. 1, 368 p. Aldonov, KV.& A.D. Druzhinin, 1979. Some data on scavenger (family Lethrinidae) from the Gulf of Aden region. Voprosy Ikhthiologii, 18(4):527-35 Allen, G.R. & R.C. Steene, 1979. The fishes of Christmas Island, Indian Ocean. Aust.nat.Parks Wildl.Serv.Spec.Publ., 2:1-81 -------------, 1987. Reef fishes of the Indian Ocean. T.F.H. Publications, Neptune City, 240 p., 144 pls -------------, 1988. Fishes of Christmas Island, Indian Ocean. Christmas Island Natural History Association, 199 p. Allen, G. R. & R. Swainston, 1988. The Marine fishes of North-western Australia. A field guide for anglers and divers. Western Australian Museum, Perth, 201 p. Alleyne, H.G. & W. Macleay, 1877. The ichthyology of the Chevert expedition. Proc. Linn.Soc. New South Wales, 1:261-80, pls.3-9. Amesbury, S. S. & R. F. Myers, 1982. Guide to the coastal resources of Guam, Volume I. The Fishes. University of Guam Press, 141 p. Asano, H., 1978. On the tendencies of differentiation in the composition of the vertebral number of teleostean fishes. Mem.Fac.Agric.Kinki Univ., 10(1977):29-37 Baddar, M.K , 1987.
    [Show full text]
  • CBD Sixth National Report
    SIXTH NATIONAL REPORT OF MALAYSIA to the Convention on Biological Diversity (CBD) December 2019 i Contents List of Figures ............................................................................................................................................... iv List of Tables ................................................................................................................................................ vi List of Acronyms ........................................................................................................................................... vi Foreword ..................................................................................................................................................... vii Preamble ....................................................................................................................................................... 1 EXECUTIVE SUMMARY .................................................................................................................................. 3 CHAPTER 1: UPDATED COUNTRY BIODIVERSITY PROFILE AND COUNTRY CONTEXT ................................... 1 1.1 Malaysia as a Megadiverse Country .................................................................................................... 2 1.2 Major pressures and factors to biodiversity loss ................................................................................. 3 1.3 Implementation of the National Policy on Biological Diversity 2016-2025 ........................................
    [Show full text]
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • Exploited Off Thoothukudi Coast, Tamil Nadu, India
    Indian Journal of Geo Marine Sciences Vol.46 (11),November 2017, pp. 2367-2371 Age, Growth and Mortality characteristics of Lethrinus lentjan (Lacepede, 1802) exploited off Thoothukudi coast, Tamil Nadu, India M. Vasantharajan1, P.Jawahar2, S. Santhoshkumar2 & P.Ramyalakshmi3 1Directorate of Research, Tamil Nadu Fisheries University, Nagapattinam 611 001, Tamil Nadu, India 2Department of Fisheries Biology and Resource Management, Tamil Nadu Fisheries University, Nagapattinam 611 001, Tamil Nadu, India 3 Department of Aquaculture, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Nagapattinam 611 001, Tamil Nadu, India. [E- mail: [email protected]] Received 17 July 2015 ; revised 17 November 2016 Study on maximum sustainable yield along Thoothukudi coast indicated that L.lentjan is underexploited. The L∞, K and t0 value of L.lentjan were 78.8 cm, 0.37 year-1 and -0.68 year respectively. The K value of L.lentjan was relatively higher inferring slow growth rate of this tropical demersal fish species. Total instantaneous mortality (Z) of L.lentjan was 1.28 year-1 and the estimated Fishing mortality was 0.73. Recruitment of L.lentjan was recorded in throughout year with two peaks in July – August, 2011and April, 2012. [Keywords : Lethrinus lentjan, Age, Growth, Mortality ] Introduction In India, the good perch grounds were L.nebulosus (Starry emperor bream), L. harak found in northeast coasts from the depth of 60 -70 (Yellow banded emperor bream), L.elongatus (Long m and located in the range between 18° to 20° N face pig face bream) and Lethrinella miniatus (long and 84° to 87° E, as recorded1. Perches contribute nosed emperor)5.
    [Show full text]
  • Effects of Coral Bleaching on Coral Reef Fish Assemblages
    Effects of Coral Bleaching on Coral Reef Fish Assemblages Nicholas A J Graham A Thesis submitted to Newcastle University for the Degree of Doctor of Philosophy School of Marine Science and Technology Supervisors: Professor Nicholas V C Polunin Professor John C Bythell Examiners: Professor Matthew G Bentley Dr Magnus Nyström First submitted: 1st July 2008 Viva-Voce: 1st September 2008 Abstract Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of climate warming to the loss of live coral cover has been well documented, the associated effects on fish have not. Such information is important as coral reef fish assemblages provide critical contributions to ecosystem function and services. This thesis assesses the medium to long term impacts of coral loss on fish assemblages in the western Indian Ocean. Feeding observations of corallivorous butterflyfish demonstrates that considerable feeding plasticity occurs among habitat types, but strong relationships exist between degree of specialisation and declines in abundance following coral loss. Furthermore, obligate corallivores are lost fairly rapidly following decline in coral cover, whereas facultative corallivores are sustained until the structure of the dead coral begins to erode. Surveys of benthic and fish assemblages in Mauritius spanning 11 years highlight small changes in both benthos and fish through time, but strong spatial trends associated with dredging and inter-specific competition. In Seychelles, although there was little change in biomass of fishery target species above size of first capture, size spectra analysis of the entire assemblage revealed a loss of smaller individuals (<30cm) and an increase in the larger individuals (>45cm).
    [Show full text]
  • Isotopic Evidence of Connectivity Between An
    SPECIAL ISSUE CSIRO PUBLISHING Marine and Freshwater Research https://doi.org/10.1071/MF18302 Isotopic evidence of connectivity between an inshore vegetated lagoon (nursery habitat) and coastal artificial reefs (adult habitats) for the reef fish Lethrinus lentjan on the Terengganu coast, Malaysia Dung Quang Le A,E, Siau Yin FuiA, Rumeaida Mat PiahB, Toyoho IshimuraC, Yuji SanoD, Kentaro TanakaD and Kotaro ShiraiD AInstitute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia. BSchool of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia. CDepartment of Industrial Engineering, National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka, Ibaraki 312-8508 Japan. DAtmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan. ECorresponding author. Email: [email protected]; [email protected] 13 15 13 18 Abstract. Stable isotope analyses of muscle tissue (d Cmuscle and d Nmuscle) and otoliths (d Cotolith and d Ootolith) were used to retrospectively track habitat uses of Lethrinus lentjan, and to determine any association between Setiu Lagoon (nursery habitat) and coastal artificial reefs (CARs; adult habitats) on the Terengganu coast, Malaysia. Muscle stable isotopes exhibited a spatial change from inshore to offshore habitats associated with growth, possibly related to the reef-ward movement of the fish. Otolith stable isotopes of adult fish from CARs were measured in juvenile (from outside the core to the first opaque zone of otolith) and adult (the edge of otolith) portions and were compared with those of juveniles from Setiu Lagoon, suggesting that the adult fish may not primarily use the lagoon as a nursery before ontogenetically migrating to CARs.
    [Show full text]
  • A Quantitative Comparison of Recreational Spearwshing and Linewshing on the Great Barrier Reef: Implications for Management of Multi-Sector Coral Reef Wsheries
    Coral Reefs (2008) 27:85–95 DOI 10.1007/s00338-007-0293-z REPORT A quantitative comparison of recreational spearWshing and lineWshing on the Great Barrier Reef: implications for management of multi-sector coral reef Wsheries A. J. Frisch · R. Baker · J-P. A. Hobbs · L. Nankervis Received: 3 May 2007 / Accepted: 6 August 2007 / Published online: 25 August 2007 © Springer-Verlag 2007 Abstract This study compared the catch composition, equitably across both Wshing sectors. A management strategy catch per unit eVort, and incidental impacts of spearWshers of this type will simplify enforcement of Wsheries regulations and lineWshers engaged in a structured Wshing program and avoid discrimination of particular Wshers in local whereby Wshing eVort was standardized across time, space communities where both Wshing methods are socially or and skill level. It was found that (1) the catch composition culturally important. of both groups of Wshers overlapped considerably, (2) the numbers of target Wsh caught by spearWshers (156) and Keywords SpearWshing · LineWshing · Catch per unit lineWshers (168) were not signiWcantly diVerent, (3) the eVort · Selectivity · Coral trout · Bycatch mean size of target Wsh caught by spearWshers (1.95 § 0.1 kg, §SE) was signiWcantly larger than the mean size of target Wsh caught by lineWshers (1.27 § 0.06 kg), and (4) spear- Introduction Wshers retained 43% more biomass of target species than did lineWshers (304 versus 213 kg, respectively). However, OverWshing is deemed to be one of the greatest threats to lineWshers used »1 kg of bait for every 3 kg of target Wsh the future of coral reefs (Jackson et al.
    [Show full text]
  • Valuing the Potential Economic Value of Mangroves Resources in Setiu Wetlands, Terengganu, Malaysia: a Preliminary Findings
    International Journal of Education and Research Vol. 2 No. 12 December 2014 Valuing The Potential Economic Value of Mangroves Resources in Setiu Wetlands, Terengganu, Malaysia: A Preliminary Findings By Mohd Azmi, M.I.1 Abstract The Setiu Wetlands (SW) is one of the unique wetlands area in Malaysia which offers pristine beaches and rivers, mangrove forest area, and undisturbed nature parks. Apart from its diverse flora and fauna, mangrove forest in SW serves many ecological functions and benefits such as coastline protection, nursery ground for marine species as well as providing source of income to local communities with the availability of its non-timber forest products (NTFPs). To show how important of these benefits from the existence of SW, the full potential of its biodiversity composition need to be quantified. Environmental economists have suggested many methods for the valuation of resources and environmental services which basically stemmed from the concept of achieving the total economic value (TEV). In the context of economic valuation, the types of economic value to be estimated should be identified clearly according to its tangible or intangible benefits. This study focused on valuing the tangible benefits derived from the availability of mangrove resources (i.e. NTFPs) in the study site. By using market price-based valuation technique, the estimated total net benefits of mangrove resources in SW is estimated at RM 2,157.71 per hectare or RM 901,922.78 for the whole mangrove areas of SW. Key Words: Setiu Wetlands, economic value, market price-based approach 1 Lecturer, Department of Foundation and Liberal Education, Centre for Foundation and Liberal Education, University of Malaysia, Terengganu Introduction Wetlands are generally known to have highly productive ecosystems which provide many important benefits especially on the ecological function (e.g.
    [Show full text]
  • Malaysian National Interpretation for the Identi Ication of High
    Malaysian National Interpretation for the Identi�ication of High Conservation Values HCV Aver fonts size 200pts green- light- 20% HCV This document is the Malaysian National Interpretation of the Common Guidance on the Identification of High Conservation Values (HCVs) which was originally produced by the HCV Resource Network (HCV RN). It supersedes the High Conservation Value Forest (HCVF) Toolkit for Malaysia published by WWF-Malaysia in 2009. The production of this National Interpretation document was spearheaded by the HCV Malaysia Toolkit Steering Committee with inputs from the Technical Working Group and technical guidance from the HCV Resource Network. The HCV Malaysia Toolkit Steering Committee comprises FSC Malaysia, the Malaysian Palm Oil Association (MPOA), the Malaysian Palm Oil Certification Council (MPOCC), the Malaysian Timber Certification Council (MTCC), the Roundtable for Sustainable Palm Oil (RSPO), the Roundtable for Sustainable Biomaterials (RSB) and WWF-Malaysia. Production of this document was supported through funding from WWF-Malaysia and RSPO. Production of this guidance document was facilitated by Proforest The Technical Working Group (TWG) of the HCV Malaysia Toolkit Steering Committee comprises the following organisations: Centre for Malaysian Indigenous Studies, Dayak Oil Palm Planters Association (DOPPA), Department of Agriculture Sarawak, Felda Global Ventures (FGV), Forestry Department Peninsular Malaysia, Forest Research Institute Malaysia (FRIM), Forest Solution Malaysia, Forever Sabah, Global Environmental Centre (GEC), Bunge Loders Croklaan, Kelantan State Forestry Department, Kiwiheng Sdn. Bhd., Kompleks Perkayuan Kayu Kayan Terengganu, Malaysian Nature Society, Malaysian Palm Oil Certification Council (MPOCC), NEPcon, PEERS Consult, Persatuan Dayak Sarawak (PEDAS), Sabah Forest Industries, Sarawak Forestry Corporation, Sime Darby, Sarawak Oil Palm Plantation Owners Association (SOPPOA), TSH Resources, Universiti Malaya, Universiti Malaysia Sarawak, Wilmar International, WWF-Malaysia.
    [Show full text]
  • Otolith Shape Analysis of Lethrinus Lentjan (Lacepède, 1802) and L. Microdon (Valenciennes, 1830) from the Red Sea
    Int. J. Aquat. Biol. (2021) 9(3): 159-166 ISSN: 2322-5270; P-ISSN: 2383-0956 Journal homepage: www.ij-aquaticbiology.com © 2021 Iranian Society of Ichthyology Original Article Otolith shape analysis of Lethrinus lentjan (Lacepède, 1802) and L. microdon (Valenciennes, 1830) from the Red Sea Yassein A.A. Osman*1, Snæbjörn Pálsson2, Ahmed F. Makkey1 1National Institute of Oceanography and Fisheries, NIOF, Egypt. 2Department of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland. Abstract: Otolith shape and morphology are used to identify fish species and population stocks. Article history: Received 14 February 2021 The aim of this study was to distinguish the Lethrinus lentjan (Lacepède, 1802) and L. microdon Accepted 15 April 2021 (Valenciennes, 1830) (family: Lethrinidae) using otolith shape. The analyses apply the ShapeR Available online 25 June 2021 package in R which enables to extract the outline and otolith morphology from images and for statistical examining of individual variation. Otoliths of 165 individuals from the two Lethrinus Keywords: species were collected during 2019 and 2020. The wavelet levels were examined by using 6 wavelets Otolith outline to collect 63 coefficients. The regression between width and fish length were b = -0.03 (t = 2.6, P = Emperor fish 0.01) sfor L. lentjan and was significantly different (t = 2.120, P = 0.036) for L. microdon (b = 0.018). Morphometry Introduction information such as stock, age and the growth of the The family Lethrinidae is one of the most important fish during its lifespan (Lecomte-Finiger, 1999; Tuset groups of fishes in coral reef fisheries in Egypt, which et al., 2003; Jawad et al., 2017).
    [Show full text]
  • Temporal Variability of Phytoplankton Biomass in Relation to Salinity and Nutrients in a Shallow Coastal Lagoon
    Malaysian Journal of Analytical Sciences, Vol 23 No 6 (2019): 1090 - 1106 DOI: https://doi.org/10.17576/mjas-2019-2306-16 MALAYSIAN JOURNAL OF ANALYTICAL SCIENCES ISSN 1394 - 2506 Published by The Malaysian Analytical Sciences Society TEMPORAL VARIABILITY OF PHYTOPLANKTON BIOMASS IN RELATION TO SALINITY AND NUTRIENTS IN A SHALLOW COASTAL LAGOON (Kepelbagaian Temporal Biojisim Fitoplankton Berdasarkan Kemasinan dan Nutrien di Lagun Pesisir Pantai yang Cetek) Zuraini Zainol and Mohd Fadzil Akhir* Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia. *Corresponding author: [email protected] Received: 30 October 2018; Accepted: 26 September 2019 Abstract With agriculture and aquaculture activities in proximity, the unique feature of Setiu Lagoon, which is an almost closed system and connected to the coastal sea with only one inlet leaves a huge question on how this ecosystem maintains its productivity under restricted conditions. In this study, results of three field samplings carried out during the southwest monsoon (August 2017), wet period of northeast monsoon (December 2017), and dry period of northeast monsoon (February 2018) are used to examine the differences in phytoplankton biomass in relation to salinity and nutrients under different monsoonal settings. These samplings are representative of typical conditions existing during a dry season (southwest monsoon) and a rainy one (northeast monsoon). In the lagoon, the most determinant factor affecting the phytoplankton biomass distribution is the freshwater intrusion, strengthened by increased rainfall amount and strong flow that brings along nutrients from land resulting in higher chlorophyll a concentrations. As per classification of Malaysia Marine Water Quality Criteria and Standard (MWQCS), mean nutrient concentrations at the study area were in Classes 1 and 2, which are suitable for local aquaculture activities.
    [Show full text]