Effects of Coral Bleaching on Coral Reef Fish Assemblages

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Coral Bleaching on Coral Reef Fish Assemblages Effects of Coral Bleaching on Coral Reef Fish Assemblages Nicholas A J Graham A Thesis submitted to Newcastle University for the Degree of Doctor of Philosophy School of Marine Science and Technology Supervisors: Professor Nicholas V C Polunin Professor John C Bythell Examiners: Professor Matthew G Bentley Dr Magnus Nyström First submitted: 1st July 2008 Viva-Voce: 1st September 2008 Abstract Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of climate warming to the loss of live coral cover has been well documented, the associated effects on fish have not. Such information is important as coral reef fish assemblages provide critical contributions to ecosystem function and services. This thesis assesses the medium to long term impacts of coral loss on fish assemblages in the western Indian Ocean. Feeding observations of corallivorous butterflyfish demonstrates that considerable feeding plasticity occurs among habitat types, but strong relationships exist between degree of specialisation and declines in abundance following coral loss. Furthermore, obligate corallivores are lost fairly rapidly following decline in coral cover, whereas facultative corallivores are sustained until the structure of the dead coral begins to erode. Surveys of benthic and fish assemblages in Mauritius spanning 11 years highlight small changes in both benthos and fish through time, but strong spatial trends associated with dredging and inter-specific competition. In Seychelles, although there was little change in biomass of fishery target species above size of first capture, size spectra analysis of the entire assemblage revealed a loss of smaller individuals (<30cm) and an increase in the larger individuals (>45cm). This represents a lag effect where fishery production cannot be assured for the long term. A targeted before (mid-1990s) – after (2005) sampling program of coral reef benthos and fish assemblages in 7 countries across the Indian Ocean demonstrated changes in size structure, diversity and trophic composition of the reef fish community have followed coral declines in both fished and protected areas. The thesis highlights the pivotal role that loss of reef structural complexity plays in the effects of bleaching on fish assemblages and that coral reef management needs to radically adapt to address climate change issues. Table of Contents 1 GENERAL INTRODUCTION..………………………………………..1 1.1 CLIMATE WARMING AND IMPACTS ON CORAL REEF BENTHOS……………2 1.2 SHORT-TERM IMPACTS OF BLEACHING ON FISH…………………………..8 2 ECOLOGICAL VERSATILITY AND THE DECLINE OF CORAL FEEDING FISHES FOLLOWING CLIMATE DRIVEN CORAL MORTALITY……………………………………………………………..21 2.1 ABSTRACT………………………………………………………………21 2.2 INTRODUCTION………………………………………………………….22 2.3 METHODS……………………………………………………………….24 2.3.1 Study sites…………………………………………………………….24 2.3.2 Substratum availability……………………………………………….25 2.3.3 Feeding observations………………………….…………...…………26 2.3.4 Chaetodon density surveys……………………....……………………28 2.3.5 Coral food quality……………………………………………………..29 2.3.6 Temporal change in coral feeding fish densities……………………...30 2.4 RESULTS……………………………………………………………...….31 2.4.1 Substratum availability………………………………………………..31 2.4.2 Feeding observations………………………………………………….33 2.4.3 Corallivore density surveys…………………………………………....35 2.4.4 Coral food quality……………………………………………………..35 2.4.5 Temporal change in coral feeding fish densities………………………38 2.5 DISCUSSION………………………………………………………………40 2.6 ACKNOWLEDGEMENTS……………………………………………………46 3 CORAL MORTALITY VERSUS STRUCTURAL COLLAPSE AS DRIVERS OF CORALLIVOROUS BUTTERFLYFISH DECLINE…...47 3.1 ABSTRACT………………………………………………………………...47 3.2 INTRODUCTION……………………………………………………………48 3.3 METHODS…………………………………………………………………50 3.4 RESULTS…………………………………………………………………..53 3.5 DISCUSSION……………………………………………………………… 57 3.6 ACKNOWLEDGEMENTS……………………………………………………60 4 ANTHROPOGENIC STRESSORS, INTER-SPECIFIC COMPETITION AND ENSO EFFECTS ON A MAURITIAN CORAL REEF………………………………………………………………………...61 4.1 ABSTRACT………………………………………………………………...61 4.2 INTRODUCTION……………………………………………………………62 4.3 METHODS…………………………………………………………………64 4.3.1 Study site and sampling techniques…………………………………….64 4.3.2 Data analysis…………………………………………………………...67 4.4 RESULTS…………………………………………………………………..70 4.5 DISCUSSION……………………………………………………………….81 4.6 ACKNOWLEDGEMENTS……………………………………………………86 5 LAG EFFECTS IN THE IMPACTS OF MASS CORAL BLEACHING ON CORAL REEF FISH, FISHERIES, AND ECOSYSTEMS………….87 5.1 ABSTRACT………………………………………………………………...87 5.2 INTRODUCTION……………………………………………………………88 5.3 METHODS…………………………………………………………………90 5.3.1 Study sites………………………………………………………………90 5.3.2 Assessment of fish assemblage and benthic community structure……..91 5.3.3 Establishment of fishery target species and size of first capture………93 5.3.4 Data analysis…………………………………………………………...93 5.4 RESULTS…………………………………………………………………..95 5.5 DISCUSSION……………………………………………………………...104 5.6 ACKNOWLEDGEMENTS…………………………………………………..110 6 CLIMATE WARMING, MARINE PROTECTED AREAS AND THE OCEAN-SCALE INTEGRITY OF CORAL REEF ECOSYSTEMS…..112 6.1 ABSTRACT……………………………………………………………….112 6.2 INTRODUCTION…………………………………………………………..113 6.3 METHODS………………………………………………………………..116 6.3.1 Effect size……………………………………………………………...117 6.3.2 Bayesian meta-analysis……………………………………………….119 6.4 RESULTS…………………………………………………………………122 6.5 DISCUSSION……………………………………………………………...133 6.6 ACKNOWLEDGEMENTS…………………………………………………..139 7 GENERAL DISCUSSION………………………………………………140 7.1 CURRENT STATE OF KNOWLEDGE………………………………………..140 7.2 CONCEPTUAL MODELS…………………………………………………...148 7.3 MANAGEMENT AND RESEARCH DIRECTIONS……………………………..153 REFERENCES………………………………………………………….....157 APPENDIX A: CONTRIBUTIONS DURING PHD……………………..187 APPENDIX B: REPRINTS OF PUBLISHED CHAPTERS…………….193 List of Figures Figure 1.1. Meta-analysis of short-term (<3 years) response of 55 fish species to declines in coral cover. Y-axis metric is change in species abundance divided by change in coral cover. Data from 17 studies are included in the analysis. Species level responses represent mean values, calculated from a minimum of four studies. Only studies reporting a 10% or greater decline in coral were included in the analysis. Data on a species was only included if 5 or more individuals were surveyed in before disturbance counts. Species names are highlighted if mean value with 95% confidence interval fails to intersect zero, indicating consistency of responses among locations. Figure adapted from Wilson et al. (2006)……………………………………………………………………………9 Figure 1.2. Meta-analysis of responses of fish functional groups to two types of disturbance. Y-axis metric is change in fish group abundance divided by change in coral cover. Biological disturbances represent those disturbances that reduce live coral cover, but do not impact the structural complexity of the benthos. Structural disturbances cause a reduction in both live coral cover and structural complexity. Error bars are 95% confidence intervals calculated from the data of ten or more studies. Adapted from Wilson et al. (2006)……………………….17 Figure 2.1. Benthic resource availability at Diego East and Diego Central, Chagos Archipelago. *** P<0.001, ** P<0.01…………………………………………32 Figure 2.2. Feeding selectivity of C. trifascialis, C. trifasciatus and C. auriga at Diego Central and Diego East, Chagos Archipelago. Data only presented for the four coral genera most preferentially consumed. Black bars indicate percent resource availability, open bars indicate percent feeding bites on that resource. + symbol indicates positive selectivity…………………………………………...34 Figure 2.3. Mean density of corallivores present in Diego Central and Diego East. *** P<0.001, ** P<0.01, * P<0.05…………………………………………….36 Figure 2.4. Box and whisker plots of C:N ratios for four coral genera. Box indicates median value, lower and upper quartiles. Whiskers indicate range up to 1.5 times the box. Outliers indicated with an asterix……………………………....37 Figure 2.5. Change in density of C. trifascialis, C. trifasciatus and C. auriga and obligate specialists, obligate generalists and facultative feeders in Seychelles before and after the 1998 bleaching event…………………………………..….39 Figure 3.1. Change in abundance of (a) obligate corallivores and (b) facultative corallivores in response to loss of live coral loss. Solid line represents significant trend…………………………………………………………………………….55 Figure 3.2. Change in abundance of (a) obligate corallivores and (b) facultative corallivores in response to reduced reef structural complexity. Solid line represents significant trend………………………………………….………….56 Figure 4.1. Map of the study site, indicating location in Mauritius, proximity of the ten sampling stations, direction of transects and location of dredged water ski lane. Adapted from Aderoud et al. 1998…………………………………...…..66 Figure 4.2. Correlation-based Principal Components Analysis of log(χ + 1) transformed and normalised environmental data…………………………...….71 Figure 4.3. Percent cover of total live coral in (a) each year by transect and (b) each year by position from the shore.……………………………………………..…72 Figure 4.4. Funnel plots of (a) average taxonomic distinctness and (b) variation in taxonomic distinctness of each sampling station (belt transects) within each year with mean and 95% confidence limits from expected values using master taxonomy aggregation file……………………………………………………..75 Figure 4.5. (a) Non-metric Multi-Dimensional Scaling (MDS) plot of fish assemblages at each of the ten stations (belt transects) within each of the five sample years based on Bray-Curtis similarity
Recommended publications
  • Zoology Marine Ornamental Fish Biodiversity of West Bengal ABSTRACT
    Research Paper Volume : 4 | Issue : 8 | Aug 2015 • ISSN No 2277 - 8179 Zoology Marine Ornamental Fish Biodiversity of KEYWORDS : Marine fish, ornamental, West Bengal diversity, West Bengal. Principal Scientist and Scientist-in-Charge, ICAR-Central Institute of Fisheries Education, Dr. B. K. Mahapatra Salt Lake City, Kolkata-700091, India Director and Vice-Chancellor, ICAR-Central Institute of Fisheries Education, Versova, Dr. W. S. Lakra Mumbai- 400 061, India ABSTRACT The State of West Bengal, India endowed with 158 km coast line for marine water resources with inshore, up-shore areas and continental shelf of Bay of Bengal form an important fishery resource and also possesses a rich wealth of indigenous marine ornamental fishes.The present study recorded a total of 113 marine ornamental fish species, belonging to 75 genera under 45 families and 10 orders.Order Perciformes is represented by a maximum of 26 families having 79 species under 49 genera followed by Tetraodontiformes (5 family; 9 genus and 10 species), Scorpaeniformes (2 family; 3 genus and 6 species), Anguilliformes (2 family; 3 genus and 4 species), Syngnathiformes (2 family; 3 genus and 3 species), Pleuronectiformes (2 family; 2 genus and 4 species), Siluriformes (2 family; 2 genus and 3 species), Beloniformes (2 family; 2 genus and 2 species), Lophiformes (1 family; 1 genus and 1 species), Beryciformes(1 family; 1 genus and 1 species). Introduction Table 1: List of Marine ornamental fishes of West Bengal Ornamental fishery, which started centuries back as a hobby, ORDER 1: PERCIFORMES has now started taking the shape of a multi-billion dollar in- dustry.
    [Show full text]
  • Checklist of Serranid and Epinephelid Fishes (Perciformes: Serranidae & Epinephelidae) of India
    Journal of the Ocean Science Foundation 2021, Volume 38 Checklist of serranid and epinephelid fishes (Perciformes: Serranidae & Epinephelidae) of India AKHILESH, K.V. 1, RAJAN, P.T. 2, VINEESH, N. 3, IDREESBABU, K.K. 4, BINEESH, K.K. 5, MUKTHA, M. 6, ANULEKSHMI, C. 1, MANJEBRAYAKATH, H. 7, GLADSTON, Y. 8 & NASHAD M. 9 1 ICAR-Central Marine Fisheries Research Institute, Mumbai Regional Station, Maharashtra, India. Corresponding author: [email protected]; Email: [email protected] 2 Andaman & Nicobar Regional Centre, Zoological Survey of India, Port Blair, India. Email: [email protected] 3 Department of Health & Family Welfare, Government of West Bengal, India. Email: [email protected] 4 Department of Science and Technology, U.T. of Lakshadweep, Kavaratti, India. Email: [email protected] 5 Southern Regional Centre, Zoological Survey of India, Chennai, Tamil Nadu, India. Email: [email protected] 6 ICAR-Central Marine Fisheries Research Institute, Visakhapatnam Regional Centre, Andhra Pradesh, India. Email: [email protected] 7 Centre for Marine Living Resources and Ecology, Kochi, Kerala, India. Email: [email protected] 8 ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India. Email: [email protected] 9 Fishery Survey of India, Port Blair, Andaman and Nicobar Islands, 744101, India. Email: [email protected] Abstract We provide an updated checklist of fishes of the families Serranidae and Epinephelidae reported or listed from India, along with photographs. A total of 120 fishes in this group are listed as occurring in India based on published literature, of which 25 require further confirmation and validation. We confirm here the presence of at least 95 species in 22 genera occurring in Indian marine waters.
    [Show full text]
  • 5. Bibliography
    click for previous page 101 5. BIBLIOGRAPHY Akazaki, M., 1958. Studies on the orbital bones of sparoid fishes. Zool.Mag., Tokyo, 67:322-25 -------------,1959. Comparative morphology of pentapodid fishes. Zool.Mag., Tokyo, 68(10):373-77 -------------,1961. Results of the Amami Islands expedition no. 4 on a new sparoid fish, Gymnocranius japonicus with special reference to its taxonomic status. Copeia, 1961 (4):437-41 -------------,1962. Studies on the spariform fishes. Anatomy, phylogeny, ecology and taxonomy. Misaki Mar.Biol.Inst.,Kyoto Univ., Spec. Rep. , No. 1, 368 p. Aldonov, KV.& A.D. Druzhinin, 1979. Some data on scavenger (family Lethrinidae) from the Gulf of Aden region. Voprosy Ikhthiologii, 18(4):527-35 Allen, G.R. & R.C. Steene, 1979. The fishes of Christmas Island, Indian Ocean. Aust.nat.Parks Wildl.Serv.Spec.Publ., 2:1-81 -------------, 1987. Reef fishes of the Indian Ocean. T.F.H. Publications, Neptune City, 240 p., 144 pls -------------, 1988. Fishes of Christmas Island, Indian Ocean. Christmas Island Natural History Association, 199 p. Allen, G. R. & R. Swainston, 1988. The Marine fishes of North-western Australia. A field guide for anglers and divers. Western Australian Museum, Perth, 201 p. Alleyne, H.G. & W. Macleay, 1877. The ichthyology of the Chevert expedition. Proc. Linn.Soc. New South Wales, 1:261-80, pls.3-9. Amesbury, S. S. & R. F. Myers, 1982. Guide to the coastal resources of Guam, Volume I. The Fishes. University of Guam Press, 141 p. Asano, H., 1978. On the tendencies of differentiation in the composition of the vertebral number of teleostean fishes. Mem.Fac.Agric.Kinki Univ., 10(1977):29-37 Baddar, M.K , 1987.
    [Show full text]
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • Estimates of Sponge Consumption Rates on an Indo-Pacific Reef
    Vol. 672: 123–140, 2021 MARINE ECOLOGY PROGRESS SERIES Published August 19 https://doi.org/10.3354/meps13786 Mar Ecol Prog Ser Estimates of sponge consumption rates on an Indo-Pacific reef Charlotte Mortimer1, Matthew Dunn2, Abdul Haris3, Jamaluddin Jompa3, James Bell1,* 1School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand 2The National Institute of Water and Atmospheric Research (NIWA), Wellington 6021, New Zealand 3Universitas Hasanuddin, Department of Marine Science, Makassar 90245, Indonesia ABSTRACT: Determining predator diets is essential for understanding the strength of top-down processes and how they cascade through food webs. This is especially important for sponges, key members of benthic communities, whose dominance has increased in recent years on some coral reefs. However, the diversity of spongivorous fishes and the sponges they consume are relatively unknown. Here, we estimated sponge consumption by spongivorous fishes in the Wakatobi Marine National Park, Indonesia. We deployed cameras to identify fish biting at the dominant reef sponge Xestospongia spp. and then used gut content analysis and fish abundance estimates to quantify sponge consumption. In total, 33 species from 10 families of reef fish were identified taking bites from Xestospongia spp.; however, the 2 most prolific sponge-grazers, Ctenochaetus binotatus and Chaetodon kleinii, had no sponge in their guts, showing that for some fish, bites on sponge surfaces are not reliable evidence of sponge consumption. Gut contents indicated that Pygoplites diacanthus was an obligate spongivore, while Pomacanthus imperator, P. xanthometo- pon, Zanclus cornutus and Siganus punctatus regularly consumed sponges. Sponge consumption by these 5 spongivores was estimated at 46.6 ± 18.3 g sponge 1000 m−2 d−1.
    [Show full text]
  • Lethrinus Reticulatus Valenciennes, 1830 Frequent Synonyms / Misidentifications: None / None
    click for previous page Perciformes: Percoidei: Lethrinidae 3041 Lethrinus reticulatus Valenciennes, 1830 Frequent synonyms / misidentifications: None / None. FAO names: En - Redsnout emperor. Diagnostic characters: Body moderately elongate, its depth 2.8 to 3.3 times in standard length. Head length 1.1 to 1.2 times in body depth, 2.5 to 2.8 times in standard length, dorsal profile near eye convex or nearly straight; snout length about 1.9 to 2.4 times in head length, measured without the lip the snout is 0.8 to 0.9 times in cheek height, its dorsal profile concave, snout angle relative to upper jaw between 50° and 60°; interorbital space flat or concave; posterior nostril a longitudinal oblong opening, closer to orbit than anterior nostril; eye situated close to dorsal profile, its length 3.3 to 4.3 times in head length; cheek height 2.7 to 3.4 times in head length; lateral teeth in jaws conical; outer surface of maxilla usually smooth. Dorsal fin with X spines and 9 soft rays, the third dorsal-fin spine the longest, its length 2 to 2.8 times in body depth; anal fin with III spines and 8 soft rays, the first soft ray usually the longest, its length almost equal to, shorter, or slightly longer than length of base of soft-rayed portion of anal fin and 1.4 to 1.8 times in length of entire anal-fin base; pectoral-fin rays 13; pelvic-fin membranes between rays closest to body without dense melanophores. Lateral-line scales 46 to 48; cheek without scales; 4 ½ scale rows between lateral line and base of middle dorsal-fin spines; 15 or 16 scale rows in transverse series between origin of anal fin and lateral line; usually 15 rows in lower series of scales around caudal peduncle; 7 to 10 scales in supratemporal patch; inner surface of pectoral-fin base without scales; posterior angle of operculum fully scaly.
    [Show full text]
  • Exploited Off Thoothukudi Coast, Tamil Nadu, India
    Indian Journal of Geo Marine Sciences Vol.46 (11),November 2017, pp. 2367-2371 Age, Growth and Mortality characteristics of Lethrinus lentjan (Lacepede, 1802) exploited off Thoothukudi coast, Tamil Nadu, India M. Vasantharajan1, P.Jawahar2, S. Santhoshkumar2 & P.Ramyalakshmi3 1Directorate of Research, Tamil Nadu Fisheries University, Nagapattinam 611 001, Tamil Nadu, India 2Department of Fisheries Biology and Resource Management, Tamil Nadu Fisheries University, Nagapattinam 611 001, Tamil Nadu, India 3 Department of Aquaculture, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Nagapattinam 611 001, Tamil Nadu, India. [E- mail: [email protected]] Received 17 July 2015 ; revised 17 November 2016 Study on maximum sustainable yield along Thoothukudi coast indicated that L.lentjan is underexploited. The L∞, K and t0 value of L.lentjan were 78.8 cm, 0.37 year-1 and -0.68 year respectively. The K value of L.lentjan was relatively higher inferring slow growth rate of this tropical demersal fish species. Total instantaneous mortality (Z) of L.lentjan was 1.28 year-1 and the estimated Fishing mortality was 0.73. Recruitment of L.lentjan was recorded in throughout year with two peaks in July – August, 2011and April, 2012. [Keywords : Lethrinus lentjan, Age, Growth, Mortality ] Introduction In India, the good perch grounds were L.nebulosus (Starry emperor bream), L. harak found in northeast coasts from the depth of 60 -70 (Yellow banded emperor bream), L.elongatus (Long m and located in the range between 18° to 20° N face pig face bream) and Lethrinella miniatus (long and 84° to 87° E, as recorded1. Perches contribute nosed emperor)5.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Cerritos Library Aquarium - Current Fish Residents
    Cerritos Library Aquarium - Current Fish Residents Blue Tang (Paracanthurus hepatus) Location: Indo-Pacific, seen in reefs of the Philippines, Indonesia, Japan, the Great Barrier Reef of Australia, New Caledonia, Samoa, East Africa, and Sri Lanka Length: Up to 12 inches Food: Omnivores, feed on plankton and algae Characteristics: Live in pairs, or in small groups. Belong to group of fish called surgeonfish due to sharp spines on caudal peduncle (near tailfin). Spines are used only as a method of protection against aggressors Naso Tang (Naso lituratus) Other Names: Orangespine Unicornfish, Lipstick Tang, Tricolor Tang Location: Indo-Pacific reefs Length: Up to 2 feet Food: Primarily herbivores, mostly feed on algae with some plankton Characteristics: Like other surgeonfish, have a scalpel- like spine at the base of the tail for protection against aggressors. Mata tang (Acanthurus mata) Other Names: Elongate Surgeonfish, Pale Surgeonfish Location: Central Pacific, Eastern Asia Length: Up to 20 inches Food: Primarily herbivorous; diet includes algae, seaweed; occasionally carnivorous Characteristics: Like other surgeonfish, have a scalpel- like spine at the base of the tail for protection against aggressors. Yellow Tang (Zebrasoma flavescens) Other Names: Yellow Sailfin Tang, Lemon Surgeonfish, Yellow Surgeonfish Location: Hawaiian islands Length: Up to 8 inches Food: Primarily herbivorous; diet includes algae, seaweed Characteristics: Males have a patch of raised scales that resemble tiny white, fuzzy spikes to the rear of the spine; females do not Mustard tang (Acanthurus guttatus) Other Names: White spotted Surgeonfish Location: Shallow waters on reefs in the Indo-Pacific Length: Up to 12 inches Food: Primarily herbivorous; diet includes algae, seaweed Characteristics: Rarely seen; hide under shallow reefs to protect themselves from predators.
    [Show full text]
  • Contents of Volume 42 (2012)
    CONTENTS OF VOLUME 42 (2012) Issue 1 Tripp-Valdez A., Arreguín-Sánchez F., Zetina-Rejón M.J. The food of Selene peruviana (Actinopterygii: Perciformes: Carangidae) in the southern Gulf of California .................. 1 Zarrad R., Alemany F., Jarboui O., Garcia A., Akrout F. Comparative characterization of the spawning environments of European anchovy, Engraulis encrasicolus , and round sardinella, Sardinella aurita (Actinopterygii: Clupeiformes) in the eastern coast of Tunisia ............................... 9 Ordines F., Valls M., Gouraguine A. Biology, feeding, and habitat preferences of Cadenat’s rockfish, Scorpaena loppei (Actinopterygii: Scorpaeniformes: Scorpaenidae), in the Balearic Islands (western Mediterranean) ..................................... 21 Socha M., Sokołowska-Mikołajczyk M., Szczerbik P., Chyb J., Mikołajczyk T., Epler P. The effect of polychlorinated biphenyls mixture (Aroclor 1254) on the embryonic development and hatching of Prussian carp, Carassius gibelio , and common carp, Cyprinus carpio (Actinopterygii: Cypriniformes: Cyprinidae) ............................................................................................................................................................... 31 Khan A., Ghosh K. Characterization and identification of gut-associated phytase-producing bacteria in some fresh water fish cultured in ponds ......................................................................................................................................................................................
    [Show full text]
  • Atoll Research Bulletin No. 548
    ATOLL RESEARCH BULLETIN NO. 548 STOMACH CONTENTS AND FEEDING OBSERVATIONS OF SOME EASTER ISLAND FISHES BY LOUIS H. DISALVO, JOHN E. RANDALL, AND ALFREDO CEA ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C. U.S.A. DECEMBER 2007 STOMACH CONTENTS AND FEEDING OBSERVATIONS OF SOME EASTER ISLAND FISHES BY LOUIS H. DISALVO,1 JOHN E. RANDALL,2 AND ALFREDO CEA3 ABSTRACT Stomach contents of 42 species in 25 familes of Easter Island shore fishes were examined in comparative terms to determine prey items and feeding behavior at this isolated island outpost in the southeastern Pacific. The island’s impoverished marine fauna and flora have resulted in considerable dietary overlap among the inshore fishes. Some endemic species appear to feed mainly on endemic invertebrates. Some prey species which were found in the fish stomachs, such as the stomatopodOdontodactylus hawaiiensis, the pandalid shrimp Plesionika edwardsi, and several tiny molluscs were previously unrecorded for the island. INTRODUCTION Easter Island (Rapa Nui) lies 3750 km west of the South American continent and 2250 km. East of the Pitcairn Islands. This island represents the most isolated landfall in the South Pacific Ocean along with its small rocky neighbor Salas y Gómez I. 415 km to the east. Although Easter Island is often regarded as part of the Indo-Pacific region, and most of its fauna consist of tropical species (in the case of shore fishes, 32.5%), it lies outside the 20° isotherm (Wells 1957) where seawater temperature and insolation are below that required for the development of structural coral reefs; water temperature can undergo interannual drops unfavorable to tropical organisms and may produce mass mortalities of corals (Wellington et al., 2001).
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]