Standard Documentation Series

Total Page:16

File Type:pdf, Size:1020Kb

Standard Documentation Series Post 1992 Museum of London Code Expansions Glass LAARC 2007 Introduction This document presents a glass glossary extant for the period succeeding 2004 and subsequently superseded by the current edition of the schema. GLASS GLOSSARY Number Term Subgroup Definition 1101 glass types of glass An inorganic product of fusion which has cooled to a rigid condition without crystallizing. 1102 soda-lime types of glass Glass in which the main constituents glass, lime-soda are silica, soda and lime. glass 1103 borosilicate types of glass Silicate glass containing boron as a glass characteristic constituent. Borosilicate glasses are generally heat-resisting. 1104 borate glass types of glass A glass in which boron partly or completely replaces silicon. 1105 phosphate types of glass A glass in which the essential glass glass-former is phosphorus pentoxide. 1106 lead glass, lead types of glass Glass containing a substantial crystal proportion of lead. 1107 crystal glass types of glass A colourless, highly transparent glass of high refractive index, frequently used for tableware. 1108 vitreous silica, types of glass A vitreous material consisting almost fused silica, quartz entirely of silica, made in translucent glass, silica glass and transparent forms. The former has minute gas bubbles disseminated in it. 1109 vitrite types of glass Black glass made for use in the caps of electric lamps. 1110 water glass types of glass A water-soluble sodium silicate. 1111 flint, white flint types of glass In general, a colourless glass other than flat glass. 1112 translucent types of glass Glass which transmits light diffusely. glass Through-vision may vary from almost clear to almost obscured. Diffusiveness is produced by suitable treatment of the surface of clear glass, either by imprinting a pattern or texture, or by sandblasting, acid embossing or other means. 1113 neutral tinted types of glass A dark grey glass. glass 1114 alabaster glass types of glass Translucent glass resembling the mineral alabaster 1115 milk glass types of glass Opaque white glass. 1116 moonstone types of glass Translucent glass resembling the mineral moonstone. 1117 opal glass types of glass Glass which is white or coloured and varies from translucent to completely opaque 1118 aventurine types of glass Glass made so that it contains specks of bright reflecting metallic or other crystalline material. 1119 ambetti, ambitty types of glass Glass made so that it contains minute opaque specks. 1120 stained glass types of glass 1. Glass coloured by fusing pigments to the surface. 2. Windows made of pieces of stained glass (1) or of coloured translucent or clear sheet. 1121 actinic green types of glass Emerald green glass, normally used for poison bottles. 1122 pale glass types of glass Pale green glass. 1123 amber glass types of glass Glass varying in colour between light yellowish brown and deep reddish brown. 1124 ruby glass types of glass Glass coloured red by colloidal suspensions of elemental gold, copper or selenium. 1125 optical glass types of glass High quality glass of closely specified optical properties used in the manufacture of optical systems. 1126 optical crown types of glass Glass of low dispersion made for optical purposes. Particular optical crowns are prefixed by the following terms: fluor, borosilicate, soft, hard, light barium, zinc, medium barium, dense barium, special barium. The refractive index increases generally in the order given. 1127 optical flint, types of glass Glass of high dispersion made for flint optical purposes. Particular optical flints are prefixed by the following terms: telescope, extra light, light, barium light, dense, borate, barium, extra dense, special barium, double extra dense. The refractive index increases generally in the order given. 1128 light types of glass Having a lower refractive index, as applied to optical glass. 1129 dense types of glass Having a higher refractive index, as applied to optical glass. 1130 crookes glass types of glass A range of spectacle glasses having low transmission for ultra-violet light, and containing cerium and other rare earths. 1131 wood's glass types of glass A glass with very low visible and high ultra-violet transmission. 1132 welding glass types of glass Coloured glass to protect a welder's eyes from glare and injurious radiation. 1133 x-ray types of glass Glass which contains a high percentage protective of lead and sometimes also barium and glass, x-ray which has a high degree of opacity to shielding glass X-rays. The opacity is usually expressed in terms of the thickness of metallic lead which would give equal absorption of X-rays of stated wavelength 1134 photosensitive types of glass A glass made with constituents which glass cause it to change colour on exposure to light and, in some cases, subsequent heating. 1135 stabilized types of glass 1. Glass heat-treated in such a way that glass it is in an equili brium state corresponding to some particular temperature. 2. Glass articles (e.g. thermometers) beat-treated so that they suffer no permanent change of dimensions or properties over a particular range of temperature. 3. (Non-browning glass, radiation stabilized glass.) Glass resistant to darkening by high energy, short-wave radiation. 1136 scaling glass types of glass A glass designed to seal to a particular metal or alloy. 1137 heat-absorbing types of glass Glass which absorbs infra-red radiation glass to a marked extent. 1138 heat-resisting types of glass A glass able to withstand high thermal glass shock, generally because of a low coefficient of thermal expansion. 1139 flameproof types of glass Glass which does not crack easily when glass exposed to heat or flames. 1140 neutral glass types of glass A glass of high chemical durability. 1141 short glass types of glass A fast-setting glass. 1142 long glass types of glass A slow-setting glass. 1143 soft glass types of glass Glass with a relatively low softening point. 1144 hard glass types of glass A glass of relatively high softening point. 1145 sweet glass types of glass Easily workable glass. 1146 e. glass types of glass A glass containing not more than 1 per cent of alkali(calculated as Na 20) and used for the manufacture of glass fibres. 1147 a. glass types of glass A glass containing between 10 and 15 per cent of alkali(calculated as Na 20) and used for the manufacture of glass fibres. 1148 spectacle types of glass White crown glass of refractive index crown 1.523 used for ophthalmic purposes. 1149 spectacle flint, types of glass A glass of high refractive index which spectacle fusing flint is fused to spectacle crown in the manufacture of bifocal spectacle lenses. 1201 chemical properties of The resistance of glass to chemical durability glass and attack. physical testing 1202 solarization properties of Changes of the light transmission glass and properties of glass as a result of physical testing exposure to sunlight or other radiation in or near the visible spectrum. 1203 liquidus properties of The maximum temperature at which temperature glass and equilibrium exists between the molten physical testing glass and its primary crystalline phase. 1204 working range properties of The range of temperature in which glass and glass is formed into ware in a specific physical testing process. At the upper end of the working range the glass is ready for working (generally at a viscosity Of 103 to 104 poises) and at the lower end, it is sufficiently viscous to hold its formed shape (generally at a viscosity greater than 106 poises). For comparative purposes, but not necessarily in relation to any specific process, the working range of glass is assumed to correspond to a viscosity range from 104 to 107 . 6 poises. 1205 setting rate properties of A comparative term referring to the glass and time required for the glass surface to physical testing cool through the working range. A short time implies a fast setting rate and a long time implies a slow setting rate. See short glass, long glass. 1206 transformation properties of In the measurement of the thermal points glass and expansion coefficient of a glass there physical testing may be two temperatures, the Mg point and the Tg point, at which the slope of the graph of expansion against temperature changes fairly sharply. 1207 softening point properties of The temperature above which a glass is glass and soft enough to be worked. Since any physical testing glass softens over a range of temperature, the term lacks precision and is unsatisfactory. A more exact term is the 7.6 temperature, at which the viscosity of a glass is 107. 6 poises. 1208 annealing properties of The range of temperature within which range glass and glass may be annealed. At the upper physical testing temperatures internal stresses disappear rapidly without deformation of the glass. At the lower temperatures internal stresses are released slowly. Below the annealing range, rapid temperature changes do not introduce permanent stresses in the glass. The temperature at which a glass has a viscosity of 1013 poises (the 13.0 temperature) is sometimes referred to as the annealing temperature or the upper annealing temperature. 1209 stress properties of Any condition of tension or glass and compression existing within glass, physical testing particularly due to incomplete annealing, temperature gradient, or inhomogencity. 1210 strain properties of Elastic deformation due to stress. glass and physical testing 1211 strain disc properties of A glass disc of calibrated birefringence glass and used as a comparative measure of the physical testing degree of annealing of glass. 1212 temper, annealin properties of The amount of residual stress in glass and annealed ware measured by physical testing comparison with strain dim. 1213 ring ~on properties of Transverse section cut from a glass glass and container for optical examination.
Recommended publications
  • Laminated Glass Insulating Glass Fire Rated Glass Burglar Resistant Glass Sound Protection Glass Decorative Glass Curved Glass
    Envelopes in Architecture (A4113) Designing holistic envelopes for contemporary buildings Silvia Prandelli, Werner Sobek New York A4113 ENVELOPES IN ARCHITECTURE - FALL 2016 Supply chain for holistic facades 2 Systems Door systems Media Facades Rainscreen facades Dynamic facades Mesh System Structural glass/Cable Glass floors Multiple skins Shading systems Green facades Panelized systems Stick/Unitized systems 3 Curtain wall facades 4 What are the components of a façade system? 5 What are the components of a façade system? 6 What are the components of a façade system? 7 Glass 8 Glass Types Base Glass (float glass) Heat Treated Glass Laminated Glass Insulating Glass Fire Rated Glass Burglar Resistant Glass Sound Protection Glass Decorative Glass Curved Glass 9 Base Glass (Float Glass) 10 3500 BC Glass Making: Man-made glass objects, mainly non-transparent glass beads, finds in Egypt and Eastern Mesopotamia 1500 BC Early hollow glass production: Evidence of the origins of the hollow glass industry, finds in Egypt 11 27 BC - 14 AD Glass Blowing: Discovery of glassblowing, attributed to Syrian craftsmen from the Sidon- Babylon area. > The blowing process has changed very little since then. 12 Flat Glass Blown sheet 13 15th century Lead Crystal Glass: During the 15th century in Venice, the first clear glass called cristallo was invented. In 1675, glassmaker George Ravenscroft invented lead crystal glass by adding lead oxide to Venetian glass. 14 16th century Sheet Glass: Larger sheets of glass were made by blowing large cylinders which were cut open and flattened, then cut into panes 19th century Sheet Glass: The first advances in automating glass manufacturing were patented in 1848 by Henry Bessemer, an English engineer.
    [Show full text]
  • Perfectly Aligned for Glass Silent Chain Technology for the Glass Industry 2 Inverted Tooth Chains for the Glass Industry I Expertise
    Tooth Chain Perfectly Aligned for Glass Silent Chain Technology for the glass industry 2 Inverted tooth chains for the glass industry I Expertise Safe, robust, and efficient. The glass industry is demanding. Drive and transport solutions not only need to reliably master operating processes, they also need to be highly resistant to harsh conditions and incredibly efficient. Inverted tooth chains cover all these requirements. They offer precise running characteristics, guarantee a long service life, and enable layouts optimized for specific applications with the utmost ef- ficiency. And they have no qualms when it comes to high temperatures. Expertise I Inverted tooth chains for the glass industry 3 Experience for the glass industry Automation solutions with inverted tooth chains from Renold ensure cost-effective production Tailor-made for your application: drive and transport Content solutions with inverted tooth chains The diverse tasks and working conditions in the glass industry require solutions that are just as varied. Based on a compre- 04 Industries – markets – requirements hensive product program and specific configurations, we have 06 Development of glass production geared our spectrum of services toward our users to consistently ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– offer solutions that are specifically tailored to their applications. 08 Industrial production process With unparalleled product quality and expert service. Auto- ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– mation solutions with inverted tooth chains from Renold help 10 Tasks of inverted tooth chains you to significantly increase the service life of your systems, 12 Drive and transport solutions minimize downtimes, and ensure cost-effective production in 12 Hollow glass industry the long term. Our inverted tooth chains master these goals – 14 Sheet glass industry every day, around the world.
    [Show full text]
  • Glass Circle Publications
    INDEXOF GLASS CIRCLE PUBLICATIONS by Hazel Bell Incorporating and modifying the previous indexes by Peter Lole Indexed publications Key Glass Circle News Issues 1-140 (1977–2016) 1.1 (Issue no.page no(s);) The Glass Circle Journal 1-11 (1972-2009) JL The Centenary Supplement (2004) CS GCN (2004) Ex. ExFromcerpts Palace from to the Parlour first 99(2003) issues of PP The Glass Circle Diamond Jubilee 1937–1997 DJ Glass Collectors and their Collections (1999) Col. Strange and Rare: 50th Anniversary Exhibition 1937–1987 SR Major references to a topic are given in bold type Abbreviations used: c. GCN for Glass Circle News. Notesexh. for exhibition; for century; GC for Glass Circle; Short forms of article and book titles are used. Article titles, and titlesin ofitalics talks reported, are given ‘in quotes’ under the names of the speakers. Book titles are given under the names of the authors, except for multi-author books, listed under their titles. GlassReviewers Circle of books,News andreferences writers of are letters given and in obituaries, the form: are rarely included. Issue number.page number(s) with the Issue numbers followed by stops; page numbers in the same issue separated by commas; Issue numbers separated by semi-colons. Newsletters for April and July 1983 are both numbered 26; references to those issues are given in the index as 26A and 26Jy. The first page of Issue 115, 2 June 2008, shows Issue number as 114. Announcements of coming events, advertisements, auctions, fairs, and sales reports are not indexed; of exhibitions, only major ones are indexed.
    [Show full text]
  • Glass and Glass-Ceramics
    Chapter 3 Sintering and Microstructure of Ceramics 3.1. Sintering and microstructure of ceramics We saw in Chapter 1 that sintering is at the heart of ceramic processes. However, as sintering takes place only in the last of the three main stages of the process (powders o forming o heat treatments), one might be surprised to see that the place devoted to it in written works is much greater than that devoted to powder preparation and forming stages. This is perhaps because sintering involves scientific considerations more directly, whereas the other two stages often stress more technical observations M in the best possible meaning of the term, but with manufacturing secrets and industrial property aspects that are not compatible with the dissemination of knowledge. However, there is more: being the last of the three stages M even though it may be followed by various finishing treatments (rectification, decoration, deposit of surfacing coatings, etc.) M sintering often reveals defects caused during the preceding stages, which are generally optimized with respect to sintering, which perfects them M for example, the granularity of the powders directly impacts on the densification and grain growth, so therefore the success of the powder treatment is validated by the performances of the sintered part. Sintering allows the consolidation M the non-cohesive granular medium becomes a cohesive material M whilst organizing the microstructure (size and shape of the grains, rate and nature of the porosity, etc.). However, the microstructure determines to a large extent the performances of the material: all the more reason why sintering Chapter written by Philippe BOCH and Anne LERICHE.
    [Show full text]
  • IS 1382 (1981): Glossary of Terms Relating to Glass and Glassware [CHD 10: Glassware]
    इंटरनेट मानक Disclosure to Promote the Right To Information Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public. “जान का अधकार, जी का अधकार” “परा को छोड न 5 तरफ” Mazdoor Kisan Shakti Sangathan Jawaharlal Nehru “The Right to Information, The Right to Live” “Step Out From the Old to the New” IS 1382 (1981): Glossary of terms relating to glass and glassware [CHD 10: Glassware] “ान $ एक न भारत का नमण” Satyanarayan Gangaram Pitroda “Invent a New India Using Knowledge” “ान एक ऐसा खजाना > जो कभी चराया नह जा सकताह ै”ै Bhartṛhari—Nītiśatakam “Knowledge is such a treasure which cannot be stolen” I : I8 : 1382- 1881 hiiun Stan&d F&“Repriat AUGUST ‘1990 mc 666’1: owa Indian Standard _ GLOSSARY OF TERMS --,* . RELATING TO GLASS AND GLASSWARE ( First Revision ) Glassware Sectional,Committee, CDC 10 chahan - DRS.KUMAR Centra~ra~Jig’&Ceramic Rcmrch Intihttc ( CSIR ) M#mbem DR K. P. SRIVAIITAVA (Memok to Dr S. Kumar ) SRRI P. N. AUARWAL Hindustan Safety Class Works Ltd, Calcutta SERI P.
    [Show full text]
  • Brief History of the Flat Glass Patent
    World Patent Information 38 (2014) 50e56 Contents lists available at ScienceDirect World Patent Information journal homepage: www.elsevier.com/locate/worpatin Brief history of the flat glass patent e Sixty years of the float process Marcio Luis Ferreira Nascimento a,b a Vitreous Materials Lab, Institute of Humanities, Arts and Sciences, Federal University of Bahia, Rua Barão de Jeremoabo s/n, Idioms Center Pavilion (PAF IV), Ondina University Campus, 40170-115 Salvador, Bahia, Brazil b PROTEC/PEI e Postgraduate Program in Industrial Engineering, Department of Chemical Engineering, Polytechnic School, Federal University of Bahia, Rua Aristides Novis 2, Federação, 40210-630 Salvador, Bahia, Brazil article info abstract Article history: This paper deals with one of the single most important innovations made in Great Britain since World Available online 4 July 2014 War II. It is certainly one of the greatest process inventions of the twentieth century. The float process is one of the most widely used methods for flat glass manufacturing as it ensures security, high quality and Keywords: productivity. From a historical point this innovation was the beginning of a revolutionary change in the Glass mass production of flat glass for the building and automotive sectors. More specifically this innovation Flat eliminates the traditional operations of rolling, grinding and polishing the glass surface while creating a Float high quality and inexpensive flat glass product. The first patent was applied for on December 10th, 1953 Patent History by Pilkington and Bickerstaff. This paper presents a brief discussion from the 1960s in a historical Technology perspective about this amazing discovery and the main patents related to it.
    [Show full text]
  • Download Download
    Challenging Glass 6 - Conference on Architectural and Structural Applications of Glass Louter, Bos, Belis, Veer, Nijsse (Eds.), Delft University of Technology, May 2018. 6 Copyright © with the authors. All rights reserved. ISBN 978-94-6366-044-0, https://doi.org/10.7480/cgc.6.2133 Spot Landing: Determining the Light and Solar Properties of Fritted and Coated Glass Helen Rose Wilson a, Michael Elstner a, b a Fraunhofer Institute for Solar Energy Systems, Germany, [email protected] b AGC Interpane, Germany The use of ceramic fritted architectural glazing is becoming increasingly popular. “Fritted glass”, which is also known as “enamelled glass”, is defined as glass with a surface covering made of glass frit1 that is applied by a printing method and fused to the glass substrate at elevated temperatures. The enamel coating may be continuous or consist of a discontinuous pattern such as spots or stripes. Functional thin-film coatings on glass have been used in standard glazing units for many years to improve thermal insulation or for solar control. Specification of light and solar properties for these standard glazing types is well-defined and can be calculated on the basis of the algorithms specified in EN 410:2011 or ISO 9050:2003. This is not the case for glazing that incorporates fritted glass, alone or in combination with functional thin-film coatings. The paper initially describes the different printing options for fritted glass and the fundamental principles of functional thin-film coatings. When glass surfaces are coated with glass frit, it is essential to note that the light-scattering coatings transmit and reflect incident radiation not only directly but also diffusely.
    [Show full text]
  • A NEW TECHNIQUE in GLASS ART JOANNE MITCHELL a Thesis Su
    PRECISION AIR ENTRAPMENT THROUGH APPLIED DIGITAL AND KILN TECHNOLOGIES: A NEW TECHNIQUE IN GLASS ART JOANNE MITCHELL A thesis submitted in partial fulfilment of the requirements of the University of Sunderland for the degree of Doctor of Philosophy August 2015 Precision Air Entrapment through Applied Digital and Kiln Technologies: A New Technique in Glass Art Joanne Mitchell PhD 2015 1 Precision Air Entrapment through Applied Digital and Kiln Technologies: A New Technique in Glass Art Joanne Mitchell 2015 Abstract The motivation for the research was to expand on the creative possibilities of air bubbles in glass, through the application of digital and kiln technologies to formulate and control complex air entrapment, for new configurations in glass art. In comparison to glassblowing, air entrapment in kiln forming glass practice is under-developed and undocumented. This investigation has devised new, replicable techniques to position and manipulate air in kiln-formed glass, termed collectively as Kiln-controlled Precision Air Entrapment. As a result of the inquiry, complex assemblages of text and figurative imagery have been produced that allow the articulation of expressive ideas using air voids, which were not previously possible. The research establishes several new innovations for air-entrapment in glass, as well as forming a technical hypotheses and a practice-based methodology. The research focuses primarily on float glass and the application of CNC abrasive waterjet cutting technology; incorporating computer aided design and fabrication alongside more conventional glass-forming methods. The 3-axis CNC abrasive waterjet cutting process offers accuracy of cut and complexity of form and scale, across a flat plane of sheet glass.
    [Show full text]
  • Download New Glass Review 08
    The Corning Museum of Glass NewGlass Review 8 The Corning Museum of Glass Corning, New York 1987 Objects reproduced in this annual review Objekte, die in dieser jahrlich erscheinenden were chosen with the understanding Zeitschrift veroffentlicht werden, wurden unter that they were designed and made within der Voraussetzung ausgewahlt, dal3 sie the 1986 calendar year. innerhalb des Kalenderjahres 1986 entworfen und gefertigt wurden. For additional copies of New Glass Review Zusatzliche Exemplare des New Glass Review please contact: konnen angefordert werden bei: Sales Department The Corning Museum of Glass One Museum Way Corning, New York 14830-2253 (607) 937-5371 All rights reserved, 1987 Alle Rechtevorbehalten, 1987 The Corning Museum of Glass The Corning Museum of Glass Corning, New York 14830-2253 Corning, New York 14830-2253 Printed in Dusseldorf FRG Gedruckt in Dusseldorf, Bundesrepublik Deutschland Standard Book Number 0-: 1-116-5 ISSN: 0275-469X Library of Congress Catalog Card Number Aufgefuhrt im Katalog der Kongref3-Bucherei 81-641214 unter der Nummer 81-641214 Table of Contents/lnhalt Page/Seite Jury Statements and Comments/Statements und Kommentar der Jury 4 Artists and Objects/Kunstler und Objekte 9 Doug Anderson's Finders Creepers 30 Bibliography/Bibliographie 33 A Selective Index of Proper Names and Places/ Verzeichnis der Eigennamen und Orte 35 Countries RepresentedA/ertretene Lander 68 ch mag die Arbeit von Mark Lorenzi - jedenfalls mag ich das, was Jury Statements Imir das Dia davon wiedergibt. Diese Farben passen auffallend gut zu- sammen, und Hohe und Starke der Mauer scheinen erstaunlich, aber genau richtig fur diesen Durchmesser. Das Objekt kann ebenso gut ein like Mark Lorenzi's piece - at least I like what the slide tells me about it.
    [Show full text]
  • Company Profiles Glass Industry Republic of Poland
    COMPANY PROFILES GLASS INDUSTRY REPUBLIC OF POLAND Price Waterhouse InternationalPrivatizationGroup 1801 K Street, NW Washington, DC 20006 Tel: (202) 296-0800 GLASS COMPANIES Consumer Glass Huta Szkla Bialystok (Bialystok) Pienskie Huty Szkla (Piensk) Flat Glass HSO Krakszklo HSO Kunice HSO Szczakowa Packaging Glass HSO "Jaroslaw" HSO "Orzesze" Huta Szkla Pollena-Czechy (lISP Czechy) Huta Szkla Ujscic (-4S Ujscie) Consumer Glass Holding Company Huta Szkla "Horteilsja" Huta Szkla Krysztalowego "Julia" Huta Szkla Gospodarczego "Tarnow" Huta Szkla Krysztalowego "Violetta" Huta Szkla Gospodarczego "Zawiercie" COMPANY PROFILE Huta Szkla "Bialystok" May 1992 Price Waterhouse - IPG Address: ul. Woiniaka 8 15-139 Bialystok Poland Tel: (48-885) 75-17-23, 75-03-17 Fax: (48-885) 75-07-38 Tlx: 852120 Management: Dr. Jan Dorosz, Managing Director Mr. J6zef Bialkowski, Production Director Employees: 678 Products: Handmade clear and opal lighting globes Facilities: Two facilities - Main facility: two eight-tonne/day gas end fired regenerative furnaces with centrifuge; two three-tonne/day electric furnaces for opal; acid etching line Auxiliary facility: two six-tonne/day gas end fired regenerative furnace; one three-tonne/day electric for opal glass Production: 1991 export total - 568 tonnes 1991 domestic total - 849 tonnes Financial Summary: Figures in millions of zloty 1990 1991 Total Sales 41,658 49,123 Pre-Tax Profit 10,541 225 Net Profit (1) 3,380 (2,435) Net Working Capital (2) 6,087 9,854 Total Debt 1,300 7,600 Total Assets 56,874 52,604 (1) Pre-tax profit less income tax, state dividend and excess wage tax ("popiwek"). (2) Current Assets - Current Liabilities.
    [Show full text]
  • GLASS MANUFACTURE and DECORATION Raw Materials
    GLASS MANUFACTURE AND DECORATION Raw materials Following are the raw materials. 1. Sand: Forms acidic part of glass 2. Soda ash: Forms basic part of glass 3. Sodium nitrate: Accelerates melting 4. CaO: Forms the basic part of glass. 5. Silica: Forms acidic part of glass. 6. Barium sulphate: remove impurities in the form of scum. 7. Feldspar: Retards de-vitrification. 8. Potassium oxide: Used as a softening agent. 9. Borax: Increase hardness or refractive index. 10. Boric oxide: Improves chemical or corrosive resistivity. 11. Phosphoric oxide: To impart bright appearance. 12. Lead oxide: Increases insulation. 13. Selenimum: Used as decolorizer. Manufacturing process FOLLOWING ARE THE STEPS FOR THE MANUFACTURING OF GLASS: 1. MELTING: 2. SHAPING AND FORMING: 3. ANNEALING: 4. FINISHING: MELTING: Based on the type of the glass suitable glass manufacture materials are selected. Raw materials are reduced in size by crushing and grinding. Raw materials are now subjected to melting in furnace. 1. POT FURNACE. 2. TANK FURNACE. 1. Pot furnace: For special glasses like optical glass. Raw materials are melted in pot furnace made of ceramic material capacities varying from 1-2 tons and is used for small production batches. Cont. 2. TANK FURNACE: Molten glass is obtained by melting the raw materials in 1350-1400 ton capacity regenerative tank furnace and can be used in continuous processes. During melting of raw materials various reactions occur at various temperatures. Chemical reactions : Na2CO3 +aSiO2 Na2O.aSiO2+CO2 CaCO3+bSiO2 CaO.bSiO2+CO2 Na2SO4+cSiO2+C Na2O.cSiO2+SO2+CO Cont. SHAPING OR FORMING Glass may be shaped by either machine or hand molding.
    [Show full text]
  • Cranfield University Colin Morison the Resistance Of
    CRANFIELD UNIVERSITY COLIN MORISON THE RESISTANCE OF LAMINATED GLASS TO BLAST PRESSURE LOADING AND THE COEFFICIENTS FOR SINGLE DEGREE OF FREEDOM ANALYSIS OF LAMINATED GLASS. DEFENCE COLLEGE OF MANAGEMENT AND TECHNOLOGY PhD THESIS CRANFIELD UNIVERSITY DEFENCE COLLEGE OF MANAGEMENT AND TECHNOLOGY ENGINEERING SYSTEMS DEPARTMENT PhD THESIS Academic Year 2006-2007 Colin Morison The resistance of laminated glass to blast pressure loading and the coefficients for single degree of freedom analysis of laminated glass. Supervisor: Dr P D Smith May 2007 © Cranfield University 2007. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner Abstract For terrorist explosions or accidental explosions in urban areas, the greatest threat of death and serious injury comes from the effects of glass fragments. Laminated glazing has been proven by trials and experience of actual events to eliminate the risk of significant fragment injury to people behind the glazing, and also to provide substantial protection from blast injury effects, provided that after cracking it remains as a continuous membrane substantially attached to the supporting frame. However, design of laminated glazing is currently based on extrapolation from testing, with limited understanding of the material behaviour that underlies the behaviour under blast loading. This thesis presents an investigation into the application of a simplified method of dynamic analysis for laminated glass, the development of parameters derived from the properties of the materials in laminated glass and the behaviour of laminated glass systems that can be applied to the design of laminated glazing to resist blast loading. The development of the single degree of freedom method for analysis of dynamic response is reviewed from its inception use for analysis of glazing, through its adaptation for reinforced concrete analysis, to its modern use for analysis of glazing.
    [Show full text]