Glass and Glass-Ceramics

Total Page:16

File Type:pdf, Size:1020Kb

Glass and Glass-Ceramics Chapter 3 Sintering and Microstructure of Ceramics 3.1. Sintering and microstructure of ceramics We saw in Chapter 1 that sintering is at the heart of ceramic processes. However, as sintering takes place only in the last of the three main stages of the process (powders o forming o heat treatments), one might be surprised to see that the place devoted to it in written works is much greater than that devoted to powder preparation and forming stages. This is perhaps because sintering involves scientific considerations more directly, whereas the other two stages often stress more technical observations M in the best possible meaning of the term, but with manufacturing secrets and industrial property aspects that are not compatible with the dissemination of knowledge. However, there is more: being the last of the three stages M even though it may be followed by various finishing treatments (rectification, decoration, deposit of surfacing coatings, etc.) M sintering often reveals defects caused during the preceding stages, which are generally optimized with respect to sintering, which perfects them M for example, the granularity of the powders directly impacts on the densification and grain growth, so therefore the success of the powder treatment is validated by the performances of the sintered part. Sintering allows the consolidation M the non-cohesive granular medium becomes a cohesive material M whilst organizing the microstructure (size and shape of the grains, rate and nature of the porosity, etc.). However, the microstructure determines to a large extent the performances of the material: all the more reason why sintering Chapter written by Philippe BOCH and Anne LERICHE. 56 Ceramic Materials deserves a thorough attention, and the reason for which this chapter interlaces OsinteringP and OmicrostructuresP. We will now describe the overall landscape and the various chapters in this volume will present, on a case-by-case basis, the specificities of the sintering of the materials they deal with. Sintering is the basic technique for the processing of ceramics, but other materials can also use it: metals, carbides bound by a metallic phase and other cermets, as well as natural materials, primarily snow and ice. Among the reference works on sintering, we recommend above all [BER 93] and [GER 96]; the latter refers to more than 6,000 articles and deals with both ceramics and metals. We also recommend [LEE 94], which discusses ceramic microstructures and [RIN 96], which focuses on powders. 3.2. Thermodynamics and kinetics: experimental aspects of sintering 3.2.1. Thermodynamics of sintering Sintering is the consolidation, under the effect of temperature, of a powdery agglomerate, a non-cohesive granular material (often called compact, even though its porosity is typically 40% and therefore its compactness is only 60%), with the particles of the starting powder OweldingP with one another to create a mechanically cohesive solid, generally a polycrystal. The surface of a solid has a surplus energy (energy per unit area: JSV , where S is for OsolidP and V is for OvaporP) due to the fact that the atoms here do not have the normal environment of the solid which would minimize the free enthalpy. In a polycrystal, the grains are separated by grain boundaries whose surplus energy (denoted JSS , or JGB , where SS is for Osolid-solidP and GB for Ograin boundaryP) is due to the structural disorder of the boundary. In general, JSS < JSV , so a powder lowers its energy when it is sintered to yield a polycrystal: the thermodynamic engine of sintering is the reduction of systemRs interfacial energies. Mechanical energy is the reduction of the systemRs free enthalpy: 'GT = 'GVOL + 'GGB + 'GS where 'GT is the total variation of G and where VOL , GB and S correspond to the variation of the terms associated respectively with the volume, the grain boundaries and the surface. Sintering and Microstructure of Ceramics 57 Starting particles Sintering without densification Sintering with densification and shrinkage Figure 3.1. Sintering of four powder particles. In general, we want sintering to be OdensifyingP, in which case the reduction of porosity implies a shrinkage: L final = L 0 M 'L. Some mechanisms are non-densifying and allow only grain growth. This diagram shows a two-dimensional system but the powder is a three-dimensional system. We could consider an octahedral configuration where the interstice between the four particles is closed below and above by a fifth and a sixth particle [KIN 76] The interfacial energy has the form G = JA, where J is the specific interface energy and A its surface area. The lowering of energy can therefore be achieved in three ways: i) by reducing the value of J, ii) by reducing the interface area A, and iii) by combining these effects. The replacement of the solid-vapor surfaces by grain boundaries decreases J, when JSS is lower than JSV . The reduction of A is achieved by grain growth: for example, the coalescence of n small spheres with surface s and volume v results in a large sphere with volume V = nv but with surface S < ns (this coalescence can be easily observed in water-oil emulsions). In fact, the term sintering includes four phenomena, which take place simultaneously and often compete with each other: M consolidation: development of necks that OweldP the particles to one another; M densification: reduction of the porosity, therefore overall contraction of the part (sintering shrinkage); M grain coarsening: coarsening of the particles and the grains; M physicochemical reactions: in the powder, then in the material under consolidation. 58 Ceramic Materials 3.2.2. Matter transport Sintering is possible only if the atoms can diffuse to form the necks that weld the particles with one another. The transport of matter can occur in vapor phase, in a liquid, by diffusion in a crystal, or through the viscous flow of a glass. Most mechanisms are activated thermally because the action of temperature is necessary to overcome the potential barrier between the initial state of higher energy (compacted powder) and the final state of lower energy (consolidated material). Atomic diffusion in ceramics is sufficiently rapid only at temperatures higher than 0.6-0.8 T F, where T F is the melting point (in K). For alumina, for example, which melts at around 2,320 K the sintering temperature chosen is generally around 1,900 K. 3.2.3. Experimental aspects of sintering The parameters available to us to regulate sintering and control the development of the microstructure are primarily the composition of the starting system and the sintering conditions: M composition of the system: i) chemical composition of the starting powders, ii) size and shape of the particles, and iii) compactness rate of the pressed powder; M sintering conditions: i) treatment temperature, ii) treatment duration, iii) treatment atmosphere and, as the case may be, iv) pressure during the heat treatment (for pressure sintering). Pressureless sintering and pressure sintering In general, sintering is achieved solely by heat treatment at high temperature, but in difficult cases it can be assisted by the application of an external pressure: M pressureless sintering: no external pressure during the heat treatment; M pressure sintering (under uniaxial load or isostatic pressure): application of an external pressure during the heat treatment. Pressure sintering requires a pressure device that withstands the high sintering temperatures, which is in fact a complex and expensive technique and therefore reserved for specific cases. Sintering with or without liquid phase Sintering excludes a complete melting of the material and can therefore occur without any liquid phase. However, it can be facilitated by the presence of a liquid phase, in a more or less abundant quantity. We can thus distinguish solid phase sintering on the one hand and sintering where a liquid phase is present; the latter Sintering and Microstructure of Ceramics 59 case can be either liquid phase sintering or vitrification, depending on the quantity of liquid (see Figure 3.2): M for solid phase sintering, the quantity of liquid is zero or is at least too low to be detected. Consolidation and elimination of the porosity require a disruption of the granular architecture: after the sintering, the grains of the polycrystal are generally much larger than the particles of the starting powder and their morphologies are also different. Solid phase sintering requires very fine particles (micrometric) and high treatment temperatures; it is reserved for demanding uses, for example, transparent alumina for public lamps; M for liquid phase sintering, the quantity of liquid formed is too low (a few vol.%) to fill the inter-particle porosities. However, the liquid contributes to the movements of matter, particularly thanks to phenomena of dissolution followed by reprecipitation. The partial dissolution of the particles modifies their morphology and can lead to the development of new phases. A number of technical ceramics (refractory materials, alumina for insulators, BaTiO3-based dielectrics) are sintered in liquid phase; M lastly, for vitrification, there is an abundant liquid phase (for example, 20 vol.%), resulting from the melting of some of the starting components or from products of the reaction between these components. This liquid fills the spaces between the non-molten particles and consolidation occurs primarily by the penetration of the liquid into the interstices due to capillary forces, then solidification during cooling, to give crystallized phases or amorphous glass. This type of sintering is the rule for silicate ceramics, for example, porcelains. However, the quantity of liquid must not be excessive, and its viscosity must not be too low, otherwise the object would collapse under its own weight and would lose the shape given to it. Sintering with and without reaction We can speak of reactive sintering for traditional ceramics, where the starting raw materials are mixtures of crushed minerals that react with one another during sintering.
Recommended publications
  • Department of Materials Science U a L
    A N N Department of Materials Science U A L R E P O R Glass and Ceramics T 2 0 1 5 Preface In June 2015 we could welcome our new colleague Prof. Kyle G. Webber heading the func- tional ceramics department. Together with two research fellows from his DFG funded Emmy- Noether-Group he started his research activities in the field of ferroelectric ceramics. After transfer of unique experimental facilities from TU Darmstadt to FAU Erlangen his experimental equipment is ready for work. In the glass department (Prof. Dominique de Ligny) research centers on a better understanding of light interaction with glass as well as response to external stress. Laser glass interaction is ex- plored for new functionalization of glass by surface texturing. The disordered structure of glass imposes the development of specific instrumentation as vibrational spectroscopy. A new setup coupling Raman and Brillouin spectroscopy as well as a calorimeter allows new and unique pro- spective ways. In the biomaterials department (Prof. Stephan E. Wolf), the DFG funded Emmy-Noether- Research Group on biomimetic materials started the research activities after completing the refur- nishment of the laboratories. Work is focused on identifying the process-structure-property rela- tionships in biominerals and subsequent in vitro mimesis by biomimetic crystallization at ambient conditions. Initial results were published in Nature Communications (see publications). Work of the research group on cellular ceramics (Dr. Tobias Fey) is centered on microstruc- ture characterisation applying X-ray microtomography and testing of the mechanical and thermal properties of cellular ceramics. Massive strain amplification lattice structures were investigated by experimental and theoretical approaches.
    [Show full text]
  • Philippa H Deeley Ltd Catalogue 21 May 2016
    Philippa H Deeley Ltd Catalogue 21 May 2016 1 A Victorian Staffordshire pottery flatback figural 16 A Staffordshire pottery flatback group of a seated group of Queen Victoria and King Victor lion with a Greek warrior on his back and a boy Emmanuel II of Sardinia, c1860, titled 'Queen and beside him with a bow, 39cm high £30.00 - £50.00 King of Sardinia', to the base, 34.5cm high £50.00 - 17 A Victorian Staffordshire pottery flatback figure of £60.00 the Prince of Wales with a dog, titled to the base, 2 A Victorian Staffordshire pottery figure of Will 37cm high £30.00 - £40.00 Watch, the notorious smuggler and privateer, 18 A Victorian Staffordshire flatback group of a girl on holding a pistol in each hand, titled to the base, a pony, 22cm high and another Staffordshire 32.5cm high £40.00 - £60.00 flatback group of a lady riding in a carriage behind 3 A Victorian Staffordshire pottery flatback figural a rearing horse, 22.5cm high £40.00 - £60.00 group of King John signing the Magna Carta in a 19 A Stafforshire pottery flatback pocket watch stand tent flanked by two children, 30.5cm high £50.00 - in the form of three Scottish ladies dancing, 27cm £70.00 high and two smaller groups of two Scottish girls 4 A Victorian Staffordshire pottery figure of Queen dancing, 14.5cm high and a drummer boy, his Victoria seated upon her throne, 19cm high, and a sweetheart and a rabbit, 16cm high £30.00 - smaller figure of Prince Albert in a similar pose, £40.00 13.5cm high £50.00 - £70.00 20 Three Staffordshire pottery flatback pastille 5 A pair of Staffordshire
    [Show full text]
  • Topological Phases, Boson Mode, Immiscibility Window and Structural
    Topological Phases, Boson mode, Immiscibility window and Structural Groupings in Ba-Borate and Ba-Borosilicate glasses A dissertation submitted to Division of Research and Advanced Studies University of Cincinnati In partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) In the Department of Electrical Engineering and Computing Systems Of the College of Engineering and Applied Sciences October 2015 by Chad Holbrook M.S., University of Cincinnati, 2007 B.S., Northern Kentucky University, 2003 Committee Chair: Punit Boolchand, Ph.D. i Abstract In a dry ambient,(BaO)x(B2O3)100-x (a pseudo-binary glass system) were synthesized over a wide composition range, 0 mol% < x < 40 mol% , by utilizing induction melting precursors. These high quality glasses were comprehensively examined in Modulated DSC, Raman Scattering, Infrared reflectance experiments. Raman Scattering experiments and the analysis of the symmetric stretch of intra-ring Boron-Oxygen (BO) bonds (A1’) of characteristic “mixed-rings”, permits the identification of Medium Range Structure (MRS) which form in the titled glasses. These modes consist of a triad of modes (705 cm-1, 740 cm-1 and 770 cm-1), and their scattering strengths display a positive correlation to the nucleation of characteristic structural groupings (SGs); analogous to structural groupings found in the corresponding crystalline phases of Barium-Tetraborate (x = 20 mol%), and Barium-Diborate (x = 33 mol%). Identification of the SG’s permit an understanding of the extended range structure apparent in these modified borate glasses. Furthermore, a microscopic understanding of the Immiscibility range in the titled glasses in the 0 mol% < x < 15 mol% range, can be traced to the deficiency of Barium that prohibits nucleation of the Barium-Tetraborate species.
    [Show full text]
  • The Wilman Collection
    The Wilman Collection Martel Maides Auctions The Wilman Collection Martel Maides Auctions The Wilman Collection Martel Maides Auctions The Wilman Collection Lot 1 Lot 4 1. A Meissen Ornithological part dessert service 4. A Derby botanical plate late 19th / early 20th century, comprising twenty plates c.1790, painted with a central flower specimen within with slightly lobed, ozier moulded rims and three a shaped border and a gilt line rim, painted blue marks square shallow serving dishes with serpentine rims and and inscribed Large Flowerd St. John's Wort, Derby rounded incuse corners, each decorated with a garden mark 141, 8½in. (22cm.) diameter. or exotic bird on a branch, the rims within.ects gilt £150-180 edges, together with a pair of large square bowls, the interiors decorated within.ects and the four sides with 5. Two late 18th century English tea bowls a study of a bird, with underglaze blue crossed swords probably Caughley, c.1780, together with a matching and Pressnumern, the plates 8¼in. (21cm.) diameter, slop bowl, with floral and foliate decoration in the dishes 6½in. (16.5cm.) square and the bowls 10in. underglaze blue, overglaze iron red and gilt, the rims (25cm.) square. (25) with lobed blue rings, gilt lines and iron red pendant £1,000-1,500 arrow decoration, the tea bowls 33/8in. diameter, the slop bowl 2¼in. high. (3) £30-40 Lot 2 2. A set of four English cabinet plates late 19th century, painted centrally with exotic birds in Lot 6 landscapes, within a richly gilded foliate border 6.
    [Show full text]
  • Laminated Glass Insulating Glass Fire Rated Glass Burglar Resistant Glass Sound Protection Glass Decorative Glass Curved Glass
    Envelopes in Architecture (A4113) Designing holistic envelopes for contemporary buildings Silvia Prandelli, Werner Sobek New York A4113 ENVELOPES IN ARCHITECTURE - FALL 2016 Supply chain for holistic facades 2 Systems Door systems Media Facades Rainscreen facades Dynamic facades Mesh System Structural glass/Cable Glass floors Multiple skins Shading systems Green facades Panelized systems Stick/Unitized systems 3 Curtain wall facades 4 What are the components of a façade system? 5 What are the components of a façade system? 6 What are the components of a façade system? 7 Glass 8 Glass Types Base Glass (float glass) Heat Treated Glass Laminated Glass Insulating Glass Fire Rated Glass Burglar Resistant Glass Sound Protection Glass Decorative Glass Curved Glass 9 Base Glass (Float Glass) 10 3500 BC Glass Making: Man-made glass objects, mainly non-transparent glass beads, finds in Egypt and Eastern Mesopotamia 1500 BC Early hollow glass production: Evidence of the origins of the hollow glass industry, finds in Egypt 11 27 BC - 14 AD Glass Blowing: Discovery of glassblowing, attributed to Syrian craftsmen from the Sidon- Babylon area. > The blowing process has changed very little since then. 12 Flat Glass Blown sheet 13 15th century Lead Crystal Glass: During the 15th century in Venice, the first clear glass called cristallo was invented. In 1675, glassmaker George Ravenscroft invented lead crystal glass by adding lead oxide to Venetian glass. 14 16th century Sheet Glass: Larger sheets of glass were made by blowing large cylinders which were cut open and flattened, then cut into panes 19th century Sheet Glass: The first advances in automating glass manufacturing were patented in 1848 by Henry Bessemer, an English engineer.
    [Show full text]
  • The American Ceramic Society 25Th International Congress On
    The American Ceramic Society 25th International Congress on Glass (ICG 2019) ABSTRACT BOOK June 9–14, 2019 Boston, Massachusetts USA Introduction This volume contains abstracts for over 900 presentations during the 2019 Conference on International Commission on Glass Meeting (ICG 2019) in Boston, Massachusetts. The abstracts are reproduced as submitted by authors, a format that provides for longer, more detailed descriptions of papers. The American Ceramic Society accepts no responsibility for the content or quality of the abstract content. Abstracts are arranged by day, then by symposium and session title. An Author Index appears at the back of this book. The Meeting Guide contains locations of sessions with times, titles and authors of papers, but not presentation abstracts. How to Use the Abstract Book Refer to the Table of Contents to determine page numbers on which specific session abstracts begin. At the beginning of each session are headings that list session title, location and session chair. Starting times for presentations and paper numbers precede each paper title. The Author Index lists each author and the page number on which their abstract can be found. Copyright © 2019 The American Ceramic Society (www.ceramics.org). All rights reserved. MEETING REGULATIONS The American Ceramic Society is a nonprofit scientific organization that facilitates whether in print, electronic or other media, including The American Ceramic Society’s the exchange of knowledge meetings and publication of papers for future reference. website. By participating in the conference, you grant The American Ceramic Society The Society owns and retains full right to control its publications and its meetings.
    [Show full text]
  • Specialist Collectors' Sale , Tue, 13 July 2021 9:00
    Specialist Collectors' Sale , Tue, 13 July 2021 9:00 1 9ct gold charm bracelet with various novelty gold 17 Victorian silver vase of tapered cylindrical form and yellow metal charms £180-220 with embossed and pierced decoration on 2 9ct yellow and white gold bracelet with five white circular foot (lacking glass liner), by James gold double rope twist panels and yellow gold Dixon & Sons, Sheffield 1896. 11.5cm high £60- fittings. 20cm long £150-200 100 3 9ct gold circular open work ‘Ruth’ pendant on 18 Silver cigarette case with engine turned 9ct gold curb link chain. £250-300 decoration. Birmingham 1956 £60-100 4 Yellow and white metal Star of David pendant on 19 Victorian silver cased pocket watch with white 9ct gold chain £200-300 enamel dial, Roman numeral markers and subsidiary seconds dial, on silver watch chain 5 9ct gold Jewish heart shaped pendant on 18ct £40-60 gold chain £120-180 20 9ct gold flat curb link chain, 45.5cm long £150- 6 18ct gold diamond set black onyx plaque ring, 200 size L and 18ct gold signet ring, size R £80-120 21 9ct gold ball and fancy link chain, 59.5cm long 7 14ct gold wedding ring (stamped 585). Size Q £120-180 £40-60 22 Pair 9ct gold cufflinks, each oval panel engraved 8 9ct gold opal and ruby cluster ring, size N and with B and G £60-100 9ct gold emerald and opal flower head ring, size L½ £40-60 23 9ct gold heart pendant on 9ct gold chain, one other 9ct gold chain and 9ct gold watch bracelet 9 Two ladies' 9ct gold vintage wristwatches - parts £200-300 Accurist and Centaur, both on 9ct gold bracelets
    [Show full text]
  • The Magical World of Snow Globes
    Anthony Wayne appointment George Ohr pottery ‘going crazy’ among Pook highlights at Keramics auction $1.50 National p. 1 National p. 1 AntiqueWeekHE EEKLY N T IQUE A UC T ION & C OLLEC T ING N E W SP A PER T W A C EN T R A L E DI T ION VOL. 52 ISSUE NO. 2624 www.antiqueweek.com JANUARY 13, 2020 The magical world of snow globes By Melody Amsel-Arieli Since middle and upper class families enjoyed collecting and displaying decorative objects on their desks and mantel places, small snow globe workshops also sprang up Snow globes, small, perfect worlds, known too as water domes., snow domes, and in Germany, France, Czechoslovakia, and Poland. Americans traveling abroad prized blizzard weights, resemble glass-domed paperweights. Their transparent water- them as distinctive, portable souvenirs. filled orbs, containing tiny figurines fashioned from porcelain, bone, metal, European snow globes crossed the Atlantic in the 1920s. Soon after, minerals, wax, or rubber, are infused with ethereal snow-like flakes. Joseph Garaja of Pittsburgh, Pa., patented a prototype featuring a When shaken, then replaced upright, these tiny bits flutter gently fish swimming through river reeds. Once in production, addition- toward a wood, ceramic, or stone base. al patents followed, offering an array of similar, inexpensive, To some, snow globes are nostalgic childhood trinkets, cher- mass-produced models. By the late 1930s, Japanese-made ished keepsakes, cheerful holiday staples, winter wonderlands. models also reached the American market. To others, they are fascinating reflections of the cultures that Soon snow globes were found everywhere.
    [Show full text]
  • Spectroscopic Properties of Erbium-Doped Oxyfluoride Phospho-Tellurite Glass and Transparent Glass-Ceramic Containing Baf2 Nanoc
    materials Article Spectroscopic Properties of Erbium-Doped Oxyfluoride Phospho-Tellurite Glass and Transparent Glass-Ceramic Containing BaF2 Nanocrystals Magdalena Lesniak 1,* , Jacek Zmojda 2, Marcin Kochanowicz 2 , Piotr Miluski 2 , Agata Baranowska 3 , Gabriela Mach 1, Marta Kuwik 4, Joanna Pisarska 4, Wojciech A. Pisarski 4 and Dominik Dorosz 1 1 Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Av. Mickiewicza 30, 30059 Krakow, Poland; [email protected] (G.M.); [email protected] (D.D.) 2 Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska Street 45D, 15351 Bialystok, Poland; [email protected] (J.Z.); [email protected] (M.K.); [email protected] (P.M.) 3 Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska Street 45C, 15351 Bialystok, Poland; [email protected] 4 Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland; [email protected] (M.K.); [email protected] (J.P.); [email protected] (W.A.P.) * Correspondence: [email protected] Received: 21 August 2019; Accepted: 17 October 2019; Published: 20 October 2019 Abstract: The ErF3-doped oxyfluoride phospho-tellurite glasses in the (40-x) TeO2-10P2O5-45 (BaF2-ZnF2) -5Na2O-xErF3 system (where x = 0.25, 0.50, 0.75, 1.00, and 1.25 mol%) have been prepared by the conventional melt-quenching method. The effect of erbium trifluoride addition on thermal, structure, and spectroscopic properties of oxyfluoride phospho-tellurite precursor glass was studied by differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR), and Raman spectroscopy as well as emission measurements, respectively.
    [Show full text]
  • NEWSLETTER Holiday Open House & Bake Sale
    2013 Fall PRESERVING HISTORY Volume 35 No. 2 NEWSLETTER Holiday Open House Crow Wing County Museum & Bake Sale & Research Library Restored Sheriff’s Residence At the Museum Open to the public Friday, December 13th MISSION STATEMENT 3 –7 pm The Crow Wing County Enjoy hot apple cider/coffee Historical Society is committed to Punch & cookies preserving the history New exhibits and telling the story of Crow Wing County. STAFF Brainerd book available in the museum gift shop Pam Nelson Director/Administrator Newsletter Editor Lynda Hall Assistant Administrator Darla Sathre Administrative Assistant Experience Works Staff Lyn Lybeck Bonnie Novick 2013 FALL NEWSLETTER President’s Report It's hard to believe we are well into November with Christmas just around the corner. We have had a busy yet eventful year. Our annual meeting was a success, although there is always room for more attendees. Our museum continues to receive rave reviews from our visitors that tour our building. The remodeling has added room for more displays, thank you and Bake Sale to the staff and volunteers who worked very hard to make these improvements a reality. A special thanks to board member Ron Crocker and his son Jeff for making it all possible. OPEN TO THE PUBLIC The open house in October highlighted the unveiling of a large portrait of Lyman White. We Friday, Dec. 13 3-7 pm were fortunate to have Mayor James Wallin do the honors before a very nice crowd. Lyman White is the gentleman who is recognized as the person who actually laid out the Cider, Coffee, Punch boundaries of the city of Brainerd.
    [Show full text]
  • Vitreous Enamel: Mycenæan Period Jewelry to First Period Chemistry
    Vitreous Enamel: Mycenæan Period Jewelry to First Period Chemistry Date : 17/10/2018 More durable than glass and just as beautiful, vitreous enamel, also known as porcelain enamel, offers a non-porous, glass-like finish created by fusing finely ground colored glass to a substrate through a firing process. Adding to its strength and durability, the substrate used is always a metal, whether precious or non-precious, for its stability and capacity to withstand the firing process. Origins It is unknown who first developed enamelling and when the process was first used, but the most historic enameled artifacts were discovered in Cyprus in the 1950s dating as far back as the 13th Century BC. Scientists have determined the set of six rings and an enameled golden scepter found belonged to the craftspeople of Mycenaean Greece. Enamelling Evolution Metalsmiths first used enamel to take the place of gems in their work, and this was the earliest example of “paste stones,” a common element in both precious and costume jewelry today. In © 2019 PolyVision. is the leading manufacturer of CeramicSteel surfaces for use in whiteboards, chalkboards and an array of architectural applications. Page 1 of 6 this technique, enamel is placed in channels set that have been soldered to the metal. Meaning “divided into cells,” Cloisonné refers to this earliest practiced enameling technique. Champlevé, or raised fields, differs from Cloisonné in the way the space for the enamel is created. Unlike Cloisonné, the Champlevé technique requires carving away the substrate instead of setting forms onto the metal base for the enamel to fill.
    [Show full text]
  • Mead Art Museum Andrew W. Mellon Faculty Seminar: Jan 15 and 16, 2015
    Mead Art Museum Andrew W. Mellon Faculty Seminar: Jan 15 and 16, 2015 Looking at Glass through an Interdisciplinary Lens: Teaching and Learning with the Mead’s Collection Books: Bach, Hans and Norbert Neuroth, eds. The Properties of Optical Glass. Berlin: Springer-Verlag, 1995. Barr, Sheldon. Venetian Glass: Confections in Glass, 1855-1914. New York: Harry N. Abrams, 1998. Battie, David and Simon Cottle, eds. Sotheby's Concise Encyclopedia of Glass. London: Conran Octopus, 1991. Blaszczyk, Regina Lee. Imagining Consumers, Design and Innovation from Wedgwood to Corning. Baltimore: Johns Hopkins University Press, 2000. Bradbury, S. The Evolution of the Microscope. Oxford: Pergamon Press, 1967. Busch, Jason T., and Catherine L. Futter. Inventing the Modern World: Decorative Arts at the World’s Fairs, 1951-1939. New York, NY: Skira Rizzoli, 2012. Carboni, Stefano and Whitehouse, David. Glass of the Sultans. New York: Metropolitan Museum of Art; Corning, NY: The Corning Museum of Glass; Athens: Benaki Museum; New Haven and London: Yale University Press, 2001. Charleston, Robert J. Masterpieces of glass: a world history from the Corning Museum of Glass. 2nd ed.: New York, Harry N. Abrams, 1990. The Corning Museum of Glass. Innovations in Glass. Corning, New York: The Corning Museum of Glass, 1999. Lois Sherr Dubin. The History of Beads: from 30,000 B.C. to the present. London: Thames & Hudson, 2006. Fleming, Stuart. Roman Glass: Reflections of Everyday Life. Philadelphia: University of Pennsylvania Museum, 1997. ----Roman Glass: Reflections on Cultural Change. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology, 1999. 1 Frelinghuysen, Alice Cooney. Louis Comfort Tiffany at the Metropolitan Museum.
    [Show full text]