The Uses of Glass in Modern Building Practice (Presidential Address 1936)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Laminated Glass Insulating Glass Fire Rated Glass Burglar Resistant Glass Sound Protection Glass Decorative Glass Curved Glass
Envelopes in Architecture (A4113) Designing holistic envelopes for contemporary buildings Silvia Prandelli, Werner Sobek New York A4113 ENVELOPES IN ARCHITECTURE - FALL 2016 Supply chain for holistic facades 2 Systems Door systems Media Facades Rainscreen facades Dynamic facades Mesh System Structural glass/Cable Glass floors Multiple skins Shading systems Green facades Panelized systems Stick/Unitized systems 3 Curtain wall facades 4 What are the components of a façade system? 5 What are the components of a façade system? 6 What are the components of a façade system? 7 Glass 8 Glass Types Base Glass (float glass) Heat Treated Glass Laminated Glass Insulating Glass Fire Rated Glass Burglar Resistant Glass Sound Protection Glass Decorative Glass Curved Glass 9 Base Glass (Float Glass) 10 3500 BC Glass Making: Man-made glass objects, mainly non-transparent glass beads, finds in Egypt and Eastern Mesopotamia 1500 BC Early hollow glass production: Evidence of the origins of the hollow glass industry, finds in Egypt 11 27 BC - 14 AD Glass Blowing: Discovery of glassblowing, attributed to Syrian craftsmen from the Sidon- Babylon area. > The blowing process has changed very little since then. 12 Flat Glass Blown sheet 13 15th century Lead Crystal Glass: During the 15th century in Venice, the first clear glass called cristallo was invented. In 1675, glassmaker George Ravenscroft invented lead crystal glass by adding lead oxide to Venetian glass. 14 16th century Sheet Glass: Larger sheets of glass were made by blowing large cylinders which were cut open and flattened, then cut into panes 19th century Sheet Glass: The first advances in automating glass manufacturing were patented in 1848 by Henry Bessemer, an English engineer. -
Design and Fabrication of Nonconventional Optical Components by Precision Glass Molding
Design and Fabrication of Nonconventional Optical Components by Precision Glass Molding DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Peng He Graduate Program in Industrial and Systems Engineering The Ohio State University 2014 Dissertation Committee: Dr. Allen Y. Yi, Advisor Dr. Jose M. Castro Dr. L. James Lee Copyright by Peng He 2014 Abstract Precision glass molding is a net-shaping process to fabricate glass optics by replicating optical features from precision molds to glass at elevated temperature. The advantages of precision glass molding over traditional glass lens fabrication methods make it especially suitable for the production of optical components with complicated geometries, such as aspherical lenses, diffractive hybrid lenses, microlens arrays, etc. Despite of these advantages, a number of problems must be solved before this process can be used in industrial applications. The primary goal of this research is to determine the feasibility and performance of nonconventional optical components formed by precision glass molding. This research aimed to investigate glass molding by combing experiments and finite element method (FEM) based numerical simulations. The first step was to develop an integrated compensation solution for both surface deviation and refractive index drop of glass optics. An FEM simulation based on Tool-Narayanaswamy-Moynihan (TNM) model was applied to predict index drop of the molded optical glass. The predicted index value was then used to compensate for the optical design of the lens. Using commercially available general purpose software, ABAQUS, the entire process of glass molding was simulated to calculate the surface deviation from the adjusted lens geometry, which was applied to final mold shape modification. -
Crafted Architecture, an Investigation Into Handcrafted Glass Techniques
Crafted Architecture, An Investigation into Handcrafted Glass Techniques Alex Krissberg Konstfack CRAFT! Department of Ceramic and Glass Master 2 Spring 2018 Tutors: Reino Björk, Birgitta Burling, Sara Isaksson From, Hans Isaksson, Agneta Linton, Anders Ljungberg, Marie O’Connor, Johanna Rosenqvist, Bella Rune, Matt Smith Word count: 5,187 Abstract This paper is an investigation into the crossroads of traditional and contemporary glass craft techniques. Through innovative methods in the workshop I have set out to bring glass into the public sphere using the potential for handcraft in architecture. Keywords: Glass, Glassblowing, Handmade, Architectural Glass, American Studio Glass Movement, Rondel, Murrini, Cane Index Introduction 1 Background 2-5 Context 6-9 Methods: Theory (Bubbles & Blobs) 10-12 Methods: Techniques 13-16 Discussion 17-18 Conclusion 19-20 References 21-22 Appendix 23-26 Introduction This paper follows my masters project where I work with my own invented glass techniques that I am using to construct glass sheets for the purpose of architectural glass. In this project I am researching in what ways can handmade architectural craft change a space? In exploring how handmade glass can change a space, I will investigate how unseen glass traditions which happen in the workshop outside of public view can be present in a crafted object, and what society’s perception of craft might be historically and currently. I believe that public glass is lacking in the handmade. In the past society had depended on craftsmen to make windows, but now as they are mostly machine made it has become void of certain qualities. I would say architectural and functional glass is often overlooked as just a building material or tool, an object that is not seen or a transparent wall. -
Glass Circle Publications
INDEXOF GLASS CIRCLE PUBLICATIONS by Hazel Bell Incorporating and modifying the previous indexes by Peter Lole Indexed publications Key Glass Circle News Issues 1-140 (1977–2016) 1.1 (Issue no.page no(s);) The Glass Circle Journal 1-11 (1972-2009) JL The Centenary Supplement (2004) CS GCN (2004) Ex. ExFromcerpts Palace from to the Parlour first 99(2003) issues of PP The Glass Circle Diamond Jubilee 1937–1997 DJ Glass Collectors and their Collections (1999) Col. Strange and Rare: 50th Anniversary Exhibition 1937–1987 SR Major references to a topic are given in bold type Abbreviations used: c. GCN for Glass Circle News. Notesexh. for exhibition; for century; GC for Glass Circle; Short forms of article and book titles are used. Article titles, and titlesin ofitalics talks reported, are given ‘in quotes’ under the names of the speakers. Book titles are given under the names of the authors, except for multi-author books, listed under their titles. GlassReviewers Circle of books,News andreferences writers of are letters given and in obituaries, the form: are rarely included. Issue number.page number(s) with the Issue numbers followed by stops; page numbers in the same issue separated by commas; Issue numbers separated by semi-colons. Newsletters for April and July 1983 are both numbered 26; references to those issues are given in the index as 26A and 26Jy. The first page of Issue 115, 2 June 2008, shows Issue number as 114. Announcements of coming events, advertisements, auctions, fairs, and sales reports are not indexed; of exhibitions, only major ones are indexed. -
Glass and Glass-Ceramics
Chapter 3 Sintering and Microstructure of Ceramics 3.1. Sintering and microstructure of ceramics We saw in Chapter 1 that sintering is at the heart of ceramic processes. However, as sintering takes place only in the last of the three main stages of the process (powders o forming o heat treatments), one might be surprised to see that the place devoted to it in written works is much greater than that devoted to powder preparation and forming stages. This is perhaps because sintering involves scientific considerations more directly, whereas the other two stages often stress more technical observations M in the best possible meaning of the term, but with manufacturing secrets and industrial property aspects that are not compatible with the dissemination of knowledge. However, there is more: being the last of the three stages M even though it may be followed by various finishing treatments (rectification, decoration, deposit of surfacing coatings, etc.) M sintering often reveals defects caused during the preceding stages, which are generally optimized with respect to sintering, which perfects them M for example, the granularity of the powders directly impacts on the densification and grain growth, so therefore the success of the powder treatment is validated by the performances of the sintered part. Sintering allows the consolidation M the non-cohesive granular medium becomes a cohesive material M whilst organizing the microstructure (size and shape of the grains, rate and nature of the porosity, etc.). However, the microstructure determines to a large extent the performances of the material: all the more reason why sintering Chapter written by Philippe BOCH and Anne LERICHE. -
IS 1382 (1981): Glossary of Terms Relating to Glass and Glassware [CHD 10: Glassware]
इंटरनेट मानक Disclosure to Promote the Right To Information Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public. “जान का अधकार, जी का अधकार” “परा को छोड न 5 तरफ” Mazdoor Kisan Shakti Sangathan Jawaharlal Nehru “The Right to Information, The Right to Live” “Step Out From the Old to the New” IS 1382 (1981): Glossary of terms relating to glass and glassware [CHD 10: Glassware] “ान $ एक न भारत का नमण” Satyanarayan Gangaram Pitroda “Invent a New India Using Knowledge” “ान एक ऐसा खजाना > जो कभी चराया नह जा सकताह ै”ै Bhartṛhari—Nītiśatakam “Knowledge is such a treasure which cannot be stolen” I : I8 : 1382- 1881 hiiun Stan&d F&“Repriat AUGUST ‘1990 mc 666’1: owa Indian Standard _ GLOSSARY OF TERMS --,* . RELATING TO GLASS AND GLASSWARE ( First Revision ) Glassware Sectional,Committee, CDC 10 chahan - DRS.KUMAR Centra~ra~Jig’&Ceramic Rcmrch Intihttc ( CSIR ) M#mbem DR K. P. SRIVAIITAVA (Memok to Dr S. Kumar ) SRRI P. N. AUARWAL Hindustan Safety Class Works Ltd, Calcutta SERI P. -
Brief History of the Flat Glass Patent
World Patent Information 38 (2014) 50e56 Contents lists available at ScienceDirect World Patent Information journal homepage: www.elsevier.com/locate/worpatin Brief history of the flat glass patent e Sixty years of the float process Marcio Luis Ferreira Nascimento a,b a Vitreous Materials Lab, Institute of Humanities, Arts and Sciences, Federal University of Bahia, Rua Barão de Jeremoabo s/n, Idioms Center Pavilion (PAF IV), Ondina University Campus, 40170-115 Salvador, Bahia, Brazil b PROTEC/PEI e Postgraduate Program in Industrial Engineering, Department of Chemical Engineering, Polytechnic School, Federal University of Bahia, Rua Aristides Novis 2, Federação, 40210-630 Salvador, Bahia, Brazil article info abstract Article history: This paper deals with one of the single most important innovations made in Great Britain since World Available online 4 July 2014 War II. It is certainly one of the greatest process inventions of the twentieth century. The float process is one of the most widely used methods for flat glass manufacturing as it ensures security, high quality and Keywords: productivity. From a historical point this innovation was the beginning of a revolutionary change in the Glass mass production of flat glass for the building and automotive sectors. More specifically this innovation Flat eliminates the traditional operations of rolling, grinding and polishing the glass surface while creating a Float high quality and inexpensive flat glass product. The first patent was applied for on December 10th, 1953 Patent History by Pilkington and Bickerstaff. This paper presents a brief discussion from the 1960s in a historical Technology perspective about this amazing discovery and the main patents related to it. -
Traditional Windows: Their Care, Repair and Upgrading
Traditional Windows Their Care, Repair and Upgrading Summary The loss of traditional windows from our older buildings poses one of the major threats to our heritage. Traditional windows and their glazing make an important contribution to the significance of historic areas. They are an integral part of the design of older buildings and can be important artefacts in their own right, often made with great skill and ingenuity with materials of a higher quality than are generally available today. The distinctive appearance of historic hand-made glass is not easily imitated in modern glazing. Windows are particularly vulnerable elements of a building as they are relatively easily replaced or altered. Such work often has a profound affect not only on the building itself but on the appearance of street and local area. With an increasing emphasis being placed on making existing buildings more energy efficient, replacement windows have become a greater threat than ever before to the character of historic buildings and areas. This guidance covers both timber and metal windows and is aimed at building professionals and property-owners. It sets out to show the significance of traditional domestic windows by charting their history over centuries of technical development and fashion. Detailed technical advice is then provided on their maintenance, repair and thermal upgrading as well as on their replacement. This guidance was written and compiled by David Pickles, Iain McCaig and Chris Wood with assistance from Nick Molyneux and Eleni Makri. First published by English Heritage September 2014. This edition published by Historic England February 2017. All images © Historic England unless otherwise stated. -
A NEW TECHNIQUE in GLASS ART JOANNE MITCHELL a Thesis Su
PRECISION AIR ENTRAPMENT THROUGH APPLIED DIGITAL AND KILN TECHNOLOGIES: A NEW TECHNIQUE IN GLASS ART JOANNE MITCHELL A thesis submitted in partial fulfilment of the requirements of the University of Sunderland for the degree of Doctor of Philosophy August 2015 Precision Air Entrapment through Applied Digital and Kiln Technologies: A New Technique in Glass Art Joanne Mitchell PhD 2015 1 Precision Air Entrapment through Applied Digital and Kiln Technologies: A New Technique in Glass Art Joanne Mitchell 2015 Abstract The motivation for the research was to expand on the creative possibilities of air bubbles in glass, through the application of digital and kiln technologies to formulate and control complex air entrapment, for new configurations in glass art. In comparison to glassblowing, air entrapment in kiln forming glass practice is under-developed and undocumented. This investigation has devised new, replicable techniques to position and manipulate air in kiln-formed glass, termed collectively as Kiln-controlled Precision Air Entrapment. As a result of the inquiry, complex assemblages of text and figurative imagery have been produced that allow the articulation of expressive ideas using air voids, which were not previously possible. The research establishes several new innovations for air-entrapment in glass, as well as forming a technical hypotheses and a practice-based methodology. The research focuses primarily on float glass and the application of CNC abrasive waterjet cutting technology; incorporating computer aided design and fabrication alongside more conventional glass-forming methods. The 3-axis CNC abrasive waterjet cutting process offers accuracy of cut and complexity of form and scale, across a flat plane of sheet glass. -
Company Profiles Glass Industry Republic of Poland
COMPANY PROFILES GLASS INDUSTRY REPUBLIC OF POLAND Price Waterhouse InternationalPrivatizationGroup 1801 K Street, NW Washington, DC 20006 Tel: (202) 296-0800 GLASS COMPANIES Consumer Glass Huta Szkla Bialystok (Bialystok) Pienskie Huty Szkla (Piensk) Flat Glass HSO Krakszklo HSO Kunice HSO Szczakowa Packaging Glass HSO "Jaroslaw" HSO "Orzesze" Huta Szkla Pollena-Czechy (lISP Czechy) Huta Szkla Ujscic (-4S Ujscie) Consumer Glass Holding Company Huta Szkla "Horteilsja" Huta Szkla Krysztalowego "Julia" Huta Szkla Gospodarczego "Tarnow" Huta Szkla Krysztalowego "Violetta" Huta Szkla Gospodarczego "Zawiercie" COMPANY PROFILE Huta Szkla "Bialystok" May 1992 Price Waterhouse - IPG Address: ul. Woiniaka 8 15-139 Bialystok Poland Tel: (48-885) 75-17-23, 75-03-17 Fax: (48-885) 75-07-38 Tlx: 852120 Management: Dr. Jan Dorosz, Managing Director Mr. J6zef Bialkowski, Production Director Employees: 678 Products: Handmade clear and opal lighting globes Facilities: Two facilities - Main facility: two eight-tonne/day gas end fired regenerative furnaces with centrifuge; two three-tonne/day electric furnaces for opal; acid etching line Auxiliary facility: two six-tonne/day gas end fired regenerative furnace; one three-tonne/day electric for opal glass Production: 1991 export total - 568 tonnes 1991 domestic total - 849 tonnes Financial Summary: Figures in millions of zloty 1990 1991 Total Sales 41,658 49,123 Pre-Tax Profit 10,541 225 Net Profit (1) 3,380 (2,435) Net Working Capital (2) 6,087 9,854 Total Debt 1,300 7,600 Total Assets 56,874 52,604 (1) Pre-tax profit less income tax, state dividend and excess wage tax ("popiwek"). (2) Current Assets - Current Liabilities. -
GLASS MANUFACTURE and DECORATION Raw Materials
GLASS MANUFACTURE AND DECORATION Raw materials Following are the raw materials. 1. Sand: Forms acidic part of glass 2. Soda ash: Forms basic part of glass 3. Sodium nitrate: Accelerates melting 4. CaO: Forms the basic part of glass. 5. Silica: Forms acidic part of glass. 6. Barium sulphate: remove impurities in the form of scum. 7. Feldspar: Retards de-vitrification. 8. Potassium oxide: Used as a softening agent. 9. Borax: Increase hardness or refractive index. 10. Boric oxide: Improves chemical or corrosive resistivity. 11. Phosphoric oxide: To impart bright appearance. 12. Lead oxide: Increases insulation. 13. Selenimum: Used as decolorizer. Manufacturing process FOLLOWING ARE THE STEPS FOR THE MANUFACTURING OF GLASS: 1. MELTING: 2. SHAPING AND FORMING: 3. ANNEALING: 4. FINISHING: MELTING: Based on the type of the glass suitable glass manufacture materials are selected. Raw materials are reduced in size by crushing and grinding. Raw materials are now subjected to melting in furnace. 1. POT FURNACE. 2. TANK FURNACE. 1. Pot furnace: For special glasses like optical glass. Raw materials are melted in pot furnace made of ceramic material capacities varying from 1-2 tons and is used for small production batches. Cont. 2. TANK FURNACE: Molten glass is obtained by melting the raw materials in 1350-1400 ton capacity regenerative tank furnace and can be used in continuous processes. During melting of raw materials various reactions occur at various temperatures. Chemical reactions : Na2CO3 +aSiO2 Na2O.aSiO2+CO2 CaCO3+bSiO2 CaO.bSiO2+CO2 Na2SO4+cSiO2+C Na2O.cSiO2+SO2+CO Cont. SHAPING OR FORMING Glass may be shaped by either machine or hand molding. -
Glazing for Framing and Case Making
GLAZING FOR FRAMING AND CASE MAKING JARED BARK INTRODUCTION The ideal glazing material would transmit without distortion all the light in the visible spectrum, reflecting none, and would be opaque to ultraviolet radiation. It would resist impact and abrasion, carry no static charge, and neither expand nor contract with changes in temperature and humidity. Available in any size, this material would also be of light weight, rigid, inexpensive, and show no effects of aging. Sad to say, no miraculous glazing material exhibits all of these qualities. At best, our options today satisfy only three or four of the dozen requirements listed above; our task, then, is to sort out the best choice for each circumstance. The purpose of this paper is to examine and summarize the issues which must be faced in designing and working with glass or acrylic. Particular attention is paid to the practical concerns of those who execute the designs, store and handle these fragile materials, and pack and ship them. To this end, I provide as much detail as possible about specific products. If information has been supplied by manufacturers, and we have no experience with the material, I say so. We ourselves use many of the referenced products, and have conducted informal tests on some of them. It goes without saying, however, that in so large and diverse a field we have made mistakes and allowed omissions. We strongly suggest that for sensitive installations case and frame designers either contact manufacturers or perform their own tests. We plan to update this material occasionally, and would appreciate hearing from colleagues with corrections or new information.