Survival of Fusarium Graminearum, the Causal Agent of Fusarium Head Blight

Total Page:16

File Type:pdf, Size:1020Kb

Survival of Fusarium Graminearum, the Causal Agent of Fusarium Head Blight Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review Johann Leplat, Hanna Friberg, Muhammad Abid, Christian Steinberg To cite this version: Johann Leplat, Hanna Friberg, Muhammad Abid, Christian Steinberg. Survival of Fusarium gramin- earum, the causal agent of Fusarium head blight. A review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2012, 33 (1), pp.97-111. 10.1007/s13593-012-0098-5. hal- 01201382 HAL Id: hal-01201382 https://hal.archives-ouvertes.fr/hal-01201382 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agron. Sustain. Dev. (2013) 33:97–111 DOI 10.1007/s13593-012-0098-5 REVIEW ARTICLE Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review Johann Leplat & Hanna Friberg & Muhammad Abid & Christian Steinberg Accepted: 10 May 2012 /Published online: 14 June 2012 # INRA and Springer-Verlag, France 2012 Abstract Wheat is one of the most cultivated crops world- dead organic matter, particularly on crop residues. F. gra- wide. In 2010, 20 % of wheat and durum wheat were minearum adapts to a wide range of environmental varia- cultivated in Europe, 17 % in China and 9 % in Russia tions, and produces extracellular enzymes allowing feeding and in North America. Wheat yield can be highly decreased on different crop residues. However, F. graminearum com- by several factors. In particular Fusarium graminearum petes with other decomposers such as other Fusarium spp. Schwabe is a worldwide fungal pest impacting wheat pro- belonging to the same complex of species. Actually, it is not duction. F. graminearum is the causal agent of Fusarium known whether F. graminearum mycotoxins give F. grami- head blight, root and stem-base rot of cereals. Losses caused nearum a competitive advantage during the saprotrophic by Fusarium head blight in Northern and Central America period. Anthropogenic factors including preceding crops, from 1998 to 2002 reached $2.7 billion. Moreover, F. gra- tillage system and weed management can alter the develop- minearum produces mycotoxins which affect human and ment of the soil biota, which in turn can change the sapro- animal health. The threshold of these mycotoxins in food- trophic development of F. graminearum and disease risk. stuffs is regulated in Europe since 2007. F. graminearum We review the ecological requirements of F. graminearum survives for several years saprotrophically in the soil, on saprotrophic persistence. The major conclusions are: (1) temperature, water, light and O are key conditions for F. : : 2 J. Leplat M. Abid C. Steinberg (*) graminearum growth and the development of its sexual INRA, UMR1347 Agroécologie, reproduction structures on crop residues, although the fun- – Interactions Plante Microorganismes (IPM), gus can resist for a long time under extreme conditions. (2) 21065 Dijon, France e-mail: [email protected] F. graminearum survival is enhanced by high quantities of available crop residues and by rich residues, while sexual J. Leplat e-mail: [email protected] reproduction structures occur on poor residues. (3) F. gra- minearum is a poor competitor over time for residues de- M. Abid e-mail: [email protected] composition. F. graminearum survival can be controlled by : : the enhancement of the decomposition processes by other J. Leplat M. Abid C. Steinberg organisms. In addition, the development of F. graminearum Université de Bourgogne, UMR1347 Agroécologie, on crop residues can be limited by antagonistic fungi and Interactions Plante–Microorganismes (IPM), 21065 Dijon, France soil animals growing at the expense of F. graminearum- : : infested residues. (4) Agricultural practices are key fac- J. Leplat M. Abid C. Steinberg tors for the control of F. graminearum survival. A Agrosup, UMR1347 Agroécologie, suitable crop rotation and an inversive tillage can limit Interactions Plante–Microorganismes (IPM), 21065 Dijon, France the risk of Fusarium head blight development. H. Friberg Keywords Crop residues . Ecological requirements . Swedish University of Agricultural Sciences (SLU), Habitat . Mycotoxins . Preceding crop . Saprotrophic Department of Forest Mycology and Pathology, . Box 7026, 750 07 Uppsala, Sweden development Soil microbial ecology Tillage Wheat e-mail: [email protected] diseases 98 J. Leplat et al. Contents an important role in arable soils by breaking down and recy- cling plant residues, primarily cellulose and hemicellulose 1. Introduction ...............................2 (Stromberg 2005). Among them, some plant pathogenic fungi 2. Fusarium graminearum ......................3 take place and their role should be considered. Indeed, plant 2.1 Fusarium diseases on wheat ...............3 pathogenic fungi are categorised as either biotrophs or necrotr- 2.2 Saprotrophic growth ....................4 ophs, and as either obligate pathogens or facultative sapro- 2.3 Environmental factors controlling saprotrophic trophs. For example, the disease cycle of the deleterious survival ..............................5 fungus Fusarium graminearum (Fig. 1), the anamorph stage 3. Effect of crop residues as F. graminearum growth of Gibberella zeae (Schwein.) Petch is well studied (Trail substrates in the soil .........................6 2009). In a previous review, Goswami and Kistler (2004) 3.1 Effect of crop residues quantities ............6 provided an update on the pathogenesis, genetics, evolution 3.2 Effect of plant species ....................6 and genomics of F. graminearum but the ecological require- 4. Competition and antagonism ...................7 ments of its saprotrophic stage are less well understood. Fusarium head blight, root rot and foot rot (crown rot) are 4.1 Organisms succession during residue decomposition ..7 diseases that cause significant yield loss in several crops 4.2 Interactions with soil microorganisms .........7 worldwide such as wheat (Fig. 2), maize, oat (Avena sativa 4.3 Fusarium species displacement on residues .....8 L.), barley (Hordeum vulgare L.) and rice (Oryza sativa L.) 4.4 Interactions with the soil fauna .............8 (Parry et al. 1995; Pereyra and Dill-Macky 2008; Trail et al. 5. Importance of agricultural practices for the disease 2003). Yield losses caused by Fusarium head blight in development ...............................9 Northern and Central America from 1998 to 2002 were 5.1 Preceding crop .........................9 evaluated to reach $2.7 billion (Nganje et al. 2002). Several 5.2 Soil tillage ................................9 species are involved in the fungal complex that causes these 5.3 Fertilization and pesticides ...............10 diseases. Many of them also produce mycotoxins, such as 6. Conclusion ..............................11 deoxynivalenol (commonly known as DON) and its acety- lated forms 3-acetyl-4-deoxynivalenol (3-ADON) and 15- acetyl-4-deoxynivalenol (15-ADON), nivalenol (NIV) and zearalenone (ZEA) (Desjardins and Proctor 2007). These 1 Introduction mycotoxins are of major concern because of their effect on human and animal health and because they persist during Wheat (Triticum aestivum L. ssp. aestivum) is the second storage and are heat-resistant (JEFCA 2001). The threshold most cultivated crop in the world after maize (Zea mays L.). of these mycotoxins in foodstuffs is regulated in Europe since In 2010, 653 million tons of wheat and durum wheat were 2007 (CE N°1881/2006). Among the species involved in the produced in the world, of which 140.7 million tons were complex causing Fusarium disease on wheat, F. graminearum produced in Europe (FAO 2011). Moreover, the wheat is predominates in many parts of the world (Bottalico 1998; one of the most traded crops worldwide, with 125.9 million Bottalico and Perrone 2002; Parry et al. 1995). tons traded in 2010 (AGPB 2012). The cultural practices Like other Fusarium species in the complex, F. grami- trends due to economical and environmental reasons, nearum survives saprotrophically on crop residues in the i.e., reduction of soil tillage and pesticides use, raise absence of its hosts (Sutton 1982). Fusarium head blight the issue of re-emerging wheat diseases, such as fungal severity and deoxynivalenol contamination significantly diseases (McMullen et al. 1997; Millennium Ecosystem increase with the density of residues left from the preceding Assessment 2005). crop (Blandino et al. 2010). Moreover, surface residues Studies of plant pathogenic fungi generally focus on infec- provide a substrate for active growth of F. graminearum tion processes, disease development and other concerns in for a longer period of time than buried residues (Pereyra et plant–microorganism interactions, but the saprotrophic period al. 2004). Burying F. graminearum-infested crop residues of these pathogens’ life cycle is not well known. Most soil deeper in the soil can efficiently reduce F. graminearum fungi are decomposers or saprotrophs that feed on decaying populations; however, the pathogen may survive for several organic material. In fact, they play
Recommended publications
  • Fusarium Graminearum ~4(Final)-1
    MARCH 2016 Fusarium graminearum (Fusarium Head Blight ) T. Kelly Turkington1, Andrew Petran2, Tania Yonow3,4, and Darren J. Kriticos3,4 1 Lacombe Research Centre and Beaverlodge Research Farm, Agriculture and Agri‐Food Canada, Lacombe, Alberta, Canada 2 Department of Horticultural Sciences, University of Minnesota, St. Paul, MN, USA 3 HarvestChoice, InSTePP, University of Minnesota, St. Paul, MN, USA 4 CSIRO, Biosecurity and Agriculture Flagships, Canberra, Australia Background Information Introduction Common Names: Fusarium graminearum Schwabe [teleomorph Gibberella Fusarium head blight; FHB, head blight of maize zeae (Schweinitz) Petch], is of world‐wide importance on small grain cereals and corn, occurring under a wide Scientiic Name: range of soil and environmental conditions (CAB Fusarium graminearum (anamorph = asexual stage), International 2003; Gilchrist and Dubin 2002; Parry et al. Gibberella zeae (teleomorph = sexual stage) 1995; Stack 2003). Since the early 1990s, fusarium head blight (FHB) caused primarily by F. graminearum has Synonyms: become one of the most signiicant cereal diseases faced Botryosphaeria saubinetii, Dichomera saubinetii, by producers in central Canada and the prairie region, Dothidea zeae, Fusarium roseum, Gibbera saubinetii, and the midwestern United States (e.g., Gilbert and Gibberella roseum, Gibberella saubinetii, Sphaeria Tekauz 2000; McMullen et al. 1997b; Tekauz et al. 2000). saubinetii, Sphaeria zeae Fusarium graminearum was identiied by CIMMYT to be a Taxonomy: major limiting factor to wheat production in many parts Kingdom: Animalia; Phylum: Ascomycota; of the world (Stack 1999). The fungus can produce Class: Sordariomycetes; Order: Hypocreales; several mycotoxins, including deoxynivalenol (DON) and Family: Nectriaceae zearalenone. In non‐ruminants, feed contaminated with DON can reduce growth rates, while zearalenone can Crop Hosts: cause reproductive problems (Charmley et al.
    [Show full text]
  • COVER CROPS and SOIL-BORNE FUNGI DANGEROUS TOWARDS the CULTIVATION of SALSIFY (Tragopogon Porrifolius Var
    Acta Sci. Pol., Hortorum Cultus 10(2) 2011, 167-181 COVER CROPS AND SOIL-BORNE FUNGI DANGEROUS TOWARDS THE CULTIVATION OF SALSIFY (Tragopogon porrifolius var. sativus (Gaterau) Br.) Elbieta Patkowska, Mirosaw Konopiski University of Life Sciences in Lublin Abstract. Salsify has a remarkable taste and nutritious values. It is a rich source of inulin – a glycoside which has a positive effect on human and animal organisms. The paper pre- sents studies on the species composition of soil-borne fungi infecting the roots of Tragopogon porrifolius var. sativus cultivated with the use of oats, tansy phacelia and spring vetch as cover crops. In a field experiment the cover crops formed abundant green mass before winter and it constituted a natural mulch on the surface of the plough land. It was managed in two ways: 1) mixed with the soil as a result of spring ploughing, or 2) mixed with the soil as a result of pre-winter ploughing. The conventional cultivation of salsify, i.e. without cover crops, constituted the control. The studies established the number and health status of four-week-old salsify seedlings and roots with necrotic signs. A laboratory mycological analysis made it possible to determine the quantitative and qualitative composition of fungi infecting the underground parts of Tragopogon porri- folius var. sativus. The emergences and the proportion of infected salsify seedlings varied and depended on the species of the mulching plant. The smallest number of infected seed- lings was obtained after the mulch with oats, slightly more after the application of spring vetch or tansy phacelia as cover crops, and the most in the control.
    [Show full text]
  • Fungal Cannons: Explosive Spore Discharge in the Ascomycota Frances Trail
    MINIREVIEW Fungal cannons: explosive spore discharge in the Ascomycota Frances Trail Department of Plant Biology and Department of Plant Pathology, Michigan State University, East Lansing, MI, USA Correspondence: Frances Trail, Department Abstract Downloaded from https://academic.oup.com/femsle/article/276/1/12/593867 by guest on 24 September 2021 of Plant Biology, Michigan State University, East Lansing, MI 48824, USA. Tel.: 11 517 The ascomycetous fungi produce prodigious amounts of spores through both 432 2939; fax: 11 517 353 1926; asexual and sexual reproduction. Their sexual spores (ascospores) develop within e-mail: [email protected] tubular sacs called asci that act as small water cannons and expel the spores into the air. Dispersal of spores by forcible discharge is important for dissemination of Received 15 June 2007; revised 28 July 2007; many fungal plant diseases and for the dispersal of many saprophytic fungi. The accepted 30 July 2007. mechanism has long been thought to be driven by turgor pressure within the First published online 3 September 2007. extending ascus; however, relatively little genetic and physiological work has been carried out on the mechanism. Recent studies have measured the pressures within DOI:10.1111/j.1574-6968.2007.00900.x the ascus and quantified the components of the ascus epiplasmic fluid that contribute to the osmotic potential. Few species have been examined in detail, Editor: Richard Staples but the results indicate diversity in ascus function that reflects ascus size, fruiting Keywords body type, and the niche of the particular species. ascus; ascospore; turgor pressure; perithecium; apothecium. 2 and 3). Each subphylum contains members that forcibly Introduction discharge their spores.
    [Show full text]
  • Crop Profile for Corn in Michigan
    Crop Profile for Corn in Michigan Prepared Feb, 2002 General Production Information ● Michigan ranked 11th nationally in 2000 for corn grain production (44). ● Michigan contributed 2.4% to the total US production of corn in 2000 (44). ● The total acreage planted in Michigan was 2,200,000 acres in 2000, down 100,000 acres from 1998 (44). ● Total grain corn production for Michigan in 2000 was 244,280,000 bushels, down 4% from 1999 (44). ● Grain corn harvested in 2000 for Michigan was 1,97,000 acres (44). ● Silage corn harvested in 2000 for Michigan was 225,000 acres with an average yield of 14 tons per acre (44). ● Corn grain production was valued at $612 million in 1997, $432.3 million in 1998, $451 million in 1999 and 464 million in 2000 (44). ● The average bushels/acre was 117 in 1997, 111 in 1998, 130 bushels in 1999, and 124 bushels in 2000 (43, 44). ● Corn continued to be Michigan's number one crop in value of production (44). PRODUCTION REGIONS: Corn is Michigan's number one crop in both acreage planted and value of production. The top five counties in corn production in 2000 were Huron, St Joseph, Lenawee, Sanilac and Saginaw. In 1998 they were Huron, Sanilac, Clinton, Ionia and Allegan counties and in 1999 Huron, Saginaw, Sanilac, Tuscola and Lenawee counties (43, 44). The Crop Profile/PMSP database, including this document, is supported by USDA NIFA. Cultural Practices Corn can be grown on most soils in Michigan but does best on well drained soils. Soils classified as poorly drained are also suitable for corn production if they are tile drained.
    [Show full text]
  • Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions
    toxins Review Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions Lakshmipriya Perincherry , Justyna Lalak-Ka ´nczugowska and Łukasz St˛epie´n* Plant-Pathogen Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszy´nska34, 60-479 Pozna´n,Poland; [email protected] (L.P.); [email protected] (J.L.-K.) * Correspondence: [email protected] Received: 29 October 2019; Accepted: 12 November 2019; Published: 14 November 2019 Abstract: Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection. Keywords: fungal pathogens; Fusarium; pathogenicity; secondary metabolites Key Contribution: The review summarized the knowledge and recent reports on the involvement of Fusarium mycotoxins in plant infection processes, as well as the consequences for plant metabolism and physiological changes related to the pathogenesis.
    [Show full text]
  • A Genetic Map of Gibberella Zeae (Fusarium Graminearum)
    Copyright 2002 by the Genetics Society of America A Genetic Map of Gibberella zeae (Fusarium graminearum) J. E. Jurgenson,* R. L. Bowden,† K. A. Zeller,† J. F. Leslie,†,1 N. J. Alexander‡ and R. D. Plattner‡ *Department of Biology, University of Northern Iowa, Cedar Falls, Iowa 50614, †Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506-5502 and ‡Mycotoxin Research Unit, USDA/ARS National Center for Agricultural Utilization Research, Peoria, Illinois 61604 Manuscript received November 1, 2001 Accepted for publication December 26, 2001 ABSTRACT We constructed a genetic linkage map of Gibberella zeae (Fusarium graminearum) by crossing complemen- tary nitrate-nonutilizing (nit) mutants of G. zeae strains R-5470 (from Japan) and Z-3639 (from Kansas). We selected 99 nitrate-utilizing (recombinant) progeny and analyzed them for amplified fragment length polymorphisms (AFLPs). We used 34 pairs of two-base selective AFLP primers and identified 1048 polymor- cM 1300ف phic markers that mapped to 468 unique loci on nine linkage groups. The total map length is with an average interval of 2.8 map units between loci. Three of the nine linkage groups contain regions in which there are high levels of segregation distortion. Selection for the nitrate-utilizing recombinant progeny can explain two of the three skewed regions. Two linkage groups have recombination patterns that are consistent with the presence of intercalary inversions. Loci governing trichothecene toxin amount and type (deoxynivalenol or nivalenol) map on linkage groups IV and I, respectively. The locus governing the type of trichothecene produced (nivalenol or deoxynivalenol) cosegregated with the TRI5 gene (which encodes trichodiene synthase) and probably maps in the trichothecene gene cluster.
    [Show full text]
  • Fusarium Head Blight of Wheat: Evaluation of the Efficacies Of
    Fusarium Head Blight of Wheat: Evaluation of the efficacies of fungicides towards Fusarium graminearum 3-ADON and 15-ADON isolates in spring wheat and assess the genetic differences between 3-ADON isolates from Canada and China By Chami Chathurangi Amarasinghe A Thesis Submitted to the Faculty of Graduate Studies In partial Fulfillment of the Requirements for the degree of MASTER OF SCIENCE Department of Plant Science University of Manitoba Winnipeg, Manitoba, Canada ©Copyright by Chami Chathurangi Amarasinghe 2010 THE UNIVERSITY OF MANITOBA FACULTY OF GRADUATE STUDIES ***** Fusarium Head Blight of Wheat: Evaluation of the efficacies of fungicides towards Fusarium graminearum 3-ADON and 15-ADON isolates in spring wheat and assess the genetic differences between 3-ADON isolates from Canada and China BY Chami Chathurangi Amarasinghe A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements for the degree OF MASTER OF SCIENCE Chami Amarasinghe © 2010 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this thesis. The reproduction or copy of this thesis has been made available by authority of copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner. ACKNOWLEGMENTS First of all my sincere gratitude goes to Dr.
    [Show full text]
  • Impacts of Changing Climate and Agronomic Factors on Fusarium Ear Blight 1 2 3 2 of Wheat in the UK 4 5 6 3 7 8 4 Jonathan S
    *ManuscriptView metadata, citation and similar papers at core.ac.uk brought to you by CORE Click here to view linked References provided by University of Hertfordshire Research Archive 1 Impacts of changing climate and agronomic factors on fusarium ear blight 1 2 3 2 of wheat in the UK 4 5 6 3 7 8 4 Jonathan S. WESTa*, Sarah HOLDGATEa†, James A. TOWNSENDa, Julia B HALDERad, 9 10 b c a 5 Simon G. EDWARDS , Philip JENNINGS and Bruce D. L. FITT 11 12 13 6 14 15 7 a Rothamsted Research, Harpenden, AL5 2JQ, UK; b Harper Adams University College, 16 17 c 18 8 Newport, TF10 8NB, UK; The Food and Environment Research Agency, Sand Hutton, 19 20 9 York YO41 1LZ, UK; d Imperial College, London; † current address: RAGT Seeds Ltd., 21 22 23 10 Grange Road, Ickleton, Saffron Walden, CB10 1TA, UK 24 25 11 26 27 *E-mail: [email protected] 28 12 29 30 13 31 32 14 Climate change will have direct impacts on fusarium ear blight (FEB) in wheat crops, since 33 34 35 15 weather factors greatly affect epidemics, the relative proportions of species of ear blight 36 37 16 pathogens responsible and the production of deoxynivalenol (DON) toxin by two Fusarium 38 39 40 17 species, F. graminearum and F. culmorum. Many established weather-based prediction 41 42 18 models do not accurately predict FEB severity in the UK. One weather-based model 43 44 45 19 developed with UK data suggests a slight increase in FEB severity under climate change.
    [Show full text]
  • Host Plant Resistance Genes for Fusarium Head Blight: Sources, Mechanisms, and Utility in Conventional Breeding Systems
    Host Plant Resistance Genes for Fusarium Head Blight: Sources, Mechanisms, and Utility in Conventional Breeding Systems J. C. Rudd,* R. D. Horsley, A. L. McKendry, and E. M. Elias ABSTRACT source of complete resistance is known, and current Fusarium head blight (FHB), caused by Fusarium graminearum sources provide only partial resistance. Schwabe [teleomorph Gibberella zeae (Schwein.)], also known as The United States Department of Agriculture (USDA) scab, is a destructive disease of wheat (Triticum aestivum L; T. tur- currently ranks FHB as the worst plant disease of wheat gidum L. var durum) and barley (Hordeum vulgare L.). Host resis- and barley since the stem rust (caused by Puccinia gram- tance has long been considered the most practical and effective means inis Pers.:Pers.) epidemics of the 1950s (Wood et al., of control, but breeding has been hindered by a lack of effective 1999). FHB epidemics have been documented in 26 resistance genes and by the complexity of the resistance in identified states and five Canadian provinces. Yield losses in wheat sources. This paper will provide an overview of progress in developing host plant resistance for FHB, primarily in the USA, by review of since 1990 have exceeded 13 Tg (500 million bushels) the sources of resistance in wheat and barley, and their utilization with economic losses estimated at $2.5 billion (Windels, in breeding programs. Although there are no reported sources of 2000). Wheat yields in 1993 were reduced by about 50% immunity, considerable genetic variability exists for resistance in both in northeastern North Dakota and 40% in northwestern wheat and barley.
    [Show full text]
  • Physiological and Biochemical Response to Fusarium Culmorum Infection in Three Durum Wheat Genotypes at Seedling and Full Anthesis Stage
    International Journal of Molecular Sciences Article Physiological and Biochemical Response to Fusarium culmorum Infection in Three Durum Wheat Genotypes at Seedling and Full Anthesis Stage Jakub Pastuszak 1,* , Anna Szczerba 1, Michał Dziurka 2 , Marta Hornyák 1,3, Przemysław Kope´c 2 , Marek Szklarczyk 4 and Agnieszka Płazek˙ 1 1 Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Podłuzna˙ 3, 30-239 Kraków, Poland; [email protected] (A.S.); [email protected] (M.H.); [email protected] (A.P.) 2 Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; [email protected] (M.D.); [email protected] (P.K.) 3 Polish Academy of Sciences, W. Szafer Institute of Botany, Lubicz 46, 31-512 Kraków, Poland 4 Faculty of Biotechnology and Horticulture, University of Agriculture, 29 Listopada 54, 31-425 Kraków, Poland; [email protected] * Correspondence: [email protected] Abstract: Fusarium culmorum is a worldwide, soil-borne plant pathogen. It causes diseases of cereals, reduces their yield, and fills the grain with toxins. The main direction of modern breeding is to select wheat genotypes the most resistant to Fusarium diseases. This study uses seedlings and plants at the anthesis stage to analyze total soluble carbohydrates, total and cell-wall bound phenolics, Citation: Pastuszak, J.; Szczerba, A.; chlorophyll content, antioxidant activity, hydrogen peroxide content, mycotoxin accumulation, visual Dziurka, M.; Hornyák, M.; Kope´c,P.; symptoms of the disease, and Fusarium head blight index (FHBi). These results determine the Szklarczyk, M.; Płazek,˙ A.
    [Show full text]
  • Gibberella and Fusarium Ear Rots of Maize in Hawai'i
    Plant Disease August 2014 PD-102 Gibberella and Fusarium Ear Rots of Maize in Hawai‘i Mark Dragich and Scot Nelson Department of Plant and Environmental Protection Sciences wo distinct ear rot diseases of By 2006 the value of the corn maize (corn, Zea mays L.) in industry in Hawai‘i had increased by Hawai‘iT are caused by similar plant over 13,000% compared with 40 years pathogens. The fungus Gibberella previous, and it has almost doubled zeae or its asexual stage, Fusarium again since then (Hawaii Annual Stat. graminearum, causes Gibberella Bull., Proctor et al. 2010). In 2012 ear rot of maize. Fusarium ear the total value of corn production in rot of maize, however, is caused Hawai‘i was nearly 250 million dollars by Fusarium verticillioides. This (Hawaii Annual Stat. Bull.). Under fungal pathogen is also known as certain weather conditions, however, F. moniliforme, F. proliferatum, large losses from ear rots can occur. and F. subglutinans as well as In this paper we discuss the patho- their sexual stages, which are dif- gens, symptoms they produce, and ferent mating types of Gibberella integrated management practices for fujikuroi. These diseases have a these diseases. worldwide distribution and are present in all climates where corn Pathogens is grown. They are of sporadic Gibberella ear rot Gibberella zeae is the sexual stage importance in Hawai‘i. However, (teleomorph) of the pathogen causing these ear rots are the most impor- Gibberella ear rot of corn. It is an as- tant problem facing the production and development of comycete fungus, which means it produces ascospores in new sweet and waxy corns in the tropics (J.
    [Show full text]
  • Research.Pdf (2.916Mb)
    INFLUENCES OF COMBINATORIALLY SELECTED PEPTIDES ON INHIBITION OF GIBBERELLA ZEAE SPORE GERMINATION AND CYTOLOGICAL MODIFICATION OF EMERGING GERM-TUBES _______________________________________ A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science _____________________________________________________ by NATHAN WILSON GROSS Professor James T English, Thesis Supervisor JULY 2012 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled Influences of Combinatorially Selected Peptides on Inhibition of Gibberella zeae Spore Germination and Cytological Modification of Emerging Germ-Tubes presented by Nathan W Gross, a candidate for the degree of master of science, and hereby certify that, in their opinion, it is worthy of acceptance. Professor James T English Professor James E Schoelz Professor Francis J Schmidt ACKNOWLEDGMENTS I would like to thank my advisor, Professor Jim English, for the help, encouragement, and patience he generously gave throughout my student experience. I would also like to thank my committee, consisting of Professors Jim Schoelz and Frank Schmidt, for their technical guidance and critical eye. Additionally, much of what I have learned in regards to laboratory skill can be attributed to Dr Zhiwei Fang. I would like to thank Professor Frances Trail from Michigan State University for supplying Gibberella zeae PH-1 and for guiding me through the culturing of perithecia. My work relied heavily on the University of Missouri Molecular Cytology and DNA-Sequencing core facilities. I would like to thank the university for providing these tools and their staff for excellent work and technical assistance.
    [Show full text]