Seismicity in Mines a Review
Total Page:16
File Type:pdf, Size:1020Kb
2004:22 TECHNICAL REPORT Seismicity in Mines A Review Kristina Larsson Luleå University of Technology Technical Report Department of Civil and Environmental Engineering Division of Rock Mechanics 2004:22 - ISSN: 1402-1536 - ISRN: LTU-TR--04/22--SE PREFACE This literature review is part of a joint research project between SveBeFo, Boliden Mineral AB, LKAB, and Luleå University of Technology. The project is aimed at increasing the knowledge of seismicity induced by mining in Sweden. The financial support for the project is provided by SveBeFo, Boliden Mineral AB and LKAB. The work presented in this report is the result of a literature study and several discussion meetings with the project reference group. The reference group consists of M.Sc. Christer Andersson, SKB (Swedish Nuclear Waste Management), Mr. Tomas Franzén, Research Director at SveBeFo, Tech. Lic. Lars Malmgren, LKAB, M.Sc. Per-Ivar Marklund, Boliden Mineral AB, Professor Arne Myrvang, NTNU, Dr. Jonny Sjöberg, SwedPower AB, and my supervisor Professor Erling Nordlund, Division of Rock Mechanics at Ltu. Thanks also to Mr. Meirion Hughes for checking the language. Luleå, November 2004 Kristina Larsson i ii SUMMARY The virgin stress state in the rock mass depends on several factors, for instance gravity and tectonics. Around a mine the stress state is disturbed, which leads to locally increased or decreased stresses. The rock mass in Sweden is generally composed of high strength brittle rock types, so the risk of violent failures increases with increasing depth of mining due to increasing stress levels. The problem with violent failures is that they are a safety risk for mine personnel. During the past few years an increased number of violent failures causing fallouts have been observed in both LKAB and Boliden mines. These types of failures are generally called rockbursts, but different mines give different meaning to the phenomena. Therefore the terms seismicity and seismic event will be introduced here. Seismicity is the rock mass response to deformation and failure. A seismic event is the sudden release of potential or stored energy in the rock. The released energy is then radiated as seismic waves. A rockburst is defined as a mining-induced seismic event that causes damage to openings in the rock. In this literature report, mining induced seismicity is reviewed and the influencing factors described. The state of stress is one important factor that influences the occurrence of rockbursts; hence the state of stress in Scandinavia is described briefly, and examples of how the most common Swedish mining methods influence the stress field are given. The behavior of the rock mass in different situations is described, dealing with the relationship between stress state and seismicity and rock response to energy changes during excavation. Different rockburst mechanisms are described including failure mechanisms and type of damage caused. Rockburst classifications and the varying definitions of rockbursts are briefly summarized. Seismic monitoring is an important tool for many mines today, and is therefore reviewed including a description of the most common seismological terms that are used to describe seismicity. Some different methods of predicting and explaining rockbursts are described. Methods of preventing seismicity, for example different ways of destressing the rock mass and reinforcement have also been reviewed. iii iv SAMMANFATTNING Det primära spänningstillståndet i bergmassan beror av flera faktorer, bland annat gravitation och tektonik. Spänningstillståndet runt en gruva är stört, vilket leder till lokalt ökade eller minskade spänningar. Bergmassan i Sverige består generellt av höghållfasta spröda bergarter, varför risken för våldsamma brottförlopp ökar med ökande brytningsdjup på grund av de högre spänningarna. Problemet med de våldsamma brotten är att de utgör en säkerhetsrisk för personalen. Under de senaste åren har antalet våldsamma brott som orsakat utfall ökat i både Bolidens och LKABs gruvor. Dessa typer av brott kallas generellt för smällberg (eng. rockburst), men olika gruvor har olika uppfattning om vad smällberg är. Därför introduceras i denna rapport begreppet seismicitet och seismisk händelse. Seismicitet är bergmassans respons på deformation och brott. En seismisk händelse är en plötslig frigörelse av potentiell eller lagrad energi i berget, vilken avges i form av seismiska vågor. Smällberg definieras som en seismisk händelse som orsakar en skada (utfall) på öppningar i bergmassan. I denna litteraturrapport beskrivs brytningsinducerad seismicitet och dess påverkande faktorer. Spänningstillståndet är en viktig faktor som påverkar förekomsten av smällberg, varför spänningstillståndet i Skandinavien beskrivs kort tillsammans med en förklaring om hur de vanligaste svenska brytningsmetoderna påverkar spänningsfältet runt gruvan. Bergmassans beteende i olika situationer beskrivs, främst förhållandet mellan spänningstillstånd och seismicitet samt hur bergmassan beter sig vid energiförändringar. Olika mekanismer för smällberg ges en kort beskrivning där också brottmekanismen och typiska skador tas upp. Klassificering av smällberg samt några olika sätt att definiera smällberg beskrivs. Seismisk övervakning är ett viktigt verktyg för många gruvor idag, så en generell översikt ges tillsammans med en summering av seismologiska termer som används för att beskriva seismicitet. Några olika metoder som utvecklats för att beskriva och förutsäga smällberg tas upp. Metoder att förhindra seismicitet, till exempel olika former av avlastning och förstärkning beskrivs också. v vi LIST OF SYMBOLS AND ABBREVIATIONS σv ,σz = vertical stress, compressive stresses are taken as positive σH = major horizontal stress σh = minor horizontal stress σ1 = major principal stress σ2 = intermediate principal stress σ3 = minor principal stress σx = horizontal stress in x-direction σy = horizontal stress in y-direction σn = stress normal to e.g., fault plane σs = seismic stress, proportional to seismic energy and seismic moment ε = strain εs = seismic strain, proportional to seismic moment εst = static shear strain τ = shear stress τs = static shear stress τd = dynamic shear stress τe = excess shear stress ρ = rock density, kg/m3 or t/m3 g = gravity acceleration, m/s2 γ = unit weight, N/m3 z = depth below ground surface, m k = σH /σv ν = Poisson’s ratio E = Young´s modulus G = shear modulus or modulus of rigidity S = boundary surface Si = surface of initial excavation Sm = surface of enlargement V = volume Vm = volume of enlargement vii Wk = kinetic or seismic energy Wr = released energy Ws = energy absorbed in support deformation Wt = change in potential energy Uc = stored strain energy Um = stored energy in removed rock Us = energy stored in spring Uu = increase in stored energy U1 = initial strain energy of test cell in MGW U2 = strain energy after event in MGW K = stiffness of spring or surrounding rock F = force, N N = normal force acting perpendicular to surface of interest µs = static coefficient of friction µd = dynamic coefficient of friction A = area s = speed φ = friction angle cs = cohesion α = strike angle, or azimuth β = dip angle λ = rake D = average shear displacement d = distance Λ0 = amplitude Λ = maximum amplitude ∆ = focal depth T = period of the measured wave h = range ϕ = epicentral distance, ° Ξ = epicentral distance in kilometers Γ = instrument magnification factor ∆σ = stress drop viii r0 = radius of fault f0 = corner frequency ML = local or Richter magnitude M0 = seismic moment MS = surface wave magnitude mb = body wave magnitude Mw = moment magnitude Mn = Nuttli magnitude ES, EP = seismic energy in S-, and P-wave respectively Et = total seismic energy N = number of events a = constant b = relation between small and large events in a certain time interval ERR = Energy Release Rate ESS = Excess Shear Stress VESS = Volume Excess Shear Stress MGW = Modeled Ground Work LERD = Local Energy Release Density ID = departure index Pi , Pj = parameters RHI = rockburst hazard indication Ψ = function with value 1 or 0 depending on the departure index Q1 = stress parameter in cell evaluation method Q2 = strain energy parameter in cell evaluation method ST = factor of safety tn, tn’ = traction, before and after event un, un’ = displacement, before and after event ix x TABLE OF CONTENTS Preface.........................................................................................................................................i Summary ...................................................................................................................................iii Sammanfattning ......................................................................................................................... v List of symbols and abbreviations............................................................................................vii Table of contents .......................................................................................................................xi 1 Introduction ........................................................................................................................ 1 1.1 Background ................................................................................................................ 1 1.2 Objective and outline of report................................................................................... 2 2 Rock stress.........................................................................................................................