The Sudbury Neutrino Observatory - Canada's Eye on the Universe

Total Page:16

File Type:pdf, Size:1020Kb

The Sudbury Neutrino Observatory - Canada's Eye on the Universe LABORATORY PROFILE The Sudbury Neutrino Observatory - Canada's eye on the universe Some 2000 m underground in a working nickel mine, physicists have installed one of the world's most sensitive instruments for observing the universe. Operational Neutrino since 1999, the Sudbury Neutrino Observatory Observatory has ambitious plans for the future James Gillies reports. It all began 1.8 billion years ago when of 40°C, making for a sticky 1.5 km walk geologists believe that a meteorite struck along the "SNO drift" - the tunnel con­ the Earth, creating what is now the necting the mine shaft to SNO's under­ Sudbury basin in Canada. The impact ground laboratory. allowed a rich seam of nickel-copper ore to rise through the Earth's crust around Cleanliness is the key the rim of the crater. Today the Sudbury Visiting SNO is an adventure in itself. basin is circled with the world's largest Scientists and miners are indistinguish­ concentration of nickel mines, and, in able in all but their conversation as they one of them, scientists accompany the descend in the lift. Overalls, miners' miners on their morning descent to the lamps and safety harnesses are the 6800ft (2000 m) level. order of the day. Everything to be taken The Sudbury landscape still has an into the lab must be carefully wrapped unearthly quality about it. Early mining in plastic to protect it from the efforts stripped away trees to provide fuel omnipresent mine dust. Arriving at the for smelting the ore, with the result that in lab, boots are rinsed down, clothes are the 1960s the Sudbury basin resembled removed and everyone takes a shower something close to a moonscape. NASA before changing into a clean set of over­ even sent moonshot astronauts there for alls and entering the lab. training. Today the trees are coming 2000 metres underground - excavation of the Scrupulous attention to cleanliness back, thanks to a large degree to the underground cavity for the Sudbury Neutrino is one of the keys to SNO's success. mines themselves, where underground Observatory detector. Incredibly, the laboratory maintains nurseries provide warm stable condi­ class-100 clean-room conditions in the tions for trees to grow. most sensitive areas and all areas are class-3000 or better. That "All you have to add is light," said Art McDonald, director of the means that everywhere within the laboratory there are fewer than Sudbury Neutrino Observatory (SNO) as we stepped off the lift 3000 particles of 1 (jm or larger per 1 m3 of air. A typical room would 2000 m underground. Here the rock is constantly at a temperature give a count of around 100 000 particles and the SNO drift consid- 24 CERN Courier December 2001 LABORATORY PROFILE erably more. Even more impressive protons and an electron. First is that these clean conditions were results published in 2001, taken maintained throughout the con­ together with Superkamiokande's struction of the experiment. previous measurement (CERN The emphasis on purity does not Courier September p5) via the end with the air. Systems for puri­ elastic scattering of boron-8 neu­ fying the SNO detector's light and trinos from electrons with low sen­ heavy water fill most of the avail­ sitivity to neutrino types other able space. The 33 m deep, 22 m than electron neutrinos, provide diameter chamber that houses the compelling evidence for neutrino detector is lined with several layers oscillation. of plastic material that help to The next step for SNO was to keep the radiation level from measure the total boron-8 neu­ uranium and thorium a full nine trino flux to give a complete mea­ orders of magnitude lower than in surement that is independent of the surrounding rock. the Superkamiokande result.To do this, salt has been added to the Herb Chen's experiment heavy water. Salt increases SNO's SNO began collecting data in sensitivity to the flavour-blind pro­ 1999, but its history goes back cess of neutral current neutrino- much further. In 1984 Herb Chen deuteron interactions, which are of the University of California at identified by the detection of the Irvine first pointed out the advan­ photon emitted when the tages of using heavy water as a deuteron's neutron is captured. detector for solar neutrinos. Two Capture on heavy water results in reactions - one sensitive only to a 6.25 MeV photon, whereas cap­ electron-type neutrinos, the other ture on chlorine releases an sensitive to all neutrino flavours - 8.6 MeV photon that is more eas­ would allow such a detector to ily detected. Moreover, the neutron measure neutrino oscillations capture probability in SNO's heavy directly. The Creighton mine in water is around 25%, whereas in Sudbury - among the deepest in A schematic of the SNO detector. salt it rises to 85%. Radioactivity the world - was quickly identified levels are also low for this phase as an ideal place for Chen's proposed experiment to be built and the of the experiment and data analysis is underway. SNO collaboration held its first meeting in 1984. In a third phase of running, scheduled to begin in the second half There were substantial obstacles to overcome before the experi­ of 2002, the salt will be removed and replaced by helium-3-filled ment could be realized, not least of which was the cost of the heavy proportional counters. These will give the experiment an water. It was clear from the start that industrial partners would have independent sensitivity to the neutral current process and allow to be found. INCO, the company operating the Creighton mine, distortions in the solar boron-8 spectrum to be measured more became a key player, putting its infrastructure at SNO's disposal and accurately than before. blasting out a new cavern for the experiment far away from ongoing mine activity. Another key partner was found in the form of Atomic Supernovae warning Energy of Canada Limited, which provided C$330 million of heavy Solar neutrinos form just one strand of SNO's research programme. water on loan, free of charge. "In a sense we're doing a greater than The experiment's ability to single out electron-neutrino interactions C$600 million project for less than C$100 million in terms of capi­ and its high sensitivity to other neutrino types gives it a powerful tal cost," explained McDonald. tool for investigating supernovae by observing the time development The experiment was approved in 1990. Excavation took three between different neutrino types emerging from the explosion. SNO's years and installation a further five. The detector consists of a 12 m data-acquisition system, normally running at around 10 Hz, is set diameter acrylic sphere containing 1000 tonnes of heavy water sur­ up to buffer several hundred events in a window lasting just a few rounded by light water and viewed by 10 000 photomultipliers. seconds if necessary, and it also alerts the shift crew whenever the Filling the sphere with heavy water, flooding the cavern with light event rate rises significantly. This initiates an analysis procedure, water and calibrating the detector was complete by November designed to identify whether noise or physics is responsible for the 1999, allowing data taking to begin. rise. SNO will be part of the Supernova Early Warning System In its first phase of running - to June 2001 - SNO's analysis con­ (SNEWS) along with the LVD (Gran Sasso), Superkamiokande centrated on the measurement of boron-8 electron neutrinos from (Japan) and Amanda (South Pole) experiments. Signals sent to a the Sun.These are detected at SNO via the charged current process central computer in Japan can be studied for time coincidences and of electron neutrinos interacting with deuteronsto produce a pair of the astronomical community can be alerted in the case of a > CERN Courier December 2001 25 LABORATORY PROFILE Neutrino observatory pioneer - in 1984 Herb Chen ofUC Irvine The SNO heavy-water purification plant first pointed out the advantages of using heavy water as a detector for solar neutrinos. He died in 1987, long before the via cosmic-ray interactions in the atmosphere. In contrast with Sudbury Neutrino Observatory became operational. detectors under mountains, SNO has a 45° window for measuring downward-moving neutrinos. A clear distinction between downward supernova. The neutrino burst can precede light by several hours. and upward-moving neutrinos will allow SNO to make a model-inde­ The detector's location 2000 m below a flat surface also makes it pendent measurement of atmospheric neutrinos over a three- to a particularly powerful instrument for observing neutrinos created four-year timescale. SNO has a well defined programme until 2006 and ambitious plans thereafter.The scientists envisage a shift in emphasis towards RF Amplifiers more subtle neutrino physics and possible improvements to the SNO detector. Seasonal variations and correlations with the solar cycle QEI Corporation will design and manufacture to are on the agenda. SNO will also turn its attention to other neutrino your RF Amplifier needs. Our 30 years of experience oscillation processes in the Sun. allows us to work with you to complete your requirements. Canadian scientists are hopeful of extending the laboratory Whether you require solid state or tube, air or water beyond the one experiment that it currently houses. The Canadian cooling, CW or pulse, LF to UHF, we can meet your government has recently launched the Canadian Foundation for needs. To discuss your project, contact QEI at 800-334- Innovation International Programme to generate world-class inter­ 9154 (USA), 1-856-728-2020 (International), or via e-mail national research facilities in Canada, and Sudbury is a strong con­ at [email protected].
Recommended publications
  • Download the Scanned
    'fnp AtvrERrcAN MrxERALocrsr JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA Vor,. 8 JUNE, 1923 No.5 MINERALOGRAPHY AS AN AID TO MILLING1 Brrrs TsousoN,University of Toronto The accurate determination of the opaque minerals present in an ore is very often of prime importance to the mill-man if he would work out the problem of separation intelligently. It is sufficiently obvious that a chemical analysis or an assay will only give him data as to the elements present and will leave him more or lessin the dark as to the minerals representedin the ore. Since it has been found that certain sulfidesare more amenable to flota- tion methods than others, the value of accurate mineralogical determination of the ores would appear to be particularly necessary 'in this form of milling. However, it should also be quite evident that any milling problem would be benefited at its inception by a careful study of the mineral content of the ore, the approximate quantitative proportions of the minerals present, and their mutual inter-relationships. As far as the writer is aware the only satisfactory method for examining these ores microscopically is by means of , polished sections in reflected light. This branch of Mineralogy, known variously as Mineralography or Mineragraphy, may also be applied to the microscopic study of mill-products in the difierent stages of separation. Where the fragmental ma-terial is fairly coarse a thin layer of it may be set in melted sealing-wax and polished in the ordinary way. If the material is fine enough to pass through a 4S-meshscreen, before polishing, it must be mixed with a combination of melted sealing-wax and balsam.
    [Show full text]
  • The Development and Application of Destressing
    The Development and Application of Destressing Techniques in the Mines of INCO Limited, Sudbury, Ontario. By J. Denis P. O'Donnell Sr. Laurentian University SUDBURY. Ontario. A thesis submitted to the School of Graduatr Studies in partial fulfilrnent of the requirements for the Degree of Master of Science. Apr. Yd. 1999 APPDEMCAoc O Copyright by J. Denis P. O'Donnell Sr. 1999 National Library Bibliothèque nationale I*I of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395, nie Wellington Ottawa ON KIA ON4 Ottawa ON K 1A ON4 Canada Canada Your fi& Votre réUnmai Ow fi/e Notre reierence The author has granted a non- L'auteur a accordé une licence non exclusive licence allowuig the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sel1 reproduire, prêter, distribuer ou copies of ths thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts from it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. iii Acknowledgements The destressing project. the research. and compilation of this thesis was carrird out with the help and encouragement of a number of people.
    [Show full text]
  • Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Annual Progress Report for the Period January 01 – December 31, 2014
    Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Annual Progress Report for the Period January 01 – December 31, 2014 NWMO-TR-2015-21 December 2015 J. Adams1 J.A. Drysdale1 S. Halchuk1 P. Street1 V. Peci2 1 Canadian Hazards Information Service, Geological Survey of Canada Natural Resources Canada Government of Canada 2 V.Peci under contract Nuclear Waste Management Organization 22 St. Clair Avenue East, 6th Floor Toronto, Ontario M4T 2S3 Canada Tel: 416-934-9814 Web: www.nwmo.ca i Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Annual Progress Report for the Period January 01 – December 31, 2014 NWMO-TR-2015-21 December 2015 J. Adams1 J.A. Drysdale1 S. Halchuk1 P. Street1 V. Peci2 1 Canadian Hazards Information Service Geological Survey of Canada, Natural Resources Canada Government of Canada 2 V. Peci under contract This report has been prepared under contract to NWMO. The report has been reviewed by NWMO, but the views and conclusions are those of the authors and do not necessarily represent those of the NWMO. All copyright and intellectual property rights belong to NWMO. ii Document History Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Title: Annual Progress Report for the Period January 01 – December 31, 2014 Report Number: NWMO-TR-2015-21 Revision: R000 Date: December December 2015 Canadian Hazards Information Service, Geological Survey of Canada, Natural Resources Canada, Government of Canada Authored by: J. Adams, J.A. Drysdale, S. Halchuk, P. Street and V. Peci, Verified by: J.A. Drysdale Approved by: J Adams Nuclear Waste Management Organization Reviewed by: Richard Crowe Accepted by: Mark Jensen iii ABSTRACT Title: Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Annual Progress Report for the Period January 01 – December 31, 2014 Report No.: NWMO-TR-2015-21 Author(s): J.
    [Show full text]
  • 1985, November
    Publications Editor Trialngle Peter vom Scheidt Writer In this issue Frank Pagnucco Published by the Public Affairs Fun is first Department of Inco Limited, Copper Cliff, A sense of family is what makes the Salto Gymnastics Ontario PPM INO - Phone 705-682-5425 Club special. 4 Creighton deep On the cover Innovative techniques and equipment allow development of orebody below 7,000 level to be Our stylistic version of Canada carried out in an efficient and cost effective planner. 10 Geese flying south reminds us that Fall has arrived and that Summer is officially over. This seasonal change comes too fast Classic Cars for some and for others it doesn't happen fast enough. Classic cars help classy people raise money for community projects. But our cover doesn't just 14 symbolize the changing seasons it also features the newest tenants United Way of Inco's tailings area. To learn This year's United Way campaign for employees in the more about these new guests see Sudbury area will take place during the week of story beginning on page 16 of October 21. All money collected will go to one of 19 this issue. Sudbury agencies. 22 Cliff smelter complex who appear in the next issue. praised the significant milestone. In order to publish the large Ernie, a lubrication engineer backlog of retirement interviews inspector at the smelter, says that have occurred during the safety is something he considers past few months it was necessary every day on the job. "I think that the last edition of the about safety first," he states.
    [Show full text]
  • Myths of Deep and High Stress Mining — Reality Checks with Case Histories
    Deep Mining 2017: Eighth International Conference on Deep and High Stress Mining – J Wesseloo (ed.) © 2017 Australian Centre for Geomechanics, Perth, ISBN 978-0-9924810-6-3 doi:10.36487/ACG_rep/1704_58_Suorineni Myths of deep and high stress mining — reality checks with case histories FT Suorineni University of New South Wales, Australia Abstract The theme of this conference is ‘deep and high stress mining’. Obviously, mining at depth and in high stress is a current challenge and will continue to be so. Despite the several years of dedication to this subject and its importance, the definition of what is ‘deep’ and ‘high stress’ remains a matter of conjecture. Clear understanding of these terms, are fundamental to the design of excavations to achieve the benefits of the knowledge accumulated on the subject over the years. This paper aims at critically examining conditions that constitute high stress and explores what is ‘depth’ in the mining context. International case histories are used to demonstrate how a misunderstanding of ‘depth’ and ‘high stress’ can result in wrong mine layouts and excavation designs. The paper then provides conditions that constitute high stress and deep mining as a guide to mine layouts and the design of excavations to cope with these conditions. Keywords: deep mining, high stress, case histories 1 Introduction Stress is a significant factor in determining the safe and economic extraction of orebodies and, hence, an important consideration in determining mining methods. Stacey and Wesseloo (1998) state that from the point of view of planning of mining operations, the in situ stress field is the most important input parameter for modelling of excavations.
    [Show full text]
  • A Comparative Study of Nickel Sulphide Deposits Within the Area of the Canadian Shield
    Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 1970 A Comparative Study of Nickel Sulphide Deposits Within the Area of the Canadian Shield Robert G. Kreiner Wilfrid Laurier University Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Geology Commons, and the Physical and Environmental Geography Commons Recommended Citation Kreiner, Robert G., "A Comparative Study of Nickel Sulphide Deposits Within the Area of the Canadian Shield" (1970). Theses and Dissertations (Comprehensive). 1528. https://scholars.wlu.ca/etd/1528 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. A COMPARATIVE STUDY OF NICKEL SULPHIDE DEPOSITS WITHIN THE AREA OF THE CANADIAN SHIELD BY Robert G. Kreiner Submitted in partial fulfillment of the requirements for theM.A. Degree in Geography Faculty of Graduate Studies Waterloo Lutheran University Waterloo, Ontario 1970 Property ii i,\j Library Waterloo University College UMI Number: EC56498 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI EC56498 Copyright 2012 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • The Sudbury Basin Stress Tensor – Myth Or Reality?
    Deep Mining 2014 – M Hudyma and Y Potvin (eds) © 2014 Australian Centre for Geomechanics, Perth, ISBN 978-0-9870937-9-0 doi:10.36487/ACG_rep/1410_43_Suorineni The Sudbury Basin stress tensor – myth or reality? FT Suorineni The University of New South Wales, Australia F Malek Vale Canada Ltd., Canada Abstract Sudbury Basin is host to many underground mines, most of which are seismically active. Some of these mines, e.g. Creighton Mine, have been in operation for over a century and can be said to be matured. Others, e.g. Glencore Xstrata Nickel Rim South Mine, have just been opened and can be classified as young. Several in situ stress measurements have been performed in these mines over the years. Mine seismicity and rockburst research has been very active in the Sudbury Basin since 1984 following the then Falconbridge Mine disaster. Stress tensor is one of the critical inputs in numerical models for the assessment of excavation performance, support demand and rockbursts and seismicity potential. It is also an important input in closed-form solutions for similar purposes. Over the years, several technical reports have referred to a Sudbury Basin stress tensor. In a recent review study of stress measurements in the Sudbury Basin as a means of validating the so called Sudbury Basin stress tensor, the supposed stress tensor source could be hardly identified. It is important to recognise that in situ stress measurement errors remain significantly high and would be unacceptable in any other branch of engineering (Hoek 1994). To improve confidence in these measurements several carefully measured data are required.
    [Show full text]
  • Examples of Ground Support Practice in Challenging Ground Conditions at Vale’S Deep Operations in Sudbury
    Deep Mining 2014 – M Hudyma and Y Potvin (eds) © 2014 Australian Centre for Geomechanics, Perth, ISBN 978-0-9870937-9-0 doi:10.36487/ACG_rep/1410_19_Yao Examples of ground support practice in challenging ground conditions at Vale’s deep operations in Sudbury M Yao Vale Canada Ltd., Canada A Sampson-Forsythe Vale Canada Ltd., Canada AR Punkkinen Vale Canada Ltd., Canada Abstract Vale has operated a number of underground mines in the Ontario division in Sudbury for over a century. During this time, numerous mining methods have been employed including cut-and-fill, drift-and-fill, post pillar cut-and-fill, modified sublevel caving, underhand cut-and-fill/drift and fill plus bulk mining methods such as vertical retreat mining (VRM)/slot-slash, uppers retreat and underhand bulk mining. The division hosts a wide variety of orebodies of varying geometries, many of these at advanced stages of mining extraction. Consequently, the geomechanical challenges are substantial and include both gravity-driven and rockburst-prone ground failure conditions that are further exacerbated by rock mass characteristics and ever-increasing mining depths. Typically the gravity-driven scenarios include the recovery of remnant pillars in old mined out areas, mining through consolidated backfill and recovery of post-failure sill pillars. Burst-prone conditions become a challenge when mining through stiff and brittle geological structures, upon recovery of highly stressed sill pillars in narrow vein ore bodies or when mining at depths in excess of 2,500 m from surface. Gravity driven and stress induced ground failures may occur simultaneously. Underhand cut-and-fill for sill pillar recovery in narrow vein ore bodies are also known to involve risk from both of these failure mechanisms.
    [Show full text]
  • Orientation of Exsolved Pentlandite in Natural and Synthetic Nickeliferous
    AmericanMineralogist, Volume61, pages913-920, 1976 Orientationof exsolvedpentlandite in naturaland synthetic nickeliferous pyrrhotite Cenr A. FRANCISI,MtcHesl E. FLestz, KuL,q MlsnA.8,AND JenrEs R. Cnntcl rDepartment of Geological Sciences, Virginia Polytechnic Institute and State Uniuersity, Blacksburg, Virginia 24061 2Department of Geology, The Uniuersity of Western Ontario, London, Ontario N6A3K7 sDepartment of Geological Sciences, The Uniuersity of Tennessee,Knoxuille, Tennessee37916 Abstract Pentlandite(pn), (Fe, Ni)rSB,exsolves from nickeliferouspyrrhotite (po), (Fe, Ni)r-,S, in the form of flamesexhibiting weak reflectionanisotropism and preferredorientation. X-ray precessionstudies on both natural and syntheticcrystals have establishedthe orientation relation:(111)pnll (00.1)po; (0Tl )pn ll (l 1.0)po;(TT2)pn ll (10.0)po.In synthesisexperiments, rapidlyquenched samples of (Fe,Ni)r-,Ssolid solutions contain randomly oriented blebs of pentlandite,whereas slowly cooled charges contain coherent lamellae of pentlanditeparallel to (00.1)of pyrrhotite. Introduction typical Sudbury-typeFe-Ni sulfideassemblages lie within the monosulfidesolid-solution field at higher Threetextural varieties of pentlandite,(Fe,Ni)156, temperatures(Naldrett and Kullerud, 1967;Craig are common in the pyrrhotite-bearing(Sudbury- and Kullerud, 1969) further supportsthis inter- type) naturalnickel sulfide assemblages: (l) massive pretation.Thus the subsolidusexsolution origin of (blocky) pentlandite,often containingislands of pentlanditein nickel-sulfideassemblages
    [Show full text]
  • Towards Improving the Performance of Creighton Mine's Natural Heat
    Proceedings of the 3rd World Congress on Mechanical, Chemical, and Material Engineering (MCM'17) Rome, Italy – June 8 – 10, 2017 Paper No. MMME 150 ISSN: 2369-8136 DOI: 10.11159/mmme17.150 Towards Improving the Performance of Creighton Mine’s Natural Heat Exchange Area Negar Saeidi1, Lorrie Fava1, Cheryl Allen2 1MIRARCO – Mining Innovation 935 Ramsey Lake Rd, Sudbury, ON, Canada [email protected]; [email protected] 2Vale Canada Limited, Ontario Operations 18 Rink St, Copper Cliff, ON, Canada [email protected] Abstract – The Canadian climate features long, cold winters and short, mild summers that provides the opportunity for Vale’s Creighton Mine in Sudbury, ON, Canada to manage mine cooling requirements over a 50 year period. The intake air for Creighton Mine’s ventilation system is conditioned by continuously pulling ambient air through the Natural Heat Exchange Area (NHEA). The NHEA is a large-scale volume created by previous open-pit and block cave mining at Creighton that contains significant broken rock tonnage with the ability to store ambient coolth and heat on a seasonal basis. The study reported in this paper is part of an on-going collaborative research project conducted by Vale and MIRARCO. The project is investigating options to extend the efficiency of the NHEA system and provide cooler air to deeper levels of Creighton Mine. A three- dimensional computational fluid dynamics (CFD) model is being developed and calibrated for dynamic modeling and simulation of the NHEA’s thermal physics. The calibrated model will be used to support the assessment of both operation and system design variations to improve the NHEA’s performance.
    [Show full text]
  • Constraining the Formation and Alteration of Sudbury Breccia, Ontario, Canada: Implications for Footwall Cu-Ni-PGE Exploration
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-6-2016 12:00 AM Constraining the Formation and Alteration of Sudbury Breccia, Ontario, Canada: Implications for Footwall Cu-Ni-PGE Exploration Jonathan W. O'Callaghan The University of Western Ontario Supervisor Dr. G.R. Osinski The University of Western Ontario Joint Supervisor Dr. R.L. Linnen The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Jonathan W. O'Callaghan 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation O'Callaghan, Jonathan W., "Constraining the Formation and Alteration of Sudbury Breccia, Ontario, Canada: Implications for Footwall Cu-Ni-PGE Exploration" (2016). Electronic Thesis and Dissertation Repository. 4075. https://ir.lib.uwo.ca/etd/4075 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i Abstract Sudbury breccia is an impactite situated in the footwall of the 1.85 Ga Sudbury impact structure, situated in Ontario. Developing exploration vectors towards Sudbury breccia- hosted Cu-Ni-PGE mineralization is inhibited by an insufficient understanding of the relative contributions of footwall lithologies versus impact melt. By combining whole-rock geochemistry, field observations, statistical modelling and petrography, this study has determined that Sudbury breccia is a parautochthonous shock melt, which does not require a melt sheet contribution.
    [Show full text]
  • Short Contributions to the Geology of Georgia
    SHORT CONTRIBUTIONS TO THE GEOLOGY OF GEORGIA ATLANTA 1978 BULLITIN 93 For convenience in selecting our reports from your bookshelves, they will be color-keyed across the spine by subject as follows: Red Valley & Ridge mapping and structural geology Dk. Purple Piedmont & Blue Ridge mapping and struc- tural geology Maroon Coastal Plain mapping and stratigraphy Lt. Green Paleontology Lt. Blue Coastal Zone studies Dk. Green Geochemical and Geophysical studies Dk. Blue Hydrology Olive Economic geology Mining directory Yellow Environmental studies Engineering studies Dk. Orange Bibliographies and lists of publications Brown Petroleum and natural gas Black Field trip guidebooks Dk. Brown Collections of papers Colors have been selected at random, and will be augmented as new subjects are published. ---- -·-- ------·- -~-~-·-·--· ·- .. SHORT CONTRIBUTIONS TO THE GEOLOGY OF GEORGIA STATE OF GEORGIA Department of Natural Resources Joe D. Tanner. Commissioner Environmental Protection Division J. leonard Ledbetter. Director Georgia Geologic Survey John R. George, Acting State Geologist ATLANTA 1978 CONTENTS Page The Huber Formation of Eastern Central Georgia by B. F. BUIE . 1 Figure 1. Contact of Huber Formation overlain unconformably by Clinchfield Sand . 2 Figure 2. Close-up view of fossil zone in clayey sand, near top of Huber Formation . 2 Figure 3. Schematic diagram of Cretaceous and Tertiary strata, Macon-Gordon area, Georgia . 3 Table 1. Detailed stratigraphic section of Huber Formation 4 Figure 4. Road cut exposure of updip Huber Formation 5 Figure 5. Photograph of measured section (Table 1) . 5 Table 2. Characteristics of kaolins of the Cretaceous beds undifferentiated and Huber Formation . 6 Figure 6. Contrast of fracture form in Tertiary and Cretaceous kaolin 6 Figure 7.
    [Show full text]