Retrospective Analysis of Mine Seismicity: Glencore, Kidd Mine

Total Page:16

File Type:pdf, Size:1020Kb

Retrospective Analysis of Mine Seismicity: Glencore, Kidd Mine RETROSPECTIVE ANALYSIS OF MINE SEISMICITY: GLENCORE, KIDD MINE by Sandra V. L. Smith Thesis submitted in partial fulfillment of the requirements for the degree of Master of Applied Science (MASc) in Natural Resources Engineering Faculty of Graduate Studies Laurentian University Sudbury, Ontario © Sandra V.L. Smith, 2017 THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE Laurentian Université/Université Laurentienne Faculty of Graduate Studies/Faculté des études supérieures Title of Thesis Titre de la thèse RETROSPECTIVE ANALYSIS OF MINE SEISMICITY GLENCORE, KIDD MINE Name of Candidate Nom du candidat Smith, Sandra Degree Diplôme Master of Science Department/Program Date of Defence Département/Programme Natural Resources Engineering Date de la soutenance June 26, 2017 APPROVED/APPROUVÉ Thesis Examiners/Examinateurs de thèse: Dr. Marty Hudyma (Supervisor/Directeur(trice) de thèse) Dr. Shailendra Sharan (Committee member/Membre du comité) Dr Eugene Ben-Awuh (Committee member/Membre du comité) Approved for the Faculty of Graduate Studies Approuvé pour la Faculté des études supérieures Dr. David Lesbarrères Monsieur David Lesbarrères Dr. Brad Simser Dean, Faculty of Graduate Studies (External Examiner/Examinateur externe) Doyen, Faculté des études supérieures ACCESSIBILITY CLAUSE AND PERMISSION TO USE I, Sandra Smith, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and make accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the duration of my copyright ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also reserve the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that this copy is being made available in this form by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. ii ABSTRACT Understanding the rock mass response to underground mining is a significant benefit to assist with decisions aimed at maintaining safe access and controlling conditions in which incidents of rock mass failure may occur during excavation development. As Canadian mines get deeper, high stress conditions become more prevalent, often leading to dynamic rock mass failure. This failure results in recordable dynamic stress waves, also called mining induced seismic events. The occurrence of large seismic events has become commonplace in many Ontario hardrock mines. This thesis investigates the mining-induced seismic events recorded in the deepest levels of Glencore’s Kidd Mine, near Timmins, Ontario. The research focuses on mining-induced seismic events in Mine D, which is between 2000 and 3000 metres below surface. Spatial and temporal trends of large seismic events are investigated. Particular emphasis is placed on analysis of the variations in radiated seismic energy associated with large magnitude events. Through analysis of seismic source parameters such as radiated seismic energy, a better understanding of dynamic rock mass failure in a mine is achieved. This improved understanding aids in managing the risks associated with deep mining in high stress conditions. KEYWORDS Seismicity, Deep underground mines, Deep hardrock mines, Ontario hardrock mines, Mining- induced seismicity, rock mass response to mining, seismic response to mining, mXrap analysis in deep hardrock mines, energy variations, apparent stress, spatial and temporal analysis. iii ACKNOWLEDGEMENTS The author wishes to thank the staff at Glencore’s Kidd Mine for providing the data and time in support of my research. In particular, I wish to thank Mr. Greg Cooper, Mr. Norm Disley and Mr. Dave Counter, for their efforts in helping me understand the complexities of the Kidd Mine geology, mining, rock mechanics and seismic data. I would also like to extend acknowledgement and thanks to my advisor, Dr. Marty Hudyma, for his steady guidance and encouragement during the evolution of this thesis. The encouragement of family, friends and coworkers has been greatly appreciated and none more so than my daughter, Alison. Her kindness, patience and her ability to keep me anchored have been invaluable. iv TABLE OF CONTENTS ABSTRACT ................................................................................................................................................... III KEYWORDS ................................................................................................................................................. III ACKNOWLEDGEMENTS............................................................................................................................IV TABLE OF CONTENTS ................................................................................................................................ V LIST OF TABLES.......................................................................................................................................VIII LIST OF FIGURES ........................................................................................................................................IX 1.0 INTRODUCTION .................................................................................................................................... 1 1.1 Seismicity in Underground Mines ................................................................................................... 2 1.2 Stress Redistribution and Strain Softening ....................................................................................... 2 1.3 Rock Mass Response ...................................................................................................................... 4 1.3.1 Strain ......................................................................................................................................... 4 1.3.2 Structure .................................................................................................................................... 4 1.4 Seismic Monitoring and Data .......................................................................................................... 5 1.5 Scope.............................................................................................................................................. 6 1.6 Problem Statement .......................................................................................................................... 6 1.7 Research Approach ......................................................................................................................... 7 1.8 Thesis Structure .............................................................................................................................. 8 2.0 LITERATURE REVIEW....................................................................................................................... 10 2.1 Terminology ................................................................................................................................. 10 2.2 Rock Mass Yielding and Damage Limits ...................................................................................... 14 2.2.1 Theory and Research................................................................................................................ 15 2.2.2 Stress and Strain ...................................................................................................................... 15 2.2.3 In Situ Strength ........................................................................................................................ 17 2.2.4 Damage Threshold, Strength and Yield .................................................................................... 20 2.2.5 Rock Mass Damage ................................................................................................................. 26 2.2.6 Confinement ............................................................................................................................ 27 2.2.7 Spalling Limit .......................................................................................................................... 30 2.3 Creighton Mine Case Study .......................................................................................................... 31 2.3.1 Yielded Regions ...................................................................................................................... 31 v 2.3.2 Stress Observations .................................................................................................................. 32 2.4 Apparent Stress, Energy Variations and Rock Mass Response to Mining ....................................... 33 2.4.1 Frequency-Magnitude Relation ................................................................................................ 34 2.4.2 S:P Energy Ratio ....................................................................................................................
Recommended publications
  • Download the Scanned
    'fnp AtvrERrcAN MrxERALocrsr JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA Vor,. 8 JUNE, 1923 No.5 MINERALOGRAPHY AS AN AID TO MILLING1 Brrrs TsousoN,University of Toronto The accurate determination of the opaque minerals present in an ore is very often of prime importance to the mill-man if he would work out the problem of separation intelligently. It is sufficiently obvious that a chemical analysis or an assay will only give him data as to the elements present and will leave him more or lessin the dark as to the minerals representedin the ore. Since it has been found that certain sulfidesare more amenable to flota- tion methods than others, the value of accurate mineralogical determination of the ores would appear to be particularly necessary 'in this form of milling. However, it should also be quite evident that any milling problem would be benefited at its inception by a careful study of the mineral content of the ore, the approximate quantitative proportions of the minerals present, and their mutual inter-relationships. As far as the writer is aware the only satisfactory method for examining these ores microscopically is by means of , polished sections in reflected light. This branch of Mineralogy, known variously as Mineralography or Mineragraphy, may also be applied to the microscopic study of mill-products in the difierent stages of separation. Where the fragmental ma-terial is fairly coarse a thin layer of it may be set in melted sealing-wax and polished in the ordinary way. If the material is fine enough to pass through a 4S-meshscreen, before polishing, it must be mixed with a combination of melted sealing-wax and balsam.
    [Show full text]
  • The Development and Application of Destressing
    The Development and Application of Destressing Techniques in the Mines of INCO Limited, Sudbury, Ontario. By J. Denis P. O'Donnell Sr. Laurentian University SUDBURY. Ontario. A thesis submitted to the School of Graduatr Studies in partial fulfilrnent of the requirements for the Degree of Master of Science. Apr. Yd. 1999 APPDEMCAoc O Copyright by J. Denis P. O'Donnell Sr. 1999 National Library Bibliothèque nationale I*I of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395, nie Wellington Ottawa ON KIA ON4 Ottawa ON K 1A ON4 Canada Canada Your fi& Votre réUnmai Ow fi/e Notre reierence The author has granted a non- L'auteur a accordé une licence non exclusive licence allowuig the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sel1 reproduire, prêter, distribuer ou copies of ths thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts from it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. iii Acknowledgements The destressing project. the research. and compilation of this thesis was carrird out with the help and encouragement of a number of people.
    [Show full text]
  • Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Annual Progress Report for the Period January 01 – December 31, 2014
    Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Annual Progress Report for the Period January 01 – December 31, 2014 NWMO-TR-2015-21 December 2015 J. Adams1 J.A. Drysdale1 S. Halchuk1 P. Street1 V. Peci2 1 Canadian Hazards Information Service, Geological Survey of Canada Natural Resources Canada Government of Canada 2 V.Peci under contract Nuclear Waste Management Organization 22 St. Clair Avenue East, 6th Floor Toronto, Ontario M4T 2S3 Canada Tel: 416-934-9814 Web: www.nwmo.ca i Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Annual Progress Report for the Period January 01 – December 31, 2014 NWMO-TR-2015-21 December 2015 J. Adams1 J.A. Drysdale1 S. Halchuk1 P. Street1 V. Peci2 1 Canadian Hazards Information Service Geological Survey of Canada, Natural Resources Canada Government of Canada 2 V. Peci under contract This report has been prepared under contract to NWMO. The report has been reviewed by NWMO, but the views and conclusions are those of the authors and do not necessarily represent those of the NWMO. All copyright and intellectual property rights belong to NWMO. ii Document History Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Title: Annual Progress Report for the Period January 01 – December 31, 2014 Report Number: NWMO-TR-2015-21 Revision: R000 Date: December December 2015 Canadian Hazards Information Service, Geological Survey of Canada, Natural Resources Canada, Government of Canada Authored by: J. Adams, J.A. Drysdale, S. Halchuk, P. Street and V. Peci, Verified by: J.A. Drysdale Approved by: J Adams Nuclear Waste Management Organization Reviewed by: Richard Crowe Accepted by: Mark Jensen iii ABSTRACT Title: Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Annual Progress Report for the Period January 01 – December 31, 2014 Report No.: NWMO-TR-2015-21 Author(s): J.
    [Show full text]
  • 1985, November
    Publications Editor Trialngle Peter vom Scheidt Writer In this issue Frank Pagnucco Published by the Public Affairs Fun is first Department of Inco Limited, Copper Cliff, A sense of family is what makes the Salto Gymnastics Ontario PPM INO - Phone 705-682-5425 Club special. 4 Creighton deep On the cover Innovative techniques and equipment allow development of orebody below 7,000 level to be Our stylistic version of Canada carried out in an efficient and cost effective planner. 10 Geese flying south reminds us that Fall has arrived and that Summer is officially over. This seasonal change comes too fast Classic Cars for some and for others it doesn't happen fast enough. Classic cars help classy people raise money for community projects. But our cover doesn't just 14 symbolize the changing seasons it also features the newest tenants United Way of Inco's tailings area. To learn This year's United Way campaign for employees in the more about these new guests see Sudbury area will take place during the week of story beginning on page 16 of October 21. All money collected will go to one of 19 this issue. Sudbury agencies. 22 Cliff smelter complex who appear in the next issue. praised the significant milestone. In order to publish the large Ernie, a lubrication engineer backlog of retirement interviews inspector at the smelter, says that have occurred during the safety is something he considers past few months it was necessary every day on the job. "I think that the last edition of the about safety first," he states.
    [Show full text]
  • Falconbridge Limited
    Falconbridge Limited 2004 ANNUAL REPORT 2004 Financial Highlights (US$ MILLIONS, EXCEPT PER SHARE DATA) 2004 2003 Operating Highlights Revenues $ 3,070 $ 2,083 Operating income 969 301 Earnings 672 191 Cash provided by operating activities before changes in working capital 1,067 445 Capital expenditures and deferred project costs 573 370 Financial Position Cash and cash equivalents 645 298 (at December 31) Working capital 933 649 Total assets 5,118 4,172 Long-term debt 1,437 1,427 Shareholders’ equity 2,563 1,938 Return on common shareholders’ equity (ROE) 31% 11% Return on net assets 31% 13% Ratio of net debt to net debt plus equity 24% 37% Per Common Share (US$) Earnings (Basic) $ 3.71 $ 1.03 Earnings (Diluted) 3.69 1.02 Cash provided by operating activities 5.38 2.48 Book value 14.25 10.84 Shares outstanding (millions of shares) 179.8 178.8 Front cover, from left to right: RETURN ON EQUITY RETURN ON NET ASSETS SHARE PRICE 1) Nickel Rim South, Sudbury, Falconbridge achieved a Falconbridge increased its During 2004, Falconbridge Ontario, vent shaft galloway 31% return on equity in RONA to 31% in 2004, maintained an average stock price assembly of two sections 2004 exceeding its 15% surpassing its 18% target. of Cdn$31.88, 60% higher than 2) Nickel end product ROE objective. its 2003 average of Cdn$19.95. 3) Lomas Bayas, Chile 4) Nikkelverk, Norway, refinery (%) (%) (Cdn$) 37 30 30 34 25 25 31 28 20 20 GOAL 18% 25 15 GOAL 15% 15 22 2003 average stock price 10 10 19 16 5 5 13 0 0 10 00 01 02 03 04 00 01 02 03 04 2003 2004 Investment Grade Credit Ratings: Moody’s: Baa3 Standard & Poor’s: BBB– Dominion Bond Rating Service: BBB High Why Invest in Falconbridge? Right metals – nickel and copper Solid production base – upside potential Growth opportunities – within our control Growing value of scarce resources Financial strength to fund operations and growth projects NICKEL PRODUCTION COPPER PRODUCTION Falconbridge achieved Falconbridge achieved record refined nickel production of copper mine production of 100,900* tonnes in 2004.
    [Show full text]
  • Falconbridge Limited 2003 Annual Report FUNDAMENTAL STRENGTH Our Operations
    Falconbridge Limited 2003 Annual Report FUNDAMENTAL STRENGTH Our Operations NICKEL COPPER CORPORATE 1 Sudbury 6 Compañía Minera Doña Inés de 9 Corporate Office (Sudbury, Ontario) Collahuasi S.C.M. (44%) (Toronto, Ontario) Mines and mills nickel-copper ores; smelts (Northern Chile) 10 Project Offices nickel-copper concentrate from Sudbury’s Mines and mills copper sulphide ores into (Kone and Nouméa, New Caledonia; mines and from Raglan, and processes concentrate; mines and leaches copper Brisbane, Australia) custom feed materials. oxide ores to produce cathodes. 11 Exploration Offices 2 Raglan 7 Kidd Division (Sudbury, Timmins and Toronto, Ontario; (Nunavik, Quebec) (Timmins, Ontario) Laval, Quebec; Pretoria, South Africa; Mines and mills nickel-copper ores from Mines copper-zinc ores from the Kidd Mine. Belo Horizonte, Brazil; Brisbane, open pits and an underground mine. Mills, smelts and refines copper-zinc ores Australia) from the Kidd Mine and processes Sudbury 3 Nikkelverk A/S copper concentrate and custom feed 12 Business Development (Kristiansand, Norway) materials. (Toronto, Ontario) Refines nickel, copper, cobalt, precious and platinum group metals from Sudbury, 8 Compañía Minera Falconbridge 13 Marketing and Sales Raglan and from custom feeds. Lomas Bayas (Brussels, Belgium; Pittsburgh, (Northern Chile) Pennsylvania; Tokyo, Japan) 4 Falconbridge Dominicana, C. por A. Mines copper oxide ores from an open pit; (85.26%) (Bonao, Dominican Republic) refines into copper cathode through the 14 Technology Centre Mines, mills, smelts
    [Show full text]
  • Myths of Deep and High Stress Mining — Reality Checks with Case Histories
    Deep Mining 2017: Eighth International Conference on Deep and High Stress Mining – J Wesseloo (ed.) © 2017 Australian Centre for Geomechanics, Perth, ISBN 978-0-9924810-6-3 doi:10.36487/ACG_rep/1704_58_Suorineni Myths of deep and high stress mining — reality checks with case histories FT Suorineni University of New South Wales, Australia Abstract The theme of this conference is ‘deep and high stress mining’. Obviously, mining at depth and in high stress is a current challenge and will continue to be so. Despite the several years of dedication to this subject and its importance, the definition of what is ‘deep’ and ‘high stress’ remains a matter of conjecture. Clear understanding of these terms, are fundamental to the design of excavations to achieve the benefits of the knowledge accumulated on the subject over the years. This paper aims at critically examining conditions that constitute high stress and explores what is ‘depth’ in the mining context. International case histories are used to demonstrate how a misunderstanding of ‘depth’ and ‘high stress’ can result in wrong mine layouts and excavation designs. The paper then provides conditions that constitute high stress and deep mining as a guide to mine layouts and the design of excavations to cope with these conditions. Keywords: deep mining, high stress, case histories 1 Introduction Stress is a significant factor in determining the safe and economic extraction of orebodies and, hence, an important consideration in determining mining methods. Stacey and Wesseloo (1998) state that from the point of view of planning of mining operations, the in situ stress field is the most important input parameter for modelling of excavations.
    [Show full text]
  • A Comparative Study of Nickel Sulphide Deposits Within the Area of the Canadian Shield
    Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 1970 A Comparative Study of Nickel Sulphide Deposits Within the Area of the Canadian Shield Robert G. Kreiner Wilfrid Laurier University Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Geology Commons, and the Physical and Environmental Geography Commons Recommended Citation Kreiner, Robert G., "A Comparative Study of Nickel Sulphide Deposits Within the Area of the Canadian Shield" (1970). Theses and Dissertations (Comprehensive). 1528. https://scholars.wlu.ca/etd/1528 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. A COMPARATIVE STUDY OF NICKEL SULPHIDE DEPOSITS WITHIN THE AREA OF THE CANADIAN SHIELD BY Robert G. Kreiner Submitted in partial fulfillment of the requirements for theM.A. Degree in Geography Faculty of Graduate Studies Waterloo Lutheran University Waterloo, Ontario 1970 Property ii i,\j Library Waterloo University College UMI Number: EC56498 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI EC56498 Copyright 2012 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • Ausenco NI 43-101 Template
    Crawford Nickel Sulphide Project NI 43-101 Technical Report & Preliminary Economic Assessment Ontario, Canada Effective Date: May 21, 2021 Prepared for: Canada Nickel Company Inc. 130 King St. West Suite 1900 Toronto, Ontario, M5X 1E3 Prepared by: Ausenco Engineering Canada Inc. 11 King St. West Suite 1550 Toronto, Ontario, M5H 4C7 List of Qualified Persons: Paul Staples, P.Eng., Ausenco Engineering Canada Inc. Greg Lane, FAUSIMM, Ausenco Services Pty. Ltd. Scott Jobin-Bevans, P.Geo., Caracle Creek International Consulting Inc. John Siriunas, P.Eng., Caracle Creek International Consulting Inc. David Penswick, P.Eng., Independent Mining Consultant Sheila Ellen Daniel, P.Geo., Wood Canada Ltd. Karel Van Zyl, P.Eng., Wood Canada Ltd. CERTIFICATE OF QUALIFIED PERSON L. Paul Staples I, L. Paul Staples, P.Eng., certify that I am employed as VP and Global Practice Lead with Ausenco Engineering Canada (“Ausenco”), with an office address of 855 Homer Street, Vancouver, BC. This certificate applies to the technical report titled “Crawford Nickel Sulphide Project – NI 43-101 Technical Report & Preliminary Economic Assessment” that has an effective date of May 21, 2021 (the “Technical Report”). I graduated from Queen’s University, Kingston, Ontario in 1993 with a Bachelor of Science degree in Materials and Metallurgical Engineering. I am a member in good standing of the Engineers and Geoscientists of British Columbia, Licence #47467. I have practiced my profession for 28 years continuously. I have been directly involved in many similar projects and studies in Canada and abroad. I have read the definition of “Qualified Person” set out in the National Instrument 43-101 Standards of Disclosure for Mineral Projects (“NI 43-101”) and certify that by virtue of my education, affiliation to a professional association and past relevant work experience, I fulfill the requirements to be a “Qualified Person” for those sections of the Technical Report that I am responsible for preparing.
    [Show full text]
  • Ontario Must Assess the Impacts of Mines and Smelters Before They Are Built!
    ONTARIO MUST ASSESS THE IMPACTS OF MINES AND SMELTERS BEFORE THEY ARE BUILT! Submission on a proposed list of projects which will be subject to the comprehensive environmental assessment requirements in Part II.3 of the Environmental Assessment Act (EAA) and will be designated in a regulation as Part II.3 projects Environmental Registry of Ontario number 019-2377 by Ontarians for a Just Accountable Mineral Strategy Commissioned by MiningWatch Canada November 5, 2020 Executive summary Before new or expanding mines, mills and smelters get their permits and are built in Ontario, we need to know their impacts. The process to do this is known as environmental assessment (EA). On July 8, 2020, Government of Ontario proposed sweeping changes to the Environmental Assessment Act (EAA) as part of the omnibus COVID-19 Economic Recovery Act, Bill 197. One of these changes is to develop a list of high-risk projects that will be subject to EA. Ontario has never required new or expanding mines, mills, smelters, and refineries to undergo an assessment of their impacts on the environment, the economy, or society. Out of 31 mines and mills currently operating in Ontario, only four have gone through an EA, and only one of those was by the province; the other three were reviewed by the federal government. With one exception, mines and smelters in Sudbury, Timmins, and Kirkland Lake have never completed an EA. We are hopeful that mines and smelters will finally appear on a new Ontario list of projects that pose the most risk to us all and we welcome this opportunity to comment.
    [Show full text]
  • Ontario Mine Rescue Competition Awards
    Ontario Mine Rescue Competition Awards JUNE 2018 Table of Contents Provincial Championship Award (M.S.A. Trophy) John Guthrie (Special Equipment) Award Firefighting Award First Aid Award Equipment Technician Award Kirkland Lake District Onaping District Red Lake District Southern District Sudbury District Thunder Bay/Algoma District Timmins District Former District Trophies Provincial Championship Award The M.S.A. Trophy, donated by MSA Canada Ltd., has been awarded to the top team in the annual Provincial Mine Rescue Competition since 1955. A cut and polished granitoid slab with plaque rests above a silver, trapezoidal engraved scene of a linked six-man mine rescue team wearing McCaa breathing apparatus. The team is traversing a double-tracked drift, as the lead rescuer holds a Wolf flame safety lamp, while the second holds a self-rescuer. The trophy originally consisted only of the slab and the first tier with the engraving. The bottom three tiers were added. 1950 – Pamour Porcupine Gold Mines 1987 – Denison Mines Ltd. 1951 – Hallnor Mines Ltd. 1988 – Denison Mines Ltd. 1952 – Hollinger Consolidated Gold Mines Ltd. 1989 – American Barrick Resources 1953 – Falconbridge Nickel Mines Ltd. - Holt McDermott Mine 1954 – MacLeod Cockshutt Gold Mines Ltd. 1990 – Sifto Canada, Goderich Mine 1955 – Kerr Addison Gold Mines Ltd. 1991 – Placer Dome Inc., Campbell Mine 1956 – Falconbridge Nickel Mines Ltd. 1992 – Placer Dome Inc., Dome Mine - East Mine 1993 – Inco Ltd., Frood Stobie Complex 1957 – Steep Rock Iron Mines Ltd. 1994 – Inco Ltd., Levack Complex 1958 – Steep Rock Iron Mines Ltd. 1995 – Inco Ltd., Frood Stobie Complex 1959 – Algom Uranium Mines Ltd. 1996 – Falconbridge, Onaping Craig Mine - Quirke Mine 1997 – Falconbridge 1960 – Falconbridge Nickel Mines Ltd.
    [Show full text]
  • Solid-Ground-2-2016.Pdf
    #2 2016 SOLIDGROUND A MAGAZINE FROM Canada: SANDVIK MINING AND ROCK TECHNOLOGY Profound productivity Sandvik DR481i: Bigger is better Intelligence: TRUST THE Higher BUCKET: learning an integrated solution Battery-driven equipment heralds the future of emissions-free underground mining. CHARGED UP WELCOME SANDVIK NEWS Riding high in Finland ................................ 5 Dear reader, PROFILE Salt of the earth ......................................... 6 THE MAIN HEADLINE on the front cover, “Charged up” (referring to our battery-trammed equipment and exhaust-free TRADE NEWS mining), can also mean “to be excited and full of energy” – and The search for Pharaohs’ gold ............... 8 that’s very much how Sandvik Mining and Rock Technology is feeling about the future of our industry, with the innovative KGHM RUDNA COPPER MINE products and services that we are bringing to the market. A total-bucket approach....................... 10 Today’s challenging market calls for ever-greater productivity BATTERY-DRIVEN EQUIPMENT and efficiency, and our focus is on supporting our customers in this drive. Just one example is the total bucket concept delivered The mission to eliminate emissions...16 to Europe’s largest copper mine, enabling a significant reduction GLENCORE KIDD BASE-METAL MINE in loader maintenance costs, optimized productivity and reduced downtime. Automation to the core ........................ 20 SANDVIK DR481i ENVIRONMENT, HEALTH AND SAFETY will always be a top Productivity through power ................ 26 priority for us, and we know that it will only continue to grow in importance across our industry. That’s why we are launching SUSTAINING SAFETY the aforementioned battery-driven mining equipment to Rod rack redesign ................................... 30 address the potential health impacts of diesel particulate matter and other underground engine INTELLIGENCE emissions – thereby also potentially helping to Education roundtable ..........................
    [Show full text]