Coulomb's Force

Total Page:16

File Type:pdf, Size:1020Kb

Coulomb's Force COULOMB’S FORCE LAW Two point charges Multiple point charges Attractive Repulsive - - + + + The force exerted by one point charge on another acts along the line joining the charges. It varies inversely as the square of the distance separating the charges and is proportional to the product of the charges. The force is repulsive if the charges have the same sign and attractive if the charges have opposite signs. q1 Two point charges q1 and q2 q2 [F]-force; Newtons {N} [q]-charge; Coulomb {C} origin [r]-distance; meters {m} [ε]-permittivity; Farad/meter {F/m} Property of the medium COULOMB FORCE UNIT VECTOR Permittivity is a property of the medium. Also known as the dielectric constant. Permittivity of free space Coulomb’s constant Permittivity of a medium Relative permittivity For air FORCE IN MEDIUM SMALLER THAN FORCE IN VACUUM Insert oil drop Viewing microscope Eye Metal plates Millikan oil drop experiment Charging by contact Example (Question): A negative point charge of 1µC is situated in air at the origin of a rectangular coordinate system. A second negative point charge of 100µC is situated on the positive x axis at the distance of 500 mm from the origin. What is the force on the second charge? Example (Solution): A negative point charge of 1µC is situated in air at the origin of a rectangular coordinate system. A second negative point charge of 100µC is situated on the positive x axis at the distance of 500 mm from the origin. What is the force on the second charge? Y q1 = -1 µC origin X q2= -100 µC Example (Solution): Y q1 = -1 µC origin X q2= -100 µC END Multiple point charges It has been confirmed experimentally that when several charges are present, each exerts a force given by on every other charge. The interaction between any two charges is independent of the presence of all other charges. 5 point charges: Net force on q5 q1 q4 q5 q2 q3 Example (Question) The charging of individual raindrops is ultimately responsible for the electrical activity in thunderstorms. Suppose two drops with equal charge q are located on the x axis at ± a. Find the electric force on a third drop with charge Q located at an arbitrary point on the y axis. Example (Solution) The charging of individual raindrops is ultimately responsible for the electrical activity in thunderstorms. Suppose two drops with equal charge q are located on the x axis at ± a. Find the electric force on a third drop with charge Q located at an arbitrary point on the y axis. Y Q y q q X a a Example (Solution) Y Q y q q X a a Charge Q is the same distance r from the two other charges, so the force from each has the same magnitude: The direction of the two forces are different. Y Example (Solution) The x components cancel, Q while the y components add. y q q X a a Example (Solution) Y From figure Then Q y q q X a a Example (Solution) Y Consider the case where the charge is also located on the x axis, y = 0. Q q Q q a a X y q q X a a Example (Solution) Y Consider the case where Y the charge is a very large distance on the y axis such that y >> a. Q Q y q q X a a (2q) END Electric field Single point charge Multiple point charges Charge distribution We define an electric field similar to that of a gravitational field. A charge produces an electric field such that when another “test” charge is placed in the field it will experience an electrical force. - Electric field Test charge Electric force The electric field at any point is the force per unit charge experienced by a charge at that point. - Since the electric force is a vector then the electric field is also a vector. Electric field and electric force are vectors which point in the same direction when the test - charge q is positive. The electric field lines for a positive source charge point away from the source charge. - The electric field lines for a negative source charge point towards the source charge. Consider two point charges (+Q and +q) again and the force that exists between them. Electric force on q Electric field at q Q P Observation point Q [k]-Coulomb constant; meter/Farad {m/F} [q]-charge; Coulomb {C} [r]-distance; meters {m} [E]-Electric field; Newton/Coulomb {N/C} [E]-Electric field; Volt/meter {V/m} ELECTRIC FIELD (1) Electric field is a vector quantity. Thus at all points where the electric field exists it has magnitude and direction. (2) The charge q must be small and positive such that it does not disturb the source charge Q. (3) For a positive source charge Q the electric field vector and the electric force on the test charge q are in the same direction. (4) For a positive source charge Q, the electric field lines are directed away from the charge. (5) For a point charge Q located at the origin the electric field vector is: Y Q + X Example (Question) What is the electric field 30 cm from a charge q = 4.0 nC? Example (Solution) What is the electric field 30 cm from a charge q = 4.0 nC? Z P q Y X Example (Alternate Solution) Obtain the force on a test charge Z q Y X Then obtain the electric field END Electric field produced by multiple point charges (n = 2) q1 Z P q2 Y q1 and q2 are the source point charges. X P is the field point The charges (q1 and q2) produce the electric field observed at the point P Consider each charge in turn, independently of all other charges present. q1 Z P q2 Charge q1 produces an electric field at point P. Y Charge q2 produces an electric field at point P X The total electric field at P is the vector sum of the electric field produced by each individual charge. Consider charge q1 only q1 Z P q2 Electric field produced by charge q1 at P Y X Distance separating q1 and P Unit vector along line joining q1 and P Consider charge q2 only q1 Z P q2 Electric field produced by charge q2 at P Y X Distance separating q2 and P Unit vector along line joining q2 and P The total electric field at P is the vector sum of the electric field produced by each individual charge. q1 Z P q2 Y X Electric field produced by multiple point charges (n > 1) q1 q3 qi Z P q2 q q 4 The total electric field at P is the n vector sum of the electric field Y produced by each individual charge. X q5 Given a group of charges we find the net electric field at any point in space by using the principle of superposition. This is a general principle that says a net effect is the sum of the individual effects. Here, the principle means that we first compute the electric field at the point in space due to each of the charges, in turn. We then find the net electric field by adding these electric fields vectorially, as usual. Example (Question) The figure shows two point charges each of +10 nC separated in air by 8.0 m. Compute the electric field at the points A, B, and C + + Example (Solution) The figure shows two point charges each of +10 nC separated in air by 8.0 m. Compute the electric field at the points A, B, and C Point A: Make a sketch of the layout and then draw in vectors for the fields E1 produced by q1 and E2 produced by q2. To do that imagine a positive test charge at A. The force on it due to the charge q1 acts along the center-to-center line, is repulsive, and so points to the right. That means the E1 at A is to the right along the axis. Similarly, the force due to q2 on our imaginary test charge is to the left as is E2. Next calculate E1 and E2 and add them vectorially. We are spared this effort since E1 = E2, the two cancel and the field at A is zero + + Example (Solution) The figure shows two point charges each of +10 nC separated in air by 8.0 m. Compute the electric field at the points A, B, and C Point B: At point B the fields act as drawn in the figure, and we must find their components. First we will calculate E1 and E2. + + X Example (Solution) Point B: Since the charges and distances happen to be the same, the magnitudes of the two contributing fields are equal: Now for the vector components + + X Example (Solution) Point B: Since the charges and distances happen to be the same, the magnitudes of the two contributing fields are equal: N E1 = 2.81 (cos(45)xˆ + sin(45)yˆ ) ( C) N E 2 = 2.81 (−cos(45)xˆ + sin(45)yˆ ) ( C) € € + + X Example (Solution) Point B: The horizontal field components are equal and act in opposite direction. They will cancel. Only the vertical field components contribute, and in the same direction. N E = E sin 45o + E sin 45o = 2(2.81 )(0.707) B 1 ( ) 2 ( ) C € Y The direction is straight up in the positive y-direction + + X Example (Solution) Point C: The point C is similarly located with respect to the charges as point B is.The field magnitude at C is the same as at B except the direction is straight down in the negative y-direction.at The direction is + + straight down in the negative y-direction Example (Solution) The figure shows two point charges each of +10 nC separated in air by 8.0 m.
Recommended publications
  • S.I. and Cgs Units
    Some Notes on SI vs. cgs Units by Jason Harlow Last updated Feb. 8, 2011 by Jason Harlow. Introduction Within “The Metric System”, there are actually two separate self-consistent systems. One is the Systme International or SI system, which uses Metres, Kilograms and Seconds for length, mass and time. For this reason it is sometimes called the MKS system. The other system uses centimetres, grams and seconds for length, mass and time. It is most often called the cgs system, and sometimes it is called the Gaussian system or the electrostatic system. Each system has its own set of derived units for force, energy, electric current, etc. Surprisingly, there are important differences in the basic equations of electrodynamics depending on which system you are using! Important textbooks such as Classical Electrodynamics 3e by J.D. Jackson ©1998 by Wiley and Classical Electrodynamics 2e by Hans C. Ohanian ©2006 by Jones & Bartlett use the cgs system in all their presentation and derivations of basic electric and magnetic equations. I think many theorists prefer this system because the equations look “cleaner”. Introduction to Electrodynamics 3e by David J. Griffiths ©1999 by Benjamin Cummings uses the SI system. Here are some examples of units you may encounter, the relevant facts about them, and how they relate to the SI and cgs systems: Force The SI unit for force comes from Newton’s 2nd law, F = ma, and is the Newton or N. 1 N = 1 kg·m/s2. The cgs unit for force comes from the same equation and is called the dyne, or dyn.
    [Show full text]
  • Communications-Mathematics and Applied Mathematics/Download/8110
    A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking.
    [Show full text]
  • Fundamental Physical Constants: Explained and Derived by Energy Wave Equations
    Fundamental Physical Constants: Explained and Derived by Energy Wave Equations Jeff Yee [email protected] February 2, 2020 Summary There are many fundamental physical constants that appear in equations today, such as Planck’s constant (h) to calculate photon energy, or Coulomb’s constant (k) to calculate the electromagnetic force, or the gravitational constant (G) when using Newton’s law for calculating gravitational force. They appear in equations without explanations. They are simply numbers that have been given letters to make an equation work. This paper has derived and explained 23 different constants used in physics today, including the aforementioned Planck’s constant, Coulomb’s constant and gravitational constant, using only five physical constants in two different formats: 1) classical constants used in mainstream physics and 2) new wave constants. In wave format, the constants are: wavelength, wave amplitude, wave speed, density and a dimensionless property of the electron. In classical format, the constants are four of the Planck constants and the electron’s classical radius. All 23 fundamental physical constants presented in this paper can be derived from one of these five wave constants (20 in the case of the classical constants). In both classical and wave formats, the property of particle charge is expressed as wave amplitude, measured as a distance instead of charge (Coulombs). When changing the Planck charge (qP) and elementary charge (ee) to an SI unit of meters, existing classical forms of the fundamental physical constants can be reduced to be derived from five constants. This simplification also leads to more insight into the true meaning of the fundamental constants and is therefore shown in this paper.
    [Show full text]
  • Hydrogen Atom – Lyman Series Rydberg’S Formula Hydrogen 91.19Nm Energy Λ = Levels 1 1 0Ev − M2 N2
    Hydrogen atom – Lyman Series Rydberg’s formula Hydrogen 91.19nm energy λ = levels 1 1 0eV − m2 n2 Predicts λ of nàm transition: Can Rydberg’s formula tell us what ground n (n>m) state energy is? m (m=1,2,3..) -?? eV m=1 Balmer-Rydberg formula Hydrogen energy levels 91.19nm 0eV λ = 1 1 − m2 n2 Look at energy for a transition between n=infinity and m=1 1 0 ≡ 0eV hc hc ⎛ 1 1 ⎞ Einitial − E final = = ⎜ 2 − 2 ⎟ λ 91.19nm ⎝ m n ⎠ -?? eV hc − E final = E 13.6eV 91.19nm 1 = − Hydrogen energy levels A more general case: What is 0eV the energy of each level (‘m’) in hydrogen? … 0 ≡ 0eV hc hc ⎛ 1 1 ⎞ Einitial − E final = = ⎜ 2 − 2 ⎟ λ 91.19nm ⎝ m n ⎠ -?? eV hc 1 1 − E = E = −13.6eV final 91.19nm m2 m m2 Balmer/Rydberg had a mathematical formula to describe hydrogen spectrum, but no mechanism for why it worked! Why does it work? Hydrogen energy levels 410.3 486.1Balmer’s formula656.3 nm 434.0 91.19nm λ = 1 1 − m2 n2 where m=1,2,3 and where n = m+1, m+2 The Balmer/Rydberg formula correctly describes the hydrogen spectrum! Is it a good model? The Balmer/Rydberg formula is a mathematical representation of an empirical observation. It doesn’t really explain anything. How can we explain (not only calculate) the energy levels in the hydrogen atom? Next step: A semi-classical explanation of the atomic spectra (Bohr model) Rutherford shot alpha particles at atoms and he figured out that a tiny, positive, hard core is surrounded by negative charge very far away from the core.
    [Show full text]
  • Where Do We See Electricity and Magnetism? a Brief Walk Through History
    WHERE DO WE SEE ELECTRICITY AND MAGNETISM? A BRIEF WALK THROUGH HISTORY 600 BC: Greeks called amber “electron” as it would attract straw when rubbed against cloth 1752: Benjamin Franklin had many breakthroughs • Kite experiment (lightning ՞ electricity) • Charges: opposites attract, likes repel • “Electrical Fluid” through all matter A BRIEF WALK THROUGH HISTORY 1784: Henry Cavendish defines the inductive capacity of dielectrics/insulators 1786: Charles de Coulomb • Coulomb’s Law: inverse square law of electrostatics ݇ܳݍ ܨ = ݎෞ ࡽࢗ ݎଶ ொ௤ • Unit of charge is Coulomb THE ELECTRIC CHARGE Atom: nucleus with surrounding electron cloud • Nucleus has protons and neutrons Charge: • Protons are +ve; Electrons are –ve • Same magnitude of charge: 1.6 x 10-19 C Mass: -27 • ݉௣ ൎ݉௡ ൎ 1.7 x 10 kg -31 • ݉௘ ൎ 9.1 x 10 kg THE TRIBOELECTRIC EFFECT When we rub two objects with each other, small amounts of charges are transferred from one object to another Triboelectric series gives us tendency of material to acquire a positive charge Q1: If I rub amber with fur, what’s going to happen? Q2: What about rubbing glass rod with silk? CONSERVATION OF ELECTRIC CHARGE The electric charge is a conserved quantity • We cannot create or destroy an electric charge • But we can distribute them to create particles and localized areas with varying charges Conservation of Electric Charge: • The net electric charge in an isolated system must remain constant We can never violate this principle! QUANTIZATION OF CHARGE Elementary/Fundamental Charge: • The fundamental charge of the electron ݍ௘ is -1.602 x 10-19 C • Charge involved in transfer of electrons must be integer (݊) multiples of the fundamental charge; ܳ = ݊ݍ௘ Classical vs.
    [Show full text]
  • COULOMB's LAW Charles Coulomb
    COULOMB'S LAW Charles Coulomb (1736-1806) was one of the early scientists to study electrostatics. Coulomb knew that charged objects attracted or repelled each other and therefore they must exert a force on each other. He discovered that : a) the force F depended on how far apart the charged objects were and falls inversely as the square of the distance r: F α 1/r2 b) the force depended on the amount of charge on each of the objects and is proportional to the product of the charges. F α q1q2 These statements can be summarised in Coulomb's Law, which shows the force F between two point charges q1 and q2, separated by a distance r is: 2 F α q1q2/r If we now introduce a proportionality constant k, then: 2 F = kq1q2/r k is known as Coulomb’s constant and is equal to: k = 1/4Πε0 Therefore the force F in Newtons is: 1 qq12 F = 2 Coulomb’s Law 4πε 0 r -12 2 -1 -2 ε0 is the permittivity of free space = 8.854x10 C N m q1 and q2 are the amounts of charge in Coulombs r is the distance between the charges in metres. Question: Two point charges exert a force of F on each other when at a distance d apart. What will the force be if the distance between them is now 3d Answer: F/9 Question: Two point charges exert a force F on each other. If both the charges are doubled, what will the new force be.
    [Show full text]
  • Coulomb Balance
    Includes 012-03760E Teacher's Notes Instruction Manual and and 05/99 Typical Experiment Results Experiment Guide for the PASCO scientific Model ES-9070 COULOMB BALANCE © 1989 PASCO scientific $5.00 012-03760E Coulomb Balance Table of Contents Section Page Copyright, Warranty and Equipment Return...................................................ii Introduction ..................................................................................................... 1 Theory ............................................................................................................. 2 Equipment........................................................................................................ 3 Additional Equipment Recommended: ..................................................... 3 Tips for Accurate Results ................................................................................ 4 Setup ............................................................................................................. 5 Experiments: Part A Force Versus Distance................................................................... 7 Part B Force Versus Charge ...................................................................... 8 Part C The Coulomb Constant ................................................................... 9 Replacing the Torsion Wire........................................................................... 13 Teacher’s Guide............................................................................................. 15 Technical Support
    [Show full text]
  • I. Electric Charge I
    2 I. Electric Charge I. Electric Charge A. History of Electricity Dr. Bill Pezzaglia B. Coulomb’s Law C. Electrodynamics Updated 2014Feb03 3 1a. Thales of Miletos (624-454 BC) 4 A. History of Electricity • Famous theorems of similar triangles 1) The Electric Effect • Amber rubbed with fur attracts straw 2) Charging Methods • “Amber” in greek: “elektron” 3) Measuring Charge Here is a narrow tomb Great Thales lies; yet his renown for wisdom reached the skies 5 6 1.b. William Gilbert (1544-1603) 1.c. Stephen Gray (1696-1736) [student of Newton!] •“Father of Science” (i.e. use experiments instead of citing ancient authority) • 1729 does experiment showing electric effects can •1600 Book “De Magnete” travel over great distance – Originates term “electricity” through a thread or wire. – Distinguishes between electric and magnetic force – Influences Kepler & Galileo • Classifies Materials as: – Glass rubbed with Silk attracts – Conductors: which can objects remove charge from a body – Insulators: that do not. •Invented “Versorium” (needle) used to measure electric force 1 7 8 1.d. Charles Dufay (1689-1739) 1.e. Benjamin Franklin (1706-1790) •1733 Proposes “two fluid” theory of electricity •1752 Kite Experiment proves lightening is electric – Vitreous (glass, fur) (+) – Resinous (amber, silk) (-) •Proposes single fluid but two state model of charge •Summarizes Electric Laws + + – Like fluids repel + is an excess of charge – opposite attract + - - is deficit in charge – All bodies except metals can be charged by friction – All bodies can be charged by “influence” (induction) •Charge is conserved (objects are naturally neutral) 9 Dry human skin 10 + Asbestos 2.a.1 Triboelectrification chart Leather 2.
    [Show full text]
  • Copyrighted Material
    40235_Index_1-9 7/20/01 5:15 PM Page 1 INDEX A orbital, 1067 periodic, 1083–1086 Betatron, 786 Absorption, photon, 1093 spin, 1070–1071 rules of, 1082–1083 Big bang cosmology Accelerator(s) and uncertainty principle, subshell states of, 1071 age determination of universe in, cyclotron, 731–733 1068–1069 x-ray spectrum of, 1079–1081 1192–1194 electrostatic, 651–652 Angular momentum quantum Atomic magnetism, 805–806, expansion of universe in, Acceptor atom, 1113 number, 1067 1086–1087 1186–1187 Actinides, 1083 Anisotropic materials, optically, and atomic radiation, heavy element formation in, Action at a distance, 588 1004 1090–1092 1191–1192 Adiabatic demagnetization, 809 Annihilation, 1188 Atomic mass unit, energy nucleosynthesis in, 1190–1191 Airy disk, 970 Antenna, 866 equivalent of, 1133 particle interactions in, Alpha decay, 1136–1138 Anticoincidence(s), 1023 Atomic number, 570, 602, 603, 1187–1190 Alternating current (AC), Anticoincidence apparatus, 1131. See also Quantum Binding energy, 637, 1133–1134 782–783, 845–846 1023–1024 number(s) Binding energy curve, 1133–1134 transformers of, 852–854 Antineutrino, 1138–1139, and order of elements, Binnig, Gerd, 1047, 1048 and voltages, phase and 1176–1177 1081–1082 Bioluminescence, 886 amplitude relations for, Antineutron, 1178 origin of concept of, 1081 Biot-Savart law, 753 848t Antiparticles, 570 and periodicity of elements, applications of, 753–755 Alternating current circuit Antiproton, 1178 1083–1086 Birefringence, 1005–1006 capacitive element of, 847–848 Atom(s), 1062 Atomic radiation,
    [Show full text]
  • Electric Field Lines
    Giambattista College Physics Chapter 16 ©2020 McGraw-Hill Education. All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Chapter 16: Electric Forces and Fields 16.1 Electric Charge. 16.2 Electric Conductors and Insulators. 16.3 Coulomb’s “law”. 16.4 The Electric Field. 16.5 Motion of a Point Charge in a Uniform Electric Field. 16.6 Conductors in Electrostatic Equilibrium. 16.7 Gauss’s “law” for Electric Fields. ©2020 McGraw-Hill Education 16.1 Electric Charge 1 Until the invention of the battery (Alessandro Volta) electricity experiments were basically static electricity, like when your clothes cling out of the dryer or you shock yourself after walking across a carpet. One early worker was Benjamin Franklin (1750s). In his book on electricity, he describes: ● killing turkeys ● Proposes execution ● Knocked down up to 6 men holding hands (by essentially building up charge by rubbing) ©2020 McGraw-Hill Education 16.1 Electric Charge 2 A fluid model of electricity proposed that when you rub, you move charge FROM one object TO another, so the NET amount was fixed. (Franklin, et al., proposed ONLY one fluid). So as you rubbed objects together, there was a DEFICIT of charge on one and an EXCESS on the other: Neutral Thing 1 Thing 2 - Charge moves + (not really) ©2020 McGraw-Hill Education 16.1 Electric Charge 2 “Whenever a physicists makes a 50/50 guess, they’ll be wrong about 90% of the time” Dr Wm Deering, UNT MUCH later experiments showed a need for TWO kinds of charge J J Thomson (1897) showed there was a negatively charged particle called the electron.
    [Show full text]
  • Physical Units, Constants and Conversion Factors
    Physical Units, Constants and Conversion Factors Here we regroup the values of the most useful physical and chemical constants used in the book. Also some practical combinations of such constants are provided. Units are expressed in the International System (SI), and conversion to the older CGS system is also given. For most quantities and units, the practical definitions currently used in the context of biophysics are also shown. © Springer International Publishing Switzerland 2016 609 F. Cleri, The Physics of Living Systems, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-30647-6 610 Physical units, constants and conversion factors Basic physical units (boldface indicates SI fundamental units) SI cgs Biophysics Length (L) meter (m) centimeter (cm) Angstrom (Å) 1 0.01 m 10−10 m Time (T) second (s) second (s) 1 µs=10−6 s 1 1 1ps=10−12 s Mass (M) kilogram (kg) gram (g) Dalton (Da) −27 1 0.001 kg 1/NAv = 1.66 · 10 kg Frequency (T−1) s−1 Hz 1 1 Velocity (L/T) m/s cm/s µm/s 1 0.01 m/s 10−6 m/s Acceleration (L/T2) m/s2 cm/s2 µm/s2 1 0.01 m/s2 10−6 m/s2 Force (ML/T2) newton (N) dyne (dy) pN 1kg· m/s2 10−5 N 10−12 N Energy, work, heat joule (J) erg kB T (at T = 300 K) (ML2/T2) 1kg· m2/s2 10−7 J 4.114 pN · nm 0.239 cal 0.239 · 10−7 cal 25.7 meV 1C· 1V 1 mol ATP = 30.5 kJ = 7.3 kcal/mol Power (ML2/T3) watt (W) erg/s ATP/s 1kg· m2/s3 =1J/s 10−7 J/s 0.316 eV/s Pressure (M/LT2) pascal (Pa) atm Blood osmolarity 1 N/m2 101325˙ Pa ∼ 300 mmol/kg 1 bar = 105 Pa ∼300 Pa = 3 · 10−3 atm Electric current (A) ampere (A) e.s.u.
    [Show full text]
  • Sir Isaac Newton's Laws Boyle's Breakthrough
    SIR ISAAC NEWTON’S LAWS f or every action, there is an equal and opposite reaction BOYLE’S BREAKTHROUGH work better under pressure TORSION BALANCE Charles-Augustin de Coulomb and the constant By Andrew Lim and Celine Lityo ’ Newton’s Laws of motion were first discovered by Isaac Newton, an excellent mathematician and physicist born on January 4, 1643, in Woolsthorpe, Lincolnshire, England. He discovered the laws of motion and theories of gravity. His laws were first published in 1686 and are still widely used today. Sadly, Isaac Newton passed on March 31, 1727, at the age of 84. The cause of death may have been mercury poisoning which explains the pain Newton was experiencing in his abdomen the day before his death. Fig 1: Isaac Newton (1643-1727) By Andrew Lim and Celine Lityo ’ • An object at rest remains to be at rest. • An object in motion remains to be in motion with the same speed and in the same direction unless there is an external force that disturbs the motion of the object. ’ • Force is the product of mass times the gravitational acceleration acting upon the object. • Newton’s second law of motion can also be described as objects that experience acceleration when a force is acting upon it. In equation form: Force = Mass x Acceleration / F = m x a ’ • You might’ve heard of this phrase, “For every action, there is an equal and opposite reaction”. Well this is Newton’s third law of motion. • If object A applies a force upon object B, object B will apply a force of the same magnitude(size) but towards the opposite direction.
    [Show full text]