Cha'pter 8 Physical Techniques in Inorganic Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Cha'pter 8 Physical Techniques in Inorganic Chemistry iranchembook.ir/edu iranchembook.ir/edu U niversity LIBRARIES This book has been purchased by The Dean and Barbara Martin Endowed Book Fund in Chemistry To support and enhance the Department of Chemistry, Eberly College of Science, The Pennsylvania State University 2010 pennState ptNN State m CHSCiist'RY This book has been purchased by The Dean and Barbara Martin Endowed Book Fund in Chemistry To support and enhance the Department of Chemistrj, Eberly College of Science, The Pennsylvania State University June 2010 iranchembook.ir/edu Solutions Manual to Accompany Inorganic Chemistry Sixth Edition Alen Hadzovic University of Toronto W. H. FREEMAN AND COMPANY New York OXFORD University Press iranchembook.ir/edu Solutions Manual to Accompany Inorganic Chemistry, Sixth Edition © 2014,2010,2006, and 1999 by Oxford University Press All rights reserved. Printed in the United States of America First printing Published, under license, in the United States and Canada by W. H. Freeman and Company 41 Madison Avenue New York, NY 10010 www.whfreeman.com ISBN-13: 978-1-4641-2438-9 ISBN-10: 1-4641-2438-8 Published in the rest of the world by Oxford University Press Great Clarendon Street Oxford, 0X2 6DP United Kingdom www.oup.com ISBN-13: 9780198701712 ISBN-10: 0198701713 u iranchembook.ir/edu TABLE OF CONTENTS Preface, v Acknowledgments, vii PART 1 Foundations Chapter 1 Atomic Structure 1 Chapter 2 Molecular Structure and Bonding 13 Chapter 3 The Structures of Simple Solids 27 Chapter 4 Acids and Bases 43 Chapter 5 Oxidation and Reduction 61 Chapter 6 Molecular Symmetry 79 Chapter 7 An Introduction to Coordination Compounds 89 Chapter 8 Physical Techniques in Inorganic Chemistry 101 PART 2 The Elements and Their Compounds Chapter 9 Periodic Trends 107 Chapter 10 Hydrogen 111 Chapter 11 The Group 1 Elements 119 Chapter 12 The Group 2 Elements 123 Chapter 13 The Group 13 Elements 127 Chapter 14 The Group 14 Elements 137 Chapter 15 The Group 15 Elements 145 Chapter 16 The Group 16 Elements 153 Chapter 17 The Group 17 Elements 159 Chapter 18 The Group 18 Elements 171 Chapter 19 The d-Block Elements 175 Chapter 20 d-Metal Complexes: Electronic Structure and Properties 181 Chapter 21 Coordination Chemistry: Reactions of Complexes 193 Chapter 22 d-Metal Organometallic Chemistry 201 Chapter 23 The f-Block Metals 213 PART 3 Frontiers Chapter 24 Materials Chemistry and Nanomaterials 217 Chapter 25 Catalysis 223 Chapter 26 Biological Inorganic Chemistry 233 Chapter 27 Inorganic Chemistry in Medicine 237 iranchembook.ir/edu IV iranchembook.ir/edu PREFACE This Solutions Manual accompanies Inorganic Chemistry, Sixth Edition by Duward Shriver, Mark Weller, Tina Overton, Jonathan Rourke, and Fraser Armstrong. Within its covers, you will find the detailed solutions for all self-tests and end of chapter exercises. New'^ to this edition of the Solutions Manual is the inclusion of guidelines for the selected tutorial problems—^those problems for which the literature reference is not provided—for the majority of chapters. Many solutions include figures specifically prepared for the solution, and not found in the main text. As you master each chapter in Inorganic Chemistiy, this manual will help you not only to confirm your answers and understanding but also to expand the material covered in the textbook. The Solutions Manual is a learning aid—its primary goal is to provide you with means to ensure that your own understanding and your own answers are correct. If you see that your solution differs from the one offered in the Solutions Manual, do not simply read over the provided answer. Go baek to the main text, reexamine and reread the important concepts required to solve that problem, and then, with this fresh insight, try solving the same problem again. The self-tests are closely related to the examples that precede them. Thus, if you had a problem with a self-test, read the preceding text and analyze the worked example. The solutions to the end of chapter exercises direct you to the relevant sections of the textbook, which you should reexamine if the exercise proves challenging to you. Inorganic chemistry is a beautiful, rich, and exciting discipline, but it also has its challenges. The self-tests, exercises, and tutorial problems have been designed to help you test your knowledge and meet the challenges of inorganic chemistry. The Solutions Manual is here to help you on your way, provide guidance through the world of chemical elements and their compounds and, together with the text it accompanies, take you to the very frontiers of this world. With a hope you will find this manual useful, Alen Hadzovic iranchembook.ir/edu IV iranchembook.ir/edu ACKNOWLEDGMENTS I would like to thank the authors Duward Shriver, Mark Weller, Tina Overton, Jonathan Rourke, and Fraser Armstrong for their insightful comments, discussions, and valuable assistance during the preparation of the sixth edition of the Solutions Manual. I would also like to express my gratitude to Heidi Bamatter, Editor for W. H. Freeman and Company, and Alice Mumford, Editor for Oxford University Press, for all of their efforts and dedication to the project. V I1 iranchembook.ir/edu Vlll iranchembook.ir/edu Self-Test Exercises S l.l For the Paschen series n\ = 3 and m = 4, 5, 6,... The second line in the Paschen series is observed when «2 = 5. Hence, starting from equation 1.1, we have = 1.097xl07m -'|-!-----!-| = l .097x 1 O’m-i x 0.071 = 779967m-i, 32 5^ 1 The wavelength is the reciprocal value of the above-calculated wavenumber: = 1.28 X10-6 m or 1280 779967m-1 nm. 81.2 The third shell is given by « = 3, and the subshell for / = 2 consists of the d orbitals. Therefore, the quantum numbers « = 3, / = 2 define a 3d set of orbitals. For / = 2, m/ can have the following values: -2, -1, 0, 1, 2. Thus, there are five orbitals in the given set. Figure 1.15 shows the electron density maps for 3d orbitals. 51.3 The number of radial nodes is given by the expression: n-l-\. For the 5s orbital, « = 5 and/ = 0. Therefore: 5-0-1 = 4. So there are four radial nodes in a 5s orbital. Remember, the first occurrence of a radial node for an s orbital is the 2s orbital, which has one radial node, the 3s has two, the 4s has three, and finally the 5s has four. If you forget the expression for determining radial nodes, just count by a unit of one from the first occurrence of a radial node for that particular “shape” of orbital. Figure 1.9 shows the radial wavefuntions of Is, 2s, and 3s hydrogenic orbitals. The radial nodes are located where the radial wavefunction has a value of zero (i.e., it intersects the x- axis). 81.4 There is no figure showing the radial distribution functions for 3p and 3d orbitals, so you must reason by analogy. In the example, you saw that an electron in a p orbital has a smaller probability of close approach to the nucleus than in an s orbital, because an electron in a p orbital has a greater angular momentum than in an s orbital. Visually, Figure 1.12 shows this. The area under the graph represents where the electron has the highest probability of being found. The origin of the graph is the nucleus, so one can see that the 2s orbital, on average, spends more time closer to the nucleus than a 2p orbital. Similarly, an electron in a d orbital has a greater angular momentum than in a p orbital. In other words, /(d) > /(p) > /(s). Therefore, an electron in a p orbital has a greater probability than in a d orbital of close approach to the nucleus. 81.5 The configuration of the valence electrons, called the valence configuration, is as follows for the four atoms in question: Li: 2s‘ B: 2s^2p' Be: 2s‘ C: 2s^2p^ When an electron is added to the 2s orbital on going from Li to Be, Zeff increases by 0.63, but when an electron is added to an empty p orbital on going from B to C, Zgfr increases by 0.72. The s electron already present in Li repels the incoming electron more strongly than the p electron already present in B repels the incoming p electron, because the incoming p electron goes into a new orbital. Therefore, increases by a smaller amount on going from Li to Be than from B to C. However, extreme caution must be exercised with arguments like this because the effects of electron-electron repulsions are very subtle. This is illustrated in period 3, where the effect is opposite to that just described for period 2. 81.6 Following the example, for an atom of Ni with Z= 28 the electron configuration is: Ni: ls-2s^2p^3s^3p^3d*4s“ or [Ar]3d*4s^ iranchembook.ir/edu Once again, the 4s electrons are listed last because the energy of the 4s orbital is higher than the energy of the 3d orbitals. Despite this ordering of the individual 3d and 4s energy levels for elements past Ca (see Figure 1.19), interelectronic repulsions prevent the configuration of an Ni atom from being [Ar]3d‘®. For an Ni^^ ion, with two fewer electrons than an Ni atom but with the same Z as an Ni atom, interelectronic repulsions are less important. Because of the higher energy 4s electrons as well as smaller Zeff than the 3d electrons, the 4s electrons are removed from Ni to form Ni^^, and the electron configuration of the ion is: Ni: ls^2s^2p^3s^3p*’3d“ or [Ar]3d* and Ni^'":2+.
Recommended publications
  • Electronic Structure and Crystal Phase Stability of Palladium Hydrides
    Electronic structure and crystal phase stability of palladium hydrides Abdesalem Houari∗ Theoretical Physics Laboratory, Department of Physics, University of Bejaia, Bejaia, Algeria Samir F. Matar† CNRS, ICMCB, Universit´ede Bordeaux, 33600 Pessac, France Volker Eyert‡ Materials Design SARL, 92120 Montrouge, France (Dated: November 4, 2014) The results of electronic structure calculations for a variety of palladium hydrides are presented. The calculations are based on density functional theory and used different local and semilocal approximations. The thermodynamic stability of all structures as well as the electronic and chemical bonding properties are addressed. For the monohydride, taking into account the zero-point energy is important to identify the octahedral Pd-H arrangement with its larger voids and, hence, softer hydrogen vibrational modes as favorable over the tetrahedral arrangement as found in the zincblende and wurtzite structures. Stabilization of the rocksalt structure is due to strong bonding of the 4d and 1s orbitals, which form a characteristic split-off band separated from the main d-band group. Increased filling of the formerly pure d states of the metal causes strong reduction of the density of states at the Fermi energy, which undermines possible long-range ferromagnetic order otherwise favored by strong magnetovolume effects. For the dihydride, octahedral Pd-H arrangement as realized e.g. in the pyrite structure turns out to be unstable against tetrahedral arrangemnt as found in the fluorite structure. Yet, from both heat of formation and chemical bonding considerations the dihydride turns out to be less favorable than the monohydride. Finally, the vacancy ordered defect phase Pd3H4 follows the general trend of favoring the octahedral arrangement of the rocksalt structure for Pd:H ratios less or equal to one.
    [Show full text]
  • Triazene (H2NNNH) Or Triimide (HNHNNH) Markofçrstel,[A, D] Yetsedaw A
    DOI:10.1002/cphc.201600414 Articles On the Formation of N3H3 Isomers in Irradiated Ammonia Bearing Ices:Triazene (H2NNNH) or Triimide (HNHNNH) MarkoFçrstel,[a, d] Yetsedaw A. Tsegaw,[b] Pavlo Maksyutenko,[a, d] Alexander M. Mebel,[c] Wolfram Sander,[b] and Ralf I. Kaiser*[a, d] The remarkable versatility of triazenesinsynthesis, polymer theoretical studies with our novel detection scheme of photo- chemistry and pharmacology has led to numerousexperimen- ionization-driven reflectron time-of-flight mass spectroscopy tal and theoretical studies.Surprisingly,only very little is we can obtain information on the isomersoftriazene formed known aboutthe most fundamental triazene:the parentmole- in the films. Using isotopically labeled starting material, we can cule with the chemical formula N3H3.Here we observe molecu- additionally gain insightinthe formation pathways of the iso- lar,isolated N3H3 in the gas phase after it sublimes from ener- mers of N3H3 under investigation and identify the isomers getically processed ammonia and nitrogen films. Combining formedastriazene (H2NNNH) andpossibly triimide(HNHNNH). 1. Introduction During the last decades, triazenes—a class of organic mole- life time of at least 1mswas also inferred as an intermediate cules carrying the =N N=N moiety—have received substan- in the radiolysis of an aqueous solution of hydrazine based on À À tial attention both from the theoretical and organic chemistry asingle absorption feature at 230 nm.[6] The cyclic isomer of [1] communities. Derived from cis-and trans-triazene (HN=NNH2 ; triazene, cyclotriazane, was first reported crystallographically in Scheme1), the substituted counterparts have significant appli- zeolite A, where it was stabilized by asilver cation as [1a,c] [1d] + [7] + cations in synthetic chemistry, polymer science, and phar- Ag(N3H3) .
    [Show full text]
  • Ammonia a Very Important Molecule for Biological Organisms to Make Proteins Or Nucleic Acids
    Ammonia A very important molecule for biological organisms to make proteins or nucleic acids by QH, and Niloy Kumar Das Shahjalal Science & Technology University, Bangladesh Molecule of the Month - June 2013 Introduction Ammonia or azane is a compound of nitrogen and hydrogen with the formula NH3. It is a colorless gas with a characteristic pungent smell, which is very common in toilets sometime. It is used in industry and commerce, and also exists naturally in humans and in the environment. Ammonia is essential for many biological processes and serves as a precursor for amino acid and nucleotide synthesis. In the environment, ammonia is part of the nitrogen cycle and is produced in soil from bacterial processes. Ammonia is also produced naturally from decomposition of organic matter, including plants and animals. Sal Ammoniacus Sal ammoniac is a mineral composed of ammonium chloride. The Romans called the ammonium chloride deposits they collected from near the Temple of Jupiter Amun in ancient Libya 'sal ammoniacus' (salt of Amun) because of proximity to the nearby temple. It is the earliest known mineral source of ammonia. Fig: Sal ammoniac is a mineral Guano & saltpeter Later alternative sources of ammonia mineral were discovered. Guano and saltpeter played valuable roleas strategic commodity. Guano consists of ammonium oxalate and urate, phosphates, as well as some earth salts and impurities. Guano also has a high concentration of nitrates. Saltpeter is the mineral form of potassium nitrate (KNO3). Potassium and other nitrates are of great importance for use in fertilizers, and, historically, gunpowder. Fig: Guano is simply deposits of bird droppings Independence from mineral dependency Even though our atmosphere consists 78% nitrogen, atmospheric nitrogen is nutritionally unavailable to plants or animals because nitrogen molecules are held together by strong triple bonds.
    [Show full text]
  • Used at Rocky Flats
    . TASK 1 REPORT (Rl) IDENTIFICATION OF CHEMICALS AND RADIONUCLIDES USED AT ROCKY FLATS I PROJECT BACKGROUND ChemRisk is conducting a Rocky Flats Toxicologic Review and Dose Reconstruction study for The Colorado Department of Health. The two year study will be completed by the fall of 1992. The ChemRisk study is composed of twelve tasks that represent the first phase of an independent investigation of off-site health risks associated with the operation of the Rocky Flats nuclear weapons plant northwest of Denver. The first eight tasks address the collection of historic information on operations and releases and a detailed dose reconstruction analysis. Tasks 9 through 12 address the compilation of information and communication of the results of the study. Task 1 will involve the creation of an inventory of chemicals and radionuclides that have been present at Rocky Flats. Using this inventory, chemicals and radionuclides of concern will be selected under Task 2, based on such factors as the relative toxicity of the materials, quantities used, how the materials might have been released into the environment, and the likelihood for transport of the materials off-site. An historical activities profile of the plant will be constructed under Task 3. Tasks 4, 5, and 6 will address the identification of where in the facility activities took place, how much of the materials of concern were released to the environment, and where these materials went after the releases. Task 7 addresses historic land-use in the vicinity of the plant and the location of off-site populations potentially affected by releases from Rocky Flats.
    [Show full text]
  • Underactive Thyroid
    Underactive Thyroid PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 21 Jun 2012 14:27:58 UTC Contents Articles Thyroid 1 Hypothyroidism 14 Nutrition 22 B vitamins 47 Vitamin E 53 Iodine 60 Selenium 75 Omega-6 fatty acid 90 Borage 94 Tyrosine 97 Phytotherapy 103 Fucus vesiculosus 107 Commiphora wightii 110 Nori 112 Desiccated thyroid extract 116 References Article Sources and Contributors 121 Image Sources, Licenses and Contributors 124 Article Licenses License 126 Thyroid 1 Thyroid thyroid Thyroid and parathyroid. Latin glandula thyroidea [1] Gray's subject #272 1269 System Endocrine system Precursor Thyroid diverticulum (an extension of endoderm into 2nd Branchial arch) [2] MeSH Thyroid+Gland [3] Dorlands/Elsevier Thyroid gland The thyroid gland or simply, the thyroid /ˈθaɪrɔɪd/, in vertebrate anatomy, is one of the largest endocrine glands. The thyroid gland is found in the neck, below the thyroid cartilage (which forms the laryngeal prominence, or "Adam's apple"). The isthmus (the bridge between the two lobes of the thyroid) is located inferior to the cricoid cartilage. The thyroid gland controls how quickly the body uses energy, makes proteins, and controls how sensitive the body is to other hormones. It participates in these processes by producing thyroid hormones, the principal ones being triiodothyronine (T ) and thyroxine which can sometimes be referred to as tetraiodothyronine (T ). These hormones 3 4 regulate the rate of metabolism and affect the growth and rate of function of many other systems in the body. T and 3 T are synthesized from both iodine and tyrosine.
    [Show full text]
  • The Response of Work Function of Thin Metal Films to Interaction with Hydrogen
    Vol. 114 (2008) ACTA PHYSICA POLONICA A Supplement Proceedings of the Professor Stefan Mr¶ozSymposium The Response of Work Function of Thin Metal Films to Interaction with Hydrogen R. Du¶s¤, E. Nowicka and R. Nowakowski Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warszawa, Poland The aim of this paper is to summarize the results of experiments carried out at our laboratory on the response of the work function of several thin ¯lms of transition metals and rare earth metals to interaction with molecular hydrogen. The main focus concerns the description of surface phenomena accompanying the reaction of hydride formation as a result of the adsor- bate's incorporation into the bulk of the thin ¯lms. Work function changes ¢© caused by adsorption and reaction concern the surface, hence this ex- perimental method is appropriate for solving the aforementioned problem. A di®erentiation is made between the work function changes ¢© due to cre- ation of speci¯c adsorption states characteristic of hydrides, and ¢© arising as a result of surface defects and protrusions induced in the course of the reaction. The topography of thin metal ¯lms and thin hydride ¯lms with defects and protrusions was illustrated by means of atomic force microscopy. For comparison, the paper discusses work function changes caused by H2 in- teraction with thin ¯lms of metals which do not form hydrides (for example platinum), or when this interaction is performed under conditions excluding hydride formation for thermodynamic reasons. Almost complete diminishing of ¢© was observed, in spite of signi¯cant hydrogen uptake on some rare earth metals, caused by formation of the ordered H{Y{H surface phase.
    [Show full text]
  • An X-Ray Study of Palladium Hydrides up to 100 Gpa: Synthesis and Isotopic Effects Bastien Guigue, Grégory Geneste, Brigitte Leridon, Paul Loubeyre
    An x-ray study of palladium hydrides up to 100 GPa: Synthesis and isotopic effects Bastien Guigue, Grégory Geneste, Brigitte Leridon, Paul Loubeyre To cite this version: Bastien Guigue, Grégory Geneste, Brigitte Leridon, Paul Loubeyre. An x-ray study of palladium hydrides up to 100 GPa: Synthesis and isotopic effects. Journal of Applied Physics, American Institute of Physics, 2020, 127 (7), pp.075901. 10.1063/1.5138697. hal-03024503 HAL Id: hal-03024503 https://hal.archives-ouvertes.fr/hal-03024503 Submitted on 11 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An x-ray study of palladium hydrides up to 100 GPa: Synthesis and isotopic eects. Bastien Guigue,1, 2 Grégory Geneste,2 Brigitte Leridon,1 and Paul Loubeyre2, a) 1)LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France 2)CEA, DAM, DIF, F-91297 Arpajon, France (Dated: 10 December 2020) The stable forms of palladium hydrides up to 100 GPa were investigated using the direct reaction of palladium with hydrogen (deuterium) in a laser-heated diamond anvil cell. The structure and volume of PdH(D)x were measured using synchrotron x-ray diffraction.
    [Show full text]
  • Hydrogen Storage Overview
    HYDROGEN STORAGE (Materials) Arturo Fernandez Madrigal Instituto de Energias Renovables-UNAM [email protected] Questions ¿what is the state of the art on hydrogen as energy storage? ¿Which are the main challenges of involved technologies? Hydrogen Economic Hydrogen and other fuels [Sørensen, 2005]. Propiedad Hidrógeno Metanol Metano Propano Gasolina Unidad Mínima energía de 0.02 ---- 0.29 0.25 0.24 mJ ignición Temperatura de 2045 ---- 1875 ---- 2200 °C flama Temperatura de 585 385 540 510 230-500 °C autoignición Máxima velocidad 3.46 ---- 0.43 0.47 ---- m/s de flama Rango de 4-75 7-36 5-15 2.5-9.3 1.0-7.6 Vol. % flamabildad Rango de 13-65 ---- 6.3-13.5 ---- 1.1-3.3 Vol. % explosividad Coeficiente de 0.61 0.16 0.20 0.10 0.05 10-3 m2/s difusión Energy Content of Comparative Fuels Physical storage of H2 •Compressed •Metal Hydride (“sponge”) •Cryogenically liquified •Carbon nanofibers Chemical storage of hydrogen •Sodium borohydride •Methanol •Ammonia •Alkali metal hydrides New emerging methods •Amminex tablets •Solar Zinc production •DADB (predicted) •Alkali metal hydride slurry Compressed •Volumetrically and Gravimetrically inefficient, but the technology is simple, so by far the most common in small to medium sized applications. •3500, 5000, 10,000 psi variants. Liquid (Cryogenic) •Compressed, chilled, filtered, condensed •Boils at 22K (-251 C). •Slow “waste” evaporation •Gravimetrically and volumetrically efficient •Kept at 1 atm or just slightly over. but very costly to compress 9 Metal Hydrides (sponge) •Sold by “Interpower” in Germany •Filled with “HYDRALLOY” E60/0 (TiFeH2) •Technically a chemical reaction, but acts like a physical storage method •Hydrogen is absorbed like in a sponge.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES SCHOOL OF CHEMISTRY Nanostructured Palladium Hydride Microelectrodes: from the Potentiometric Mode in SECM to the Measure of Local pH during Carbonation Mara Serrapede Thesis for the degree of Doctor of Philosophy March 2014 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES SCHOOL OF CHEMISTRY Doctor of Philosophy NANOSTRUCTURED PALLADIUM HYDRIDE ELECTRODES: FROM THE POTENTIOMETRIC MODE IN SECM TO THE MEASURE OF LOCAL PH DURING CARBONATION. By Mara Serrapede The detection of local variations of the proton activity is of interest in many fields such as corrosion, sedimentology, biology and electrochemistry. Using nanostructured palladium microelectrodes Imokawa et al. fabricated for the first time a reliable and miniaturized sensor with high accuracy and reproducibility of the potentiometric-pH response.
    [Show full text]
  • Adapting Neural Machine Translation to Predict IUPAC Names from a Chemical Identifier
    Translating the molecules: adapting neural machine translation to predict IUPAC names from a chemical identifier Jennifer Handsel*,a, Brian Matthews‡,a, Nicola J. Knight‡,b, Simon J. Coles‡,b aScientific Computing Department, Science and Technology Facilities Council, Didcot, OX11 0FA, UK. bSchool of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK. KEYWORDS seq2seq, InChI, IUPAC, transformer, attention, GPU ABSTRACT We present a sequence-to-sequence machine learning model for predicting the IUPAC name of a chemical from its standard International Chemical Identifier (InChI). The model uses two stacks of transformers in an encoder-decoder architecture, a setup similar to the neural networks used in state-of-the-art machine translation. Unlike neural machine translation, which usually tokenizes input and output into words or sub-words, our model processes the InChI and predicts the 1 IUPAC name character by character. The model was trained on a dataset of 10 million InChI/IUPAC name pairs freely downloaded from the National Library of Medicine’s online PubChem service. Training took five days on a Tesla K80 GPU, and the model achieved test-set accuracies of 95% (character-level) and 91% (whole name). The model performed particularly well on organics, with the exception of macrocycles. The predictions were less accurate for inorganic compounds, with a character-level accuracy of 71%. This can be explained by inherent limitations in InChI for representing inorganics, as well as low coverage (1.4 %) of the training data. INTRODUCTION The International Union of Pure and Applied Chemistry (IUPAC) define nomenclature for both organic chemistry2 and inorganic chemistry.3 Their rules are comprehensive, but are difficult to apply to complicated molecules.
    [Show full text]
  • Table of Contents
    UNIVERSITY OF MISSOURI-KANSAS CITY CHEMICAL MANAGEMENT PLAN Revised May 2016 UMKC CHEMICAL MANAGEMENT PLAN This document constitutes the Chemical Management Plan (CMP) for the University of Missouri-Kansas City (UMKC). It was developed by the Environmental Health and Safety Department (EHS), to ensure the safe and proper use of hazardous and non- hazardous chemicals and to comply with applicable governmental regulations addressing the disposal of these chemicals. In addition, it was developed to foster waste minimization, and to provide the faculty and the staff with a management program to reduce the potential for accidents involving hazardous chemicals and/or wastes. Elements of the CMP include: a. a procedure for identifying potential or actual hazardous chemicals or wastes b. a procedure for periodic reexamination of those hazardous chemicals or wastes identified by the procedure in (a.) above as well as a systematic method for identification and evaluation of any new potential or actual hazardous chemicals or wastes c. procedures for labeling, and inventorying hazardous chemicals or wastes d. a procedure for identification and training of personnel directly responsible for ensuring that (a.), (b.), and (c.) are implemented e. a procedure for monitoring, recording, and reporting compliance with the CMP f. a procedure by which information generated by the CMP is provided to the persons performing waste analyses Each element is addressed as part of the complete CMP in the following paragraphs. 4 Table of Contents 1 Definitions 7 2 Identification
    [Show full text]
  • Chemical Resistance of Plastics
    (c) Bürkle GmbH 2010 Important Important information The tables “Chemical resistance of plastics”, “Plastics and their properties” and “Viscosity of liquids" as well as the information about chemical resistance given in the particular product descriptions have been drawn up based on information provided by various raw material manufacturers. These values are based solely on laboratory tests with raw materials. Plastic components produced from these raw materials are frequently subject to influences that cannot be recognized in laboratory tests (temperature, pressure, material stress, effects of chemicals, construction features, etc.). For this reason the values given are only to be regarded as being guidelines. In critical cases it is essential that a test is carried out first. No legal claims can be derived from this information; nor do we accept any liability for it. A knowledge of the chemical and mechanical Copyright This table has been published and updated by Bürkle GmbH, D-79415 Bad Bellingen as a work of reference. This Copyright clause must not be removed. The table may be freely passed on and copied, provided that Extensions, additions and translations If your own experiences with materials and media could be used to extend this table then we would be pleased to receive any additional information. Please send an E-Mail to [email protected]. We would also like to receive translations into other languages. Please visit our website at http://www.buerkle.de from time to Thanks Our special thanks to Franz Kass ([email protected]), who has completed and extended these lists with great enthusiasm and his excellent specialist knowledge.
    [Show full text]