Bacteriophages: Update on Application As Models for Viruses in Water

Total Page:16

File Type:pdf, Size:1020Kb

Bacteriophages: Update on Application As Models for Viruses in Water Bacteriophages: Update on application as models for viruses in water WOK Grabow Department of Medical Virology, University of Pretoria, PO Box 2034, Pretoria 0001, South Africa Abstract Phages are valuable models or surrogates for enteric viruses because they share many fundamental properties and features. Among these are structure, composition, morphology, size and site of replication. Even though they use different host cells, coliphages and Bacteroides fragilis phages predominantly replicate in the gastro-intestinal tract of humans and warm-blooded animals where enteric viruses also replicate. A major advantage of phages is that, compared to viruses, they are detectable by simple, inexpensive and rapid techniques. In view of these features, phages are particularly useful as models to assess the behaviour and survival of enteric viruses in the environment, and as surrogates to assess the resistance of human viruses to water treatment and disinfection processes. Since there is no direct correlation between numbers of phages and viruses, phages cannot to a meaningful extent be used to indicate numbers of viruses in polluted water. The presence of phages typically associated with human and animal excreta indicates the potential presence of enteric viruses. However, the absence of these phages from water environments is generally a meaningful indication of the absence of enteric viruses. This is because phages such as somatic coliphages, F-RNA coliphages and B. fragilis phages generally outnumber enteric viruses in water environments, and they are at least as resistant to unfavourable conditions including those in water treatment and disinfection processes. However, using highly sensitive molecular techniques viruses have been detected in drinking water supplies which yielded negative results in conventional tests for phages. Initially, data on phages were rather confusing because a wide variety of techniques was used. However, techniques for the detection of phages are being standardised internationally. This applies in particular to somatic and F-RNA coliphages, and B. fragilis phages, which are most commonly used in water quality assessment. Reliable and practical techniques now available include direct quantitative plaque assays on samples of water up to 100 ml, and qualitative tests on 500 ml or more using highly sensitive enrichment procedures. Introduction morphological subunits called capsomeres. The capsomeres consist of a number of protein subunits or molecules called protomers. Bacteriophages (phages) are viruses which infect bacteria. They Some phages also contain lipid and additional structures such as were discovered independently by Frederick W Twort in England tails and spikes. These features imply that in terms of composition, in 1915 and by Felix d’Herelle at the Pasteur Institute in Paris in structure and morphology, phages share many fundamental 1917 (Pelczar et al., 1988). Phages were the last of the three major properties with human viruses. For instance, F-RNA coliphages classes of viruses to be discovered during World War I. The other (Family Leviviridae) and enteroviruses such as polio viruses (Family two classes were the plant viruses and animal viruses. It was then Picornaviridae) both have an icosahedral capsid with a diameter of hoped that their ability to kill bacteria could be used for the about 25 nm and a single strand (ss)-RNA genome. Under the prevention and treatment of bacterial disease, but this did not prove electron microscope F-RNA coliphages and enteroviruses are successful due to the rapid selection of resistant bacteria (Goyal et hardly distinguishable (Fig. 1). In addition, F-RNA coliphages and al., 1987). However, phages eventually turned out to have major enteroviruses are both excreted by humans. For these reasons other benefits, notably as models or surrogates for human viruses coliphages are valuable models or surrogates for human enteric in basic genetic research as well as water quality assessment. viruses. As a result of these similarities, the behaviour of F-RNA Phages proved to be most valuable tools in research on viruses coliphages as well as other phages, resembles that of enteric viruses because compared with the human, animal, plant and even insect much closer than faecal bacteria such as coliforms commonly used hosts of other viruses, phages are easily and rapidly cultivated in as indicators of faecal pollution. The same applies to properties laboratories which are not particularly demanding with regard to such as removal by water treatment processes and resistance to space, facilities, and equipment (Pelczar et al., 1988). Research on disinfection processes. However, there are differences which limit the basic genetic properties of phages led to the development of an the indicator value of phages. For instance, electrostatic charges on entirely new science - that of molecular biology - which allowed phages may differ from those on enteric viruses, which affect unprecedented advancements in all the biological and medical important properties such as adsorption to solid surfaces. This has sciences. In addition, the way all viruses reproduce was first implications for features like behaviour in the environment, and the indicated by work with phages (Ackermann, 1969). efficiency of recovery by techniques based on adsorption-elution principles. Structure and morphology of phages Phage replication Phages basically consist of a nucleic acid molecule (genome) surrounded by a protein coat (capsid). The capsid is made up of Phages and enteric viruses can replicate only inside host cells, which in the case of phages are susceptible bacteria, and in the case of enteric viruses are susceptible mammalian cells. Phages use the ((012) 319-2351; fax (012) 325-5550; e-mail: [email protected] Received 29 February 2000. ribosomes, protein-synthesising factors, amino acids, and energy- Available on website http://www.wrc.org.za ISSN 0378-4738 = Water SA Vol. 27 No. 2 April 2001 251 Inoviridae and Leviviridae. These features have major implications for the utilisation of phages as models/surrogates for human viruses. For instance, under certain optimal conditions host bacteria, notably heterotrophic bacteria, may support the replication of somatic phages in water environments. However, in environmental waters, even in sewage, conditions rarely if ever meet requirements for the production of fertility fimbriae. An important limiting factor is the temperature of at least 30°C. This implies that for all practical purposes replication of male-specific phages in environmental waters is most unlikely, while somatic coliphages may under circumstances multiply in certain water environments (Grabow et al., 1980). Optimal conditions for the replication of both somatic and male-specific phages typically prevail in the gastro-intestinal tract of humans and other warm-blooded animals. Since human enteric viruses are released into the environment almost exclusively from the gastro-intestinal tract of humans, phages which infect typical enteric bacteria such as E. coli, resemble human viruses with regard to origin and release into the environment. This strongly supports the value of phages, notably coliphages and Bacteroides fragilis phages, as models/surrogates for enteric viruses. Among phages, the F-RNA male-specific phages are theoretically probably the best models/surrogates for enteric viruses because: like enteric viruses they almost exclusively originate from the faeces of humans and other warm-blooded animals; like enteric viruses they fail to multiply in the environment; and in terms of composition, structure and size they closely resemble human enteric viruses. However, coliphages are excreted at all times by a certain percentage of all humans and other warm-blooded animals (Grabow Figure 1 et al., 1995), whereas enteric viruses of human health concern are Electron micrograph of F-RNA coliphages (Family Leviviridae). Size of about 25 nm and morphology are similar to that of human excreted almost exclusively by humans during infection which enteroviruses like polio virus. Note attachment of the phages to may last for a few days to a few weeks. This implies that the bacterial fertility fimbriae which have receptor sites for these incidence of human enteric viruses in the environment is subject to phages. The thicker rods are bacterial flagellae without variables such as the epidemiology of viral infections, outbreaks of receptor sites. infections in communities, vaccination against viruses, seasonal changes, and other variables which do not affect the excretion of generating systems of the host cell to replicate, and hence, phages coliphages. In addition, human enteric viruses and coliphages are can multiply only in metabolising host bacteria (Goyal et al., 1987). not excreted in the same numbers and not for the same periods of Some phage species have fewer than 10 genes and use almost all of time. Consequently there is rarely, if ever, a direct correlation the cellular functions, whereas others have 30 to 100 genes and are between the numbers of any coliphages and any enteric viruses in less dependent on the host. A few of the large phage particles have water environments at any time. so many of their own genes that, for certain functions such as DNA Phages are divided into two groups according to their mode of replication, they need no host genes (Freifelder, 1987). Phages can replication. Virulent (lytic) phages typically proceed with replication only infect certain bacteria. The
Recommended publications
  • The Positive Rhinovirus/Enterovirus Detection and SARS-Cov-2 Persistence Beyond the Acute Infection Phase: an Intra-Household Surveillance Study
    viruses Communication The Positive Rhinovirus/Enterovirus Detection and SARS-CoV-2 Persistence beyond the Acute Infection Phase: An Intra-Household Surveillance Study Pedro Brotons 1,2,3, Iolanda Jordan 1,3,4, Quique Bassat 3,5,6,7,8 , Desiree Henares 1,3, Mariona Fernandez de Sevilla 1,3,5, Sara Ajanovic 7, Alba Redin 1,2, Vicky Fumado 1,5, Barbara Baro 7 , Joana Claverol 9, Rosauro Varo 7 , Daniel Cuadras 9 , Jochen Hecht 10, Irene Barrabeig 3,11, Juan Jose Garcia-Garcia 1,3,5, Cristian Launes 1,3,5,† and Carmen Muñoz-Almagro 1,2,3,12,*,† 1 Pediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain; [email protected] (P.B.); [email protected] (I.J.); [email protected] (D.H.); [email protected] (M.F.d.S.); [email protected] (A.R.); [email protected] (V.F.); [email protected] (J.J.G.-G.); [email protected] (C.L.) 2 Department of Medicine, School of Medicine, Universitat Internacional de Catalunya, Sant Cugat, 08195 Barcelona, Spain 3 Consorcio de Investigacion Biomédica en Red Epidemiologia y Salud Pública (CIBERESP), 28029 Madrid, Spain; [email protected] (Q.B.); [email protected] (I.B.) 4 Pediatric Intensive Care Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain 5 Pediatrics Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain 6 Centro de Investigação em Saúde de Manhiça (CISM), Manhiça 1929, Mozambique Citation: Brotons, P.; Jordan, I.; 7 ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; [email protected] (S.A.); Bassat, Q.; Henares, D.; Fernandez de [email protected] (B.B.); [email protected] (R.V.) Sevilla, M.; Ajanovic, S.; Redin, A.; 8 Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain Fumado, V.; Baro, B.; Claverol, J.; et al.
    [Show full text]
  • Hesperetin Protects Crayfish Procambarus Clarkii Against White
    Fish and Shellfish Immunology 93 (2019) 116–123 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Hesperetin protects crayfish Procambarus clarkii against white spot syndrome virus infection T Xiyi Qian, Fei Zhu* Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China ARTICLE INFO ABSTRACT Keywords: Hesperetin is a natural flavanone compound, which mainly exists in lemons and oranges, and has potential Hesperetin antiviral and anticancer activities. In this study, hesperetin was used in a crayfish pathogen challenge to discover WSSV its effects on the innate immune system of invertebrates. The crayfish Procambarus clarkii was used as an ex- Innate immunity perimental model and challenged with white spot syndrome virus (WSSV). Pathogen challenge experiments Procambarus clarkii showed that hesperetin treatment significantly reduced the mortality caused by WSSV infection, while the VP28 copies of WSSV were also reduced. Quantitative reverse transcriptase polymerase chain reaction revealed that hesperetin increased the expression of several innate immune-related genes, including NF-kappaB and C-type lectin. Further analysis showed that hesperetin treatment plays a positive effects on three immune parameters like total hemocyte count, phenoloxidase and superoxide dismutase activity. Nevertheless, whether or not in- fected with WSSV, hesperetin treatment would significantly increase the hemocyte apoptosis rates in crayfish. These results indicated that hesperetin could regulate the innate immunity of crayfish, and delaying and re- ducing the mortality after WSSV challenge. Therefore, the present study provided novel insights into the po- tential therapeutic or preventive functions associated with hesperetin to regulate crayfish immunity and protect crayfish against WSSV infection, provide certain theoretical basis for production practice.
    [Show full text]
  • Phage Display-Derived Cross-Reactive Neutralizing Antibody Against Enterovirus 71 and Coxsackievirus A16
    Jpn. J. Infect. Dis., 69, 66–74, 2016 Original Article Phage Display-Derived Cross-Reactive Neutralizing Antibody against Enterovirus 71 and Coxsackievirus A16 Xiao Zhang1†, Chunyun Sun2†, Xiangqian Xiao1,LinPang3, Sisi Shen1, Jie Zhang2, Shan Cen4,BurtonB.Yang5, Yuming Huang3, Wang Sheng1*, and Yi Zeng1 1College of Life Science and Bioengineering, Beijing University of Technology, Beijing; 2Sinocelltech, Cell Engineering Center, Chinese Academy of Medical Science, Beijing; 3Beijing Ditan Hospital, Capital Medical University, Beijing; 4Department of Virology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China; and 5Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada SUMMARY: Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are members of the Picornaviri- dae family and are considered the main causative agents of hand, foot and mouth disease (HFMD). In recent decades large HFMD outbreaks caused by EV71 and CVA16 have become significant public health concerns in the Asia-Pacific region. Vaccines and antiviral drugs are unavailable to prevent EV71 and CVA16 infection. In the current study, a chimeric antibody targeting a highly conserved peptide in the EV71 VP4 protein was isolated by using a phage display technique. The antibody showed cross- neutralizing capability against EV71 and CVA16 in vitro. The results suggest that this phage display- derived antibody will have great potential as a broad neutralizing antibody against EV71 and CVA16 after affinity maturation and humanization. potential for new viral recombinants of EV71 and INTRODUCTION CVA16 to emerge have been documented (13–15). These Enterovirus 71 (EV71) and coxsakievirus A16 findings suggest that both EV71 and CVA16 should be (CVA16) are non-enveloped RNA viruses of the targeted for vaccine and therapeutic development for ef- Picornaviridae family.
    [Show full text]
  • Understanding Human Astrovirus from Pathogenesis to Treatment
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 6-2020 Understanding Human Astrovirus from Pathogenesis to Treatment Virginia Hargest University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Diseases Commons, Medical Sciences Commons, and the Viruses Commons Recommended Citation Hargest, Virginia (0000-0003-3883-1232), "Understanding Human Astrovirus from Pathogenesis to Treatment" (2020). Theses and Dissertations (ETD). Paper 523. http://dx.doi.org/10.21007/ etd.cghs.2020.0507. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Understanding Human Astrovirus from Pathogenesis to Treatment Abstract While human astroviruses (HAstV) were discovered nearly 45 years ago, these small positive-sense RNA viruses remain critically understudied. These studies provide fundamental new research on astrovirus pathogenesis and disruption of the gut epithelium by induction of epithelial-mesenchymal transition (EMT) following astrovirus infection. Here we characterize HAstV-induced EMT as an upregulation of SNAI1 and VIM with a down regulation of CDH1 and OCLN, loss of cell-cell junctions most notably at 18 hours post-infection (hpi), and loss of cellular polarity by 24 hpi. While active transforming growth factor- (TGF-) increases during HAstV infection, inhibition of TGF- signaling does not hinder EMT induction. However, HAstV-induced EMT does require active viral replication.
    [Show full text]
  • (Hadv), Human Enterovirus (Hev), and Genogroup a Rotavirus (GARV) in Tap Water in Southern Brazil M
    526 © IWA Publishing 2014 Journal of Water and Health | 12.3 | 2014 Human adenovirus (HAdV), human enterovirus (hEV), and genogroup A rotavirus (GARV) in tap water in southern Brazil M. Kluge, J. D. Fleck, M. C. Soliman, R. B. Luz, R. B. Fabres, J. Comerlato, J. V. S. Silva, R. Staggemeier, A. D. Vecchia, R. Capalonga, A. B. Oliveira, A. Henzel, C. Rigotto and F. R. Spilki ABSTRACT The effects of viral gastroenteritis are more devastating in children than in any other age category. M. Kluge J. D. Fleck Thus, children exposed to the consumption of low quality water are at an increased risk of infection, M. C. Soliman R. B. Luz especially in regions where sanitation is inadequate. The present study aimed to provide a survey of R. B. Fabres J. V. S. Silva the occurrence of representative enteric viruses: human adenovirus (HAdV), human enteroviruses R. Staggemeier (hEV), and genogroup A rotavirus (GARV) in tap water samples collected in public schools located at A. D. Vecchia A. Henzel six municipalities of Rio Grande do Sul, southern Brazil. Seventy-three schools were included in the C. Rigotto F. R. Spilki (corresponding author) study and tap water samples were analyzed by conventional PCR for the presence of HAdV, hEV, and Laboratório de Microbiologia Molecular (LMM), Instituto de Ciências da Saúde (ICS), GARV genomes. hEV showed the highest detection rate (27.4%), followed by HAdV (23.3%), and GARV Universidade Feevale, Novo Hamburgo, RS, (16.4%). New approaches to water monitoring should be considered to promote a better water Brazil E-mail: [email protected] quality and reduce the risk of waterborne diseases, especially considering drinking water to be J.
    [Show full text]
  • Astrovirus MLB2, a New Gastroenteric Virus Associated with Meningitis and Disseminated Infection Samuel Cordey,1 Diem-Lan Vu,1 Manuel Schibler, Arnaud G
    RESEARCH Astrovirus MLB2, a New Gastroenteric Virus Associated with Meningitis and Disseminated Infection Samuel Cordey,1 Diem-Lan Vu,1 Manuel Schibler, Arnaud G. L’Huillier, Francisco Brito, Mylène Docquier, Klara M. Posfay-Barbe, Thomas J. Petty, Lara Turin, Evgeny M. Zdobnov, Laurent Kaiser Next-generation sequencing has identified novel astrovi- observed in community healthcare centers (2,3). Symp- ruses for which a pathogenic role is not clearly defined. toms are generally mild, with patient hospitalization We identified astrovirus MLB2 infection in an immunocom- usually not required; asymptomatic carriage has been petent case-patient and an immunocompromised patient described in 2% of children (4). who experienced diverse clinical manifestations, notably, Screening of fecal samples from persons with diarrhea meningitis and disseminated infection. The initial case-pa- and control samples in different parts of the world by un- tient was identified by next-generation sequencing, which revealed astrovirus MLB2 RNA in cerebrospinal fluid, biased next-generation sequencing (NGS) or reverse tran- plasma, urine, and anal swab specimens. We then used scription PCR (RT-PCR) has revealed the sporadic pres- specific real-time reverse transcription PCR to screen 943 ence of members of the Astroviridae family, previously fecal and 424 cerebrospinal fluid samples from hospital- unrecognized in humans, that are phylogenetically substan- ized patients and identified a second case of meningitis, tially distant from classic HAstVs (3,5–9). These viruses with positive results for the agent in the patient’s feces have been named HAstV-VA/HMO and HAstV-MLB, for and plasma. This screening revealed 5 additional positive Virginia, human-mink-ovine, and Melbourne, respectively, fecal samples: 1 from an infant with acute diarrhea and according to the place where they were first identified and 4 from children who had received transplants.
    [Show full text]
  • Risk Groups: Viruses (C) 1988, American Biological Safety Association
    Rev.: 1.0 Risk Groups: Viruses (c) 1988, American Biological Safety Association BL RG RG RG RG RG LCDC-96 Belgium-97 ID Name Viral group Comments BMBL-93 CDC NIH rDNA-97 EU-96 Australia-95 HP AP (Canada) Annex VIII Flaviviridae/ Flavivirus (Grp 2 Absettarov, TBE 4 4 4 implied 3 3 4 + B Arbovirus) Acute haemorrhagic taxonomy 2, Enterovirus 3 conjunctivitis virus Picornaviridae 2 + different 70 (AHC) Adenovirus 4 Adenoviridae 2 2 (incl animal) 2 2 + (human,all types) 5 Aino X-Arboviruses 6 Akabane X-Arboviruses 7 Alastrim Poxviridae Restricted 4 4, Foot-and- 8 Aphthovirus Picornaviridae 2 mouth disease + viruses 9 Araguari X-Arboviruses (feces of children 10 Astroviridae Astroviridae 2 2 + + and lambs) Avian leukosis virus 11 Viral vector/Animal retrovirus 1 3 (wild strain) + (ALV) 3, (Rous 12 Avian sarcoma virus Viral vector/Animal retrovirus 1 sarcoma virus, + RSV wild strain) 13 Baculovirus Viral vector/Animal virus 1 + Togaviridae/ Alphavirus (Grp 14 Barmah Forest 2 A Arbovirus) 15 Batama X-Arboviruses 16 Batken X-Arboviruses Togaviridae/ Alphavirus (Grp 17 Bebaru virus 2 2 2 2 + A Arbovirus) 18 Bhanja X-Arboviruses 19 Bimbo X-Arboviruses Blood-borne hepatitis 20 viruses not yet Unclassified viruses 2 implied 2 implied 3 (**)D 3 + identified 21 Bluetongue X-Arboviruses 22 Bobaya X-Arboviruses 23 Bobia X-Arboviruses Bovine 24 immunodeficiency Viral vector/Animal retrovirus 3 (wild strain) + virus (BIV) 3, Bovine Bovine leukemia 25 Viral vector/Animal retrovirus 1 lymphosarcoma + virus (BLV) virus wild strain Bovine papilloma Papovavirus/
    [Show full text]
  • HUMAN ADENOVIRUS Credibility of Association with Recreational Water: Strongly Associated
    6 Viruses This chapter summarises the evidence for viral illnesses acquired through ingestion or inhalation of water or contact with water during water-based recreation. The organisms that will be described are: adenovirus; coxsackievirus; echovirus; hepatitis A virus; and hepatitis E virus. The following information for each organism is presented: general description, health aspects, evidence for association with recreational waters and a conclusion summarising the weight of evidence. © World Health Organization (WHO). Water Recreation and Disease. Plausibility of Associated Infections: Acute Effects, Sequelae and Mortality by Kathy Pond. Published by IWA Publishing, London, UK. ISBN: 1843390663 192 Water Recreation and Disease HUMAN ADENOVIRUS Credibility of association with recreational water: Strongly associated I Organism Pathogen Human adenovirus Taxonomy Adenoviruses belong to the family Adenoviridae. There are four genera: Mastadenovirus, Aviadenovirus, Atadenovirus and Siadenovirus. At present 51 antigenic types of human adenoviruses have been described. Human adenoviruses have been classified into six groups (A–F) on the basis of their physical, chemical and biological properties (WHO 2004). Reservoir Humans. Adenoviruses are ubiquitous in the environment where contamination by human faeces or sewage has occurred. Distribution Adenoviruses have worldwide distribution. Characteristics An important feature of the adenovirus is that it has a DNA rather than an RNA genome. Portions of this viral DNA persist in host cells after viral replication has stopped as either a circular extra chromosome or by integration into the host DNA (Hogg 2000). This persistence may be important in the pathogenesis of the known sequelae of adenoviral infection that include Swyer-James syndrome, permanent airways obstruction, bronchiectasis, bronchiolitis obliterans, and steroid-resistant asthma (Becroft 1971; Tan et al.
    [Show full text]
  • A Systematic Review of Evidence That Enteroviruses May Be Zoonotic Jane K
    Fieldhouse et al. Emerging Microbes & Infections (2018) 7:164 Emerging Microbes & Infections DOI 10.1038/s41426-018-0159-1 www.nature.com/emi REVIEW ARTICLE Open Access A systematic review of evidence that enteroviruses may be zoonotic Jane K. Fieldhouse 1,XinyeWang2, Kerry A. Mallinson1,RickW.Tsao1 and Gregory C. Gray 1,2,3 Abstract Enteroviruses infect millions of humans annually worldwide, primarily infants and children. With a high mutation rate and frequent recombination, enteroviruses are noted to evolve and change over time. Given the evidence that human enteroviruses are commonly found in other mammalian species and that some human and animal enteroviruses are genetically similar, it is possible that enzootic enteroviruses may also be infecting human populations. We conducted a systematic review of the English and Chinese literature published between 2007 and 2017 to examine evidence that enteroviruses may be zoonotic. Of the 2704 articles screened for inclusion, 16 articles were included in the final review. The review of these articles yielded considerable molecular evidence of zooanthroponosis transmission, particularly among non-human primates. While there were more limited instances of anthropozoonosis transmission, the available data support the biological plausibility of cross-species transmission and the need to conduct periodic surveillance at the human–animal interface. Introduction Enterovirus D68 (EV-D68) is a type that has caused 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Enteroviruses (EVs) are positive-sense, single-stranded sporadic but severe respiratory disease outbreaks across RNA viruses in the family Picornaviridae that infect the United States, Asia, Africa, and Europe in recent millions of people worldwide on an annual basis, espe- years3,4.
    [Show full text]
  • RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues
    microorganisms Article Detection of Viral −RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues Sami Salmikangas 1 , Jutta E. Laiho 2 , Kerttu Kalander 1, Mira Laajala 1 , Anni Honkimaa 2, Iryna Shanina 3, Sami Oikarinen 2, Marc S. Horwitz 3, Heikki Hyöty 2 and Varpu Marjomäki 1,* 1 Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; sami.salmikangas@helsinki.fi (S.S.); [email protected].fi (K.K.); mira.a.laajala@jyu.fi (M.L.) 2 Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; jutta.laiho@tuni.fi (J.E.L.); anni.honkimaa@tuni.fi (A.H.); sami.oikarinen@tuni.fi (S.O.); heikki.hyoty@tuni.fi (H.H.) 3 Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada; [email protected] (I.S.); [email protected] (M.S.H.) * Correspondence: Varpu.s.marjomaki@jyu.fi; Tel.: +358-405634422 Received: 30 October 2020; Accepted: 2 December 2020; Published: 4 December 2020 Abstract: The current methods to study the distribution and dynamics of viral RNA molecules inside infected cells are not ideal, as electron microscopy and immunohistochemistry can only detect mature virions, and quantitative real-time PCR does not reveal localized distribution of RNAs. We demonstrated here the branched DNA in situ hybridization (bDNA ISH) technology to study both the amount and location of the emerging RNA and +RNA during acute and persistent enterovirus − infections. According to our results, the replication of the viral RNA started 2–3 h after infection and the translation shortly after at 3–4 h post-infection.
    [Show full text]
  • Enteric Viruses and Inflammatory Bowel Disease
    viruses Review Enteric Viruses and Inflammatory Bowel Disease Georges Tarris 1,2, Alexis de Rougemont 2 , Maëva Charkaoui 3, Christophe Michiels 3, Laurent Martin 1 and Gaël Belliot 2,* 1 Department of Pathology, University Hospital of Dijon, F 21000 Dijon, France; [email protected] (G.T.); [email protected] (L.M.) 2 National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, F 21000 Dijon, France; [email protected] 3 Department of Hepatogastroenterology, University Hospital of Dijon, F 21000 Dijon, France; [email protected] (M.C.); [email protected] (C.M.) * Correspondence: [email protected]; Tel.: +33-380-293-171; Fax: +33-380-293-280 Abstract: Inflammatory bowel diseases (IBD), including ulcerative colitis (UC) and Crohn’s disease (CD), is a multifactorial disease in which dietary, genetic, immunological, and microbial factors are at play. The role of enteric viruses in IBD remains only partially explored. To date, epidemiological studies have not fully described the role of enteric viruses in inflammatory flare-ups, especially that of human noroviruses and rotaviruses, which are the main causative agents of viral gastroenteritis. Genome-wide association studies have demonstrated the association between IBD, polymorphisms of the FUT2 and FUT3 genes (which drive the synthesis of histo-blood group antigens), and ligands for norovirus and rotavirus in the intestine. The role of autophagy in defensin-deficient Paneth cells and the perturbations of cytokine secretion in T-helper 1 and T-helper 17 inflammatory pathways following enteric virus infections have been demonstrated as well.
    [Show full text]
  • R Idh E I Rotavirus and the Enteroviruses Gastrointestinal Viruses
    Gastrointestinal Viruses: RiRotavirus and the EiEnteroviruses Adam J. Ratner, M.D., M.P.H. Assistant Professor of Pediatrics and Microbiology Columbia University Gastrointestinal Viruses • Viral diarrheal illness o tremendous cause of morbidity/mortality worldwide o rotavirus, calicivirus ((),norovirus), astrovirus, adenovirus 40/41 • Viruses that replicate in the gastrointestinal tract but generally don’t cause diarrhea • One from each category: o Rotavirus –most important cause of childhood diarrhea worldwide o EtEnterov iruses – replica te in GI tttract, cause a wide spectrum of disease MID 33 Childhood diarrheal disease MID 33 Poverty Rotavirus • Ubiquitous viral diarrheal illness – essentially all children infected by age 5 • Most common cause of viral gastroenteritis in childhood • High mortality rates in developing world (>600,000 global deaths/yr) ~5% of all‐cause mortality in under 5 year‐olds death is due to dehydration –not overwhelming viral replication • In U.S., tremendous numbers of hospital admissions, doctor visits 1 in 72 children hospitalized, 1 in 19 seen by physician • Seasonality – peak in winter – later as you move East in USU.S. MID 33 Rotavirus: pathogenesis • Member of Reoviridae o Large, non‐enveloped dsRNA virus (rota = wheel) o 11 segments of dsRNA o structural proteins (VP1‐VP4, VP6, VP7) o non‐structural (NS) proteins o reassortment can occur o RNA‐dependent RNA polymerase used in replication • Classified by group (A‐F, based on VP6 protein) • only A, B, C cause disease in humans • group A also classified
    [Show full text]