Prototyping Methodologies and Design of Communication-Centric Heterogeneous Many-Core Architectures

Total Page:16

File Type:pdf, Size:1020Kb

Prototyping Methodologies and Design of Communication-Centric Heterogeneous Many-Core Architectures Prototyping Methodologies and Design of Communication-centric Heterogeneous Many-core Architectures Zur Erlangung des akademischen Grades eines DOKTOR-INGENIEURS (Dr.-Ing.) von der KIT-Fakultät für Elektrotechnik und Informationstechnik, des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von Dipl.-Inform. Leonard Jannik Masing geb. in Heidelberg Tag der mündlichen Prüfung: 5.3.2020 Hauptreferent: Prof. Dr.-Ing. Dr. h. c. Jürgen Becker Korreferent: Prof. Dr. sc.techn. Andreas Herkersdorf Abstract The age of parallel processing and heterogeneous architectures is upon us. Fu- eled by the end of Dennard scaling, such architectures are the only way to keep the power wall in check until entirely new technologies such as quantum com- puting or new material breakthroughs might change the entire playing field. High performing heterogeneous many-cores interfaced by scalable networks- on-chips are one promising approach that has emerged in this context. However, these architectures come in many possible variations as the manifold applica- tion domains, from embedded and Internet of Things(IoT) to high performance computing, make customized computing architectures desirable. This in turn raises design efforts and complexity. At the same time, design size, complex interconnects and heterogeneous computing nodes are further straining existing techniques and methodologies for debugging, verification and validation. Inspired by these developments, this work presents novel approaches for de- sign and prototyping of heterogeneous many-core architectures. Three main aspects, not covered sufficiently by the existing state of the art are targeted. These aspects encompass early software development, hardware verification and design automation. A specific scenario that relates to a part in the many- core design process motivates each aspect. An emphasis is put on a novel networks-on-chip extension for low latency interconnects that highlights the major limitation of existing approaches: scalability for large architectures. As a central concept, virtual platforms on the electronic system level are uti- lized for early software development and verification tasks due to their binary compatibility with the target architecture. This allows for software, low-level function calls, drivers and operating system functionality to be developed in parallel to hardware design and verification tasks. A virtual platform envi- ronment is used to model a many-core architecture by extending it towards support for heterogeneous elements, an abstracted interconnect as well as cam- era and video I/O. Virtual platforms play another crucial role as part of the novel multi-level hybrid prototyping methodology that is introduced to provide i abstract a scalable answer for hardware verification tasks. In this approach, a prototype is built consisting of an FPGA part and a virtual part, interfaced by high speed PCIe. It reduces synthesis times and enables prototyping of large architectures that would otherwise not fit on available FPGA-board prototypes. Finally, the hardware/software codesign and design automation are also considered. Specifically, a framework that improves High-Level Synthesis (HLS) flows is introduced. It starts from OpenCL input and automatically generates a virtual platform representation as an intermediate step. This saves costly synthesis time and allows for optimizations on a human readable level in SystemC, as opposed to unintelligible RTL-Code generated by common HLS tools. The framework is enhanced further by providing an automated conversion among real number representations. This data representation forms a major trade-off in the design of customized accelerators, having significant impact on resource and power consumption. In summary, the presented contributions significantly speed up design processes and enable scalable prototyping of large heteroge- neous many-core architectures that was not possible before. ii Zusammenfassung Die Ära der Parallelverarbeitung und des heterogenen Rechnens ist ange- brochen. Bedingt durch das Ende des Dennard Scalings sind solche Architek- turen die einzige Möglichkeit um Leistungssteigerungen trotz der Limitierun- gen durch die Energiedichte zu erreichen, bis völlig neue Technologien wie das Quantenrechnen oder neue Materialien diese Hürde möglicherweise über- winden. Hochperformante, heterogene Vielkernarchitekturen die durch ein Netzwerk auf einem Chip verbunden sind, stellen einen vielversprechenden Ansatz in diesem Kontext dar. Diese Architekturen existieren jedoch in sehr unterschiedlichen Variationen, um den vielfältigen Anwendungsgebieten wie beispielsweise eingebettete Systeme, das Internet der Dinge sowie das Hoch- performanzrechnen gerecht zu werden. Dies wiederum erhöht die Komplexität im Entwurf und der Verifikation. Gleichzeitig überfordern die Designgröße, neuartige Verbindungsinfrastrukturen und die Integration heterogener Rech- enelemente zusätzlich die bestehenden Techniken und Methodiken für das Debugging, die Verifikation und die Validierung. Inspiriert durch diese Entwicklungen werden in der vorliegenden Arbeit neuar- tige Ansätze für das Design und das Prototyping von heterogenen Vielkernar- chitekturen vorgestellt. Der Fokus liegt hierbei auf drei Hauptaspekten, welche bisher im bestehenden Stand der Technik nicht ausreichend betrachtet worden sind. Diese Aspekte umfassen die frühzeitige Softwareentwicklung parallel zur Architekturentwicklung, die Hardwareverifikation und die Designautoma- tisierung. Jeder dieser Aspekte wird durch ein spezielles Szenario aus der Entwicklung einer Vielkernarchitektur motiviert. Insbesondere wird hier eine Erweiterung der Kommunikationsinfrastruktur hervorgehoben, welche eine Latenzreduzierung ermöglicht. Dieser neue Beitrag zur Leistungssteigerung von Vielkernarchitekturen zeigt ein deutliches Problem bestehender Entwurfs- und Verifikationstechniken: Die Skalierbarkeit für große Architekturen. Als zentrales Konzept werden in dieser Arbeit virtuelle Plattformen auf dem Elek- tronischen System Level (ESL) eingesetzt. Diese ermöglichen die frühzeitige iii Zusammenfassung Entwicklung und Verifikation von Software dank ihrer Binärkompatibilität mit der Zielarchitektur. Auf diese Weise kann selbst hardwarenahe Software, wie Treiber oder betriebssystemspezifische Funktionen, entwickelt werden während ein fertiges Hardwaredesign noch nicht existiert. In dieser Arbeit wird konkret eine Umgebung für virtuelle Plattformen speziell für die Modellierung von heterogenen Vielkernarchitekturen, eine abstrahierte Verbindungsstruktur sowie Kamera und Video Eingabe/Ausgabe erweitert. Virtuelle Plattformen spielen ebenso eine entscheidende Rolle als Teil der neuartigen hybriden Pro- totyping Methodik die eingeführt wird um eine skalierbare Lösung für die Hardwareverifikation zu liefern. Dieser Ansatz sieht vor, den Entwurfsprozess von einer virtuellen Plattform ausgehen zu lassen und Teile der Architektur auf einen FPGA zu verlagern. Die virtuelle Plattform wird über hochperfor- mantes PCIe angebunden um eine niedrige Latenz und hohen Durchsatz zu ermöglichen. Der hybride Ansatz reduziert die Synthesezeit und erlaubt die Erstellung von Prototypen für große Architekturen, welche ansonsten derzeit nicht auf reine FPGA-Lösungen passen würden. Als weiteres großes Thema in der vorliegenden Arbeit wird das Hardware/Software Codesign und die Designautomatisierung für heterogene Vielkernarchitekturen betrachtet. Ins- besondere wird ein Framework vorgestellt, welches den High-Level Synthese Entwurfsprozess verbessert. Dieser startet auf C Ebene mit OpenCL Quell- code und generiert automatisiert eine virtuelle Plattform als Zwischenschritt, im Gegensatz zur direkten Synthese auf Register Transfer (RT) Ebene bei bisherigen Ansätzen. Dies erspart kostbare Synthesezeit und ermöglicht es, Optimierungen in der gut verständlichen und übersichtlichen Zwischenebene vorzunehmen, anstatt des unleserlichen Codes der auf RT Ebene erzeugt wird. Das Framework wird zudem erweitert durch ein Feature zur automatisierten Konvertierung von reellen Zahlen. Dies ermöglicht die Evaluierung von Trade- offs für heterogene Beschleuniger im Sinne des approximativen Rechnens. Zusammengefasst beschleunigen die vorgestellten Beiträge den Designprozess signifikant und ermöglichen das skalierbare Prototyping von großen heteroge- nen Vielkernarchitekturen, was bisher nicht in dieser Form möglich war. iv Vorwort Die vorliegende Doktorarbeit ist in meiner Zeit am Institut für Technik der In- formationsverarbeitung (ITIV) des Karlsruher Instituts für Technologie (KIT) entstanden. An dieser Stelle möchte ich mich ganz herzlich bei all jenen bedanken, die mich in dieser Zeit auf meinem Weg begleitet und unterstützt haben. Mein ganz besonderer Dank gilt zunächst meinem Doktorvater Prof. Jürgen Becker für die Möglichkeit bei ihm am ITIV zu promovieren. Ich bin dankbar für die inhaltlichen Diskussionen, die Freiheit eigenen Ideen folgen zu können und alles was ich auf diesem Weg von ihm lernen durfte. Ebenfalls gilt mein besonderer Dank Prof. Andreas Herkersdorf für die Übernahme des Koreferats, den inhaltlichen Austausch und die gute Zusammenarbeit mit ihm und seinem Team über die Jahre. Nicht vergessen möchte ich auch meine Prüfungskommission, bestehend aus Prof. Ivan Peric, Prof. Laurent Schmalen und Prof. Ahmet Cagri Ulusoy, welchen ich für Ihre Zeit danken möchte. Mein weiterer Dank gilt insbesondere allen die mich auf meinem Weg be- gleitet haben. Dies sind zunächst einmal meine ehemaligen und aktuellen Kollegen vom
Recommended publications
  • Hardware Architecture
    Hardware Architecture Components Computing Infrastructure Components Servers Clients LAN & WLAN Internet Connectivity Computation Software Storage Backup Integration is the Key ! Security Data Network Management Computer Today’s Computer Computer Model: Von Neumann Architecture Computer Model Input: keyboard, mouse, scanner, punch cards Processing: CPU executes the computer program Output: monitor, printer, fax machine Storage: hard drive, optical media, diskettes, magnetic tape Von Neumann architecture - Wiki Article (15 min YouTube Video) Components Computer Components Components Computer Components CPU Memory Hard Disk Mother Board CD/DVD Drives Adaptors Power Supply Display Keyboard Mouse Network Interface I/O ports CPU CPU CPU – Central Processing Unit (Microprocessor) consists of three parts: Control Unit • Execute programs/instructions: the machine language • Move data from one memory location to another • Communicate between other parts of a PC Arithmetic Logic Unit • Arithmetic operations: add, subtract, multiply, divide • Logic operations: and, or, xor • Floating point operations: real number manipulation Registers CPU Processor Architecture See How the CPU Works In One Lesson (20 min YouTube Video) CPU CPU CPU speed is influenced by several factors: Chip Manufacturing Technology: nm (2002: 130 nm, 2004: 90nm, 2006: 65 nm, 2008: 45nm, 2010:32nm, Latest is 22nm) Clock speed: Gigahertz (Typical : 2 – 3 GHz, Maximum 5.5 GHz) Front Side Bus: MHz (Typical: 1333MHz , 1666MHz) Word size : 32-bit or 64-bit word sizes Cache: Level 1 (64 KB per core), Level 2 (256 KB per core) caches on die. Now Level 3 (2 MB to 8 MB shared) cache also on die Instruction set size: X86 (CISC), RISC Microarchitecture: CPU Internal Architecture (Ivy Bridge, Haswell) Single Core/Multi Core Multi Threading Hyper Threading vs.
    [Show full text]
  • Efficient Processing of Deep Neural Networks
    Efficient Processing of Deep Neural Networks Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer Massachusetts Institute of Technology Reference: V. Sze, Y.-H.Chen, T.-J. Yang, J. S. Emer, ”Efficient Processing of Deep Neural Networks,” Synthesis Lectures on Computer Architecture, Morgan & Claypool Publishers, 2020 For book updates, sign up for mailing list at http://mailman.mit.edu/mailman/listinfo/eems-news June 15, 2020 Abstract This book provides a structured treatment of the key principles and techniques for enabling efficient process- ing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the- art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas. 1 Contents Preface 9 I Understanding Deep Neural Networks 13 1 Introduction 14 1.1 Background on Deep Neural Networks .
    [Show full text]
  • Architectural Adaptation for Application-Specific Locality
    Architectural Adaptation for Application-Specific Locality Optimizations y z Xingbin Zhang Ali Dasdan Martin Schulz Rajesh K. Gupta Andrew A. Chien Department of Computer Science yInstitut f¨ur Informatik University of Illinois at Urbana-Champaign Technische Universit¨at M¨unchen g fzhang,dasdan,achien @cs.uiuc.edu [email protected] zInformation and Computer Science, University of California at Irvine [email protected] Abstract without repartitioning hardware and software functionality and reimplementing the co-processing hardware. This re- We propose a machine architecture that integrates pro- targetability problem is an obstacle toward exploiting pro- grammable logic into key components of the system with grammable logic for general purpose computing. the goal of customizing architectural mechanisms and poli- cies to match an application. This approach presents We propose a machine architecture that integrates pro- an improvement over traditional approach of exploiting grammable logic into key components of the system with programmable logic as a separate co-processor by pre- the goal of customizing architectural mechanisms and poli- serving machine usability through software and over tra- cies to match an application. We base our design on the ditional computer architecture by providing application- premise that communication is already critical and getting specific hardware assists. We present two case studies of increasingly so [17], and flexible interconnects can be used architectural customization to enhance latency tolerance to replace static wires at competitive performance [6, 9, 20]. and efficiently utilize network bisection on multiproces- Our approach presents an improvement over co-processing sors for sparse matrix computations. We demonstrate that by preserving machine usability through software and over application-specific hardware assists and policies can pro- traditional computer architecture by providing application- vide substantial improvements in performance on a per ap- specific hardware assists.
    [Show full text]
  • Development of a Predictable Hardware Architecture Template and Integration Into an Automated System Design Flow
    Development Secure of Reprogramming a Predictable Hardware of Architecturea Network Template Connected and Device Integration into an Automated System Design Flow Securing programmable logic controllers MARCUS MIKULCAK MUSSIE TESFAYE KTH Information and Communication Technology Masters’ Degree Project Second level, 30.0 HEC Stockholm, Sweden June 2013 TRITA-ICT-EX-2013:138Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden Secure Reprogramming of a Network Connected Device KTH ROYAL INSTITUTE OF TECHNOLOGY Securing programmable logic controllers SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY ELECTRONIC SYSTEMS MUSSIE TESFAYE Development of a Predictable Hardware Architecture TemplateKTH Information and Communication Technology and Integration into an Automated System Design Flow Master of Science Thesis in System-on-Chip Design Stockholm, June 2013 TRITA-ICT-EX-2013:138 Author: Examiner: Marcus Mikulcak Assoc. Prof. Ingo Sander Supervisor: Seyed Hosein Attarzadeh Niaki Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden Abstract The requirements of safety-critical real-time embedded systems pose unique challenges on their design process which cannot be fulfilled with traditional development methods. To ensure their correct timing and functionality, it has been suggested to move the design process to a higher abstraction level, which opens the possibility to utilize automated correct-by-design development flows from a functional specification of the system down to the level of Multiprocessor Systems-on-Chip. ForSyDe, an embedded system design methodology, presents a flow of this kind by basing system development on the theory of Models of Computation and side-effect-free processes, making it possible to separate the timing analysis of computation and communication of process networks.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • Integrated Circuit Technology for Wireless Communications: an Overview Babak Daneshrad Integrated Circuits and Systems Laboratory UCLA Electrical Engineering Dept
    Integrated Circuit Technology for Wireless Communications: An Overview Babak Daneshrad Integrated Circuits and Systems Laboratory UCLA Electrical Engineering Dept. email: [email protected] http://www.ee.ucla.edu/~babak Abstract: Figure 1 shows a block diagram of a typical wireless com- This paper provides a brief overview of present trends in the develop- munication system. Moreover it shows the partitioning of the ment of integrated circuit technology for applications in the wireless receiver into RF, IF, baseband analog and digital components. communications industry. Through advanced circuit, architectural and In this paper we will focus on two main classes of integrated processing technologies, ICs have helped bring about the wireless revo- circuit technologies. The first is ICs for analog and more lution by enabling highly sophisticated, low cost and portable end user importantly RF communications. In general the technologist as terminals. In this paper two broad categories of circuits are highlighted. The first is RF integrated circuits and the second is digital baseband well as the circuit designer’s challenge here is to first, make the processing circuits. In both areas, the paper presents the circuit design transistors operate at higher carrier frequencies, and second, to challenges and options presented to the designer. It also highlights the integrate as many of the components required in the receiver manner in which these technologies have helped advance wireless com- onto the IC. The second class of circuits that we will focus on munications. are digital baseband circuits. Where increased density and I. Introduction reduced power consumption are the key factors for optimiza- tion.
    [Show full text]
  • Hybrid Pipeline Hardware Architecture Based on Error Detection and Correction for AES
    sensors Article Hybrid Pipeline Hardware Architecture Based on Error Detection and Correction for AES Ignacio Algredo-Badillo 1,† , Kelsey A. Ramírez-Gutiérrez 1,† , Luis Alberto Morales-Rosales 2,* , Daniel Pacheco Bautista 3,† and Claudia Feregrino-Uribe 4,† 1 CONACYT-Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla 72840, Mexico; [email protected] (I.A.-B.); [email protected] (K.A.R.-G.) 2 Faculty of Civil Engineering, CONACYT-Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Mexico 3 Departamento de Ingeniería en Computación, Universidad del Istmo, Campus Tehuantepec, Oaxaca 70760, Mexico; [email protected] 4 Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla 72840, Mexico; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Currently, cryptographic algorithms are widely applied to communications systems to guarantee data security. For instance, in an emerging automotive environment where connectivity is a core part of autonomous and connected cars, it is essential to guarantee secure communications both inside and outside the vehicle. The AES algorithm has been widely applied to protect communications in onboard networks and outside the vehicle. Hardware implementations use techniques such as iterative, parallel, unrolled, and pipeline architectures. Nevertheless, the use of AES does not Citation: Algredo-Badillo, I.; guarantee secure communication, because previous works have proved that implementations of secret Ramírez-Gutiérrez, K.A.; key cryptosystems, such as AES, in hardware are sensitive to differential fault analysis. Moreover, Morales-Rosales, L.A.; Pacheco it has been demonstrated that even a single fault during encryption or decryption could cause Bautista, D.; Feregrino-Uribe, C.
    [Show full text]
  • Extensible Hardware Architecture for Mobile Robots
    Extensible Hardware Architecture for Mobile Robots Eric Park∗, Linda Kobayashi, and Susan Y. Lee∗ Intelligent Robotics Group NASA Ames Research Center Moffett Field, CA 94035-1000, USA {epark, lkobayashi, sylee}@arc.nasa.gov Abstract— The Intelligent Robotics Group at NASA Ames Research Center has developed a new mobile robot hardware architecture designed for extensibility and reconfigurability. Currently implemented on the K9 rover, and soon to be integrated onto the K10 series of human-robot collaboration research robots, this achitecture allows for rapid changes in instrumentation configuration and provides a high degree of modularity through a synergistic mix of off-the-shelf and custom designed components, allowing eased transplantation into a wide variety of mobile robot platforms. A component level overview of this architecture is presented along with a description of the changes required for implementation on K10, followed by plans for future work. Index Terms— modular, extensible, hardware architecture, mobile robot, k9 INTRODUCTION Fig. 1. K9 rover Mobile robots used for research and development are in increasing demand as the application space for robotics K9 Overview widens. With this demand comes the need for a smarter way to produce reliable mobile robots with a proven set The K9 rover is a 6-wheel steer, 6-wheel drive rocker- of avionics. Time and money lost in developing custom bogey chassis outfitted with electronics and instruments architectures for each new robot makes it increasingly appropriate for supporting research relevant to remote important to develop extensible hardware architectures that exploration [2] [3] [4]. K9’s overall dimensions are 1.05m can expand and accommodate rapid changes in configu- long by 0.85m wide by 1.6m high, with a mass of ap- ration, including transfer to an entirely different mobile proximately 65 kg and a top speed of approximately 6 platform [1].
    [Show full text]
  • Ultra-Low-Power Design and Implementation of Application-Specific Instruction-Set Processors for Ubiquitous Sensing and Computing
    Ultra-low-power Design and Implementation of Application-specific Instruction-set Processors for Ubiquitous Sensing and Computing NING MA Doctoral Thesis in Electronic and Computer Systems Stockholm, Sweden 2015 TRITA-ICT 2015:11 KTH School of Information and ISSN 1653-6363 Communication Technology ISRN KTH/ICT-2015/11-SE SE-164 40 Kista, Stockholm ISBN 978-91-7595-692-3 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i Elektronik och Datorsystem onsdag den 4 november 2015 klockan 10.00 i Sal B, Electrum, Kungl Tekniska högskolan, Kista 164 40, Stockholm. © Ning Ma, September 2015 Tryck: Universitetsservice US AB iii Abstract The feature size of transistors keeps shrinking with the development of technology, which enables ubiquitous sensing and computing. However, with the break down of Dennard scaling caused by the difficulties for further lower- ing supply voltage, the power density increases significantly. The consequence is that, for a given power budget, the energy efficiency must be improved for hardware resources to maximize the performance. Application-specific inte- grated circuits (ASICs) obtain high energy efficiency at the cost of low flexi- bility for various applications, while general-purpose processors (GPPs) gain generality at the expense of efficiency. To provide both high energy efficiency and flexibility, this dissertation ex- plores the ultra-low-power design of application-specific instruction-set pro- cessors (ASIP) for ubiquitous sensing and computing. Two application sce- narios, i.e. high-throughput compute-intensive processing for multimedia and low-throughput low-cost processing for Internet of Things (IoT) are imple- mented in the proposed ASIPs.
    [Show full text]
  • Foundations for the Study of Software Architecture
    ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 40 Foundations for the Study of Software Architecture Alexander L. Wolf Dewayne E. Perry Department of Computer Science AT&T Bell Lab oratories University of Colorado 600 Mountain Avenue Boulder, Colorado 80309 Murray Hill, New Jersey 07974 [email protected] [email protected] c 1989,1991,1992 Dewayne E. Perry and Alexander L. Wolf ABSTRACT more toward integrating designs and the design pro cess into the broader context of the software pro cess and its management. One result of this integration was that The purp ose of this pap er is to build the foundation many of the notations and techniques develop ed for soft- for software architecture. We rst develop an intuition ware design have b een absorb ed by implementation lan- for software architecture by app ealing to several well- guages. Consider, for example, the concept of supp ort- established architectural disciplines. On the basis of ing \programmming-in-the-large". This integration has this intuition, we present a mo del of software architec- tended to blur, if not confuse, the distinction b etween ture that consists of three comp onents: elements, form, design and implementation. and rationale. Elements are either pro cessing, data, or The 1980s also saw great advances in our abilityto connecting elements. Form is de ned in terms of the describ e and analyze software systems. We refer here to prop erties of, and the relationships among, the elements | that is, the constraints on the elements. The ratio- such things as formal descriptive techniques and sophis- nale provides the underlying basis for the architecture in ticated notions of typing that enable us to reason more terms of the system constraints, which most often derive e ectively ab out software systems.
    [Show full text]
  • 1. SYSTEM ARCHITECTURE 1.1 System Hardware Architecture
    1. SYSTEM ARCHITECTURE 1.1 System Hardware Architecture This part represents a potential hardware architecture as a series view or deployment view. These are view base on the overall architectures of our hardware system and organization. Also, the system requirements are specified to hardware components. 1.1.1 List of Hardware components ● Ultrasonic sensor HC-SR04 ● Arduino Board MCU ESP8266 ● Monitor ● Keyboard/Mouse ● Wireless Router ● Computer CPU ● GPS/GPRS Module 1.1.2 Diagram showing the connectivity between the components We represent into the deployment view of the architecture. To showing the connectivity between the components. Describes the physical components (hardware), their distribution (e.g., a web server, database server) and how the different pieces are connected. So, we choose the deployment diagram to represent deployment view. The reason we choose this approach is the simplest model and suited for a proof of concept as shown in figure 1. Figure 1: Deployment Diagram Install the Ultrasonic sensor inside the waste container on its cover. The Ultrasonic sensor will measure the level of garbage inside the waste container and send the digital signal to centralized server by wireless cellular network. The centralized server will control all the process in a central location. System Administrator can manage all of it at the desktops at the waste station. Garbage truck driver can also check status of each waste container by their devices or Personal Computer at the waste station. 1.2 System Software Architecture This part represents a potential software architecture as a series views; use- case view. These are view based on the overall architecture of our software system and organization.
    [Show full text]
  • Method of Top-Level Design for Automated Test Systems
    Advances in Engineering Research, volume 127 3rd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2018) Method of Top-level Design for Automated Test Systems Zhenjie Zeng1, Xiaofei Zhu1,*, Shiju Qi1, Kai Wu2 and Xiaowei Shen1 1Rocket Force University of Engineering, Xi’an, China 2Troops No. 96604, Beijing, China *Corresponding author Abstract—When designing an automatic test system, it is The top-level design of automatic test system integration is necessary to make each electronic test device conform to different based on sufficient requirements analysis, and comprehensively test requirements. The most important issue is the system top- considers the optimal matching of technical and economic level design. The article starts with the three steps of the top-level performances. It is advanced, practical, open, real-time, design: system requirements analysis, architecture selection and universal (compatibility), and reliability. , maintainability and analysis, and test equipment configuration. It describes in detail other aspects of a comprehensive analysis, determine the test how to develop the top-level system design efficiently and system architecture (including hardware platforms and software reasonably when developing automated test systems. The platforms), develop a corresponding test program. As shown in principles, available method techniques, and precautions have Figure 1, it is usually divided into three steps: requirements some guiding significance for the top-level design of automated analysis,
    [Show full text]